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Abstract

In quasi-realistic string models that contain an anomalous U(1) the non-zero

Fayet-Iliopoulos term triggers the shifting of the original vacuum to a new one

along some flat direction, so that SUSY is preserved but the gauge group is

partially broken. The phenomenological study of these models thus requires

as a first step the mapping of the space of flat directions. We investigate F -

and D-flat directions in several three-generation SU(3)C × SU(2)L × U(1)Y
free-fermionic string models and discuss the typical scenarios that generically

arise. When they exist, we systematically construct the flat directions that

preserve hypercharge, only break Abelian group factors, and can be proven

to remain F -flat to all orders in the non-renormalizable superpotential.
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I. INTRODUCTION

While the investigation of the phenomenology of string models continues to face serious
difficulties, such as the problem of the degeneracy of string vacua and the absence of a
satisfactory scenario for supersymmetry breaking, classes of quasi-realistic models have been
constructed that warrant further phenomenological study.

The quasi-realistic string models are those which possess at least the basic structure
of the MSSM at the string scale (MString). Such models have N = 1 supersymmetry, the
standard model (SM) gauge group SU(2)L × U(1)Y × SU(3)C as a part of the full gauge
structure, and candidate fields for the three ordinary families and at least two SM Higgs
doublets. Classes of such models which satisfy the above requirements have been constructed
based on the weakly coupled heterotic superstring. In particular, we focus on models based
on the free-fermionic construction [1–3]. In these constructions, the mass spectrum and
superpotential (in principle to all orders in the nonrenormalizable terms) are calculable.

In addition to the standard model (observable) gauge group, the gauge structure of these
models includes a non-Abelian (NAB) hidden sector and a number of additional U(1)’s, of
which at least one is generally anomalous1 (by which we mean the charge trace over all
matter states is non-zero). The appearance of such an anomaly will play a crucial role
in the phenomenology of the model. The SM hypercharge is a linear combination of the
nonanomalous U(1)’s (or perhaps of the U(1)’s that can arise after the non-Abelian hidden
sector group is broken), which is chosen taking into account some basic phenomenological
requirements.

In general, the particle spectrum is such that there are many additional matter multiplets
along with the MSSM particle content. Most of the states can be classified according to those
which are representations of the observable sector NAB gauge group, representations of the
hidden sector NAB gauge group, and NAB singlets (i.e., fields which are singlets under NAB
gauge groups but can carry U(1) charges). However, the division between the observable
and hidden sector gauge groups is tenuous at best, because most of the fields are charged
under the Abelian gauge groups. In some models, there also are “mixed” states which are
non-singlets under both the observable and hidden sector NAB gauge groups. Such states,
if present, may have important consequences for the phenomenology of the model.

The Green-Schwarz anomaly cancellation mechanism at genus-one in string theory gen-
erates a constant Fayet-Iliopoulos (FI) contribution to the D- term of the anomalous U(1)
[6–9] which is proportional to the trace of the anomalous charge over all of the fields in
the model. The FI term would break supersymmetry in the original string vacuum, but it
triggers string-scale vacuum expectation values for certain scalar fields. In the new shifted
vacuum the D- and F - flatness constraints are satisfied, supersymmetry is restored, and
the anomalous U(1) is broken. There are many possibilities for this vacuum shifting, and
thus an analysis of the space of D- and F - flat directions is the necessary first step before
addressing the phenomenology of the model.

1Conditions sufficient to keep all U(1)’s anomaly free [3] have recently been discussed in [4] and

[5], with an anomaly-free semi-GUT presented in [5].
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In a previous paper [10], we developed a method to classify in a systematic manner
a subset of the flat directions of a general perturbative string model with an anomalous
U(1). While there is no reason a priori why a flat direction should not involve fields in non-
trivial representations of NAB groups, we chose to analyze those flat directions formed only
from the NAB singlets for simplicity. Our method involves determining a set of holomorphic
gauge invariant monomials (HIM’s) [11] that characterizes the moduli space of flat directions
under the nonanomalous U(1)’s. A straightforward classification of the singlet fields of the
model according to their charges under a conveniently defined combination of U(1) charges
(or of the HIM’s according to their anomalous charges) can then determine by inspection if
it is possible to form a flat direction that can cancel the anomalous D- term and preserve
U(1)Y . When such flat directions can be formed, we presented a systematic way to classify
the subset of these flat directions which can be proved to be F - flat to all orders in the
nonrenormalizable superpotential (and to all orders in string genus perturbation expansion).
We demonstrated our method in [10] by applying it to a prototype free-fermionic string
model, Model 5 of Chaudhuri, Hockney and Lykken in [12], for which the results were
particularly straightforward.

In this paper, we apply this method to a number of free-fermionic three-generation string
models, those presented in [13], [14], and [12]. We determine for each model whether it is
possible to construct hypercharge-preserving flat directions involving the NAB singlet fields
which can cancel the FI D-term. For the models in which this is the case, we examine the
space of such flat directions in detail.

In Section II, we describe the construction and general properties of the models under
consideration. We discuss our analysis of determining whether one can construct good flat
directions and explain our procedure for determining a viable hypercharge in Section III. In
Section IV, we present the results for each model. The summary and conclusions are given
in Section V.

II. SU(3)C × SU(2)L × U(1)Y MODELS OF PERTURBATIVE HETEROTIC

STRINGS

A. Standard Model Free-Fermionic Embeddings

Quasi-realistic four-dimensional perturbative heterotic string models generally contain
gauge structures that extend beyond the rank four SM SU(3)C ×SU(2)L ×U(1)Y . In string
models, gauge groups with ranks significantly larger than four are a generic by-product of
conformal anomaly cancellation. The gauge structure of a stringy SM or (semi)-GUT can
be expressed in the form,

{SU(3)C × SU(2)L ∈ G}obs × GNA
hid ×

∏

n

U(1)n ×
∏

p

∆p , (1)

where G denotes a possible SM GUT or semi-GUT embedding, GNA
hid contains the hidden

sector NAB gauge factors, and ∆p represents possible local discrete symmetries. The various
Abelian U(1)n charges may be carried by non-trivial matter representations of one or both
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Gobs and GNA
hid non-Abelian gauge groups. Mixed states that transform under non-trivial

representations of both Gobs and GNA
hid can be present.

One method of string model construction relies on world-sheet free fermions to represent
the internal degrees of freedom necessary for conformal anomaly cancellation [1,2]. In this
construction, four dimensional heterotic2 models of this type contain 18 internal left-moving
real world-sheet free fermions, ψr=3,20 and 44 right-moving real world-sheet free fermions,
ψ̄r=21,64, in addition to the two left-moving real world-sheet fermions ψr=1,2 whose indices
denote transverse spacetime directions.

In each free-fermionic model, a collection of boundary vectors {~α} allowed by modular
invariance specifies the phase changes that the 64 world-sheet fermions ψr can undergo after
they traverse the two non-contractible loops, lα or lβ, on the genus-one world-sheet. While
there are two genus-one loops, there is only one independent basis set of boundary vectors.
Modular invariance requires that the two sets of allowed boundary conditions for the two
loops are identical. Transporting a fermion ψ around the loop lα (or lβ) results in appearance
of a phase

ψr → −eiπαrψr, (2)

for rational αr in the range −1 < αr ≤ 1. For complex fermions ψj
c ≡ ψr1 + iψr2,3 these

boundary vectors are associated with a charge lattice formed by { ~Q~α}, where each charge
vector has components

(Q~α)j =
αj

2
+ Fj. (3)

Fj is a number operator for fermion oscillator excitations with eigenvalues {0,±1} for non-
periodic fermions and {0,−1} for periodic.

In heterotic strings (with the world-sheet supersymmetric sector as left-moving and the
world-sheet bosonic sector as right-moving) each right-moving complex fermion corresponds
to a local U(1) symmetry, whose massless generator is produced by the world-sheet simple
current

Uj =: ψj∗
c ψ

j
c : . (4)

Simple currents have normalizations

〈Uj , Uj〉 = 1 . (5)

In contrast, each left-moving complex fermion is only associated with a global U(1) symme-
try.

Some of the 20 left-moving and 44 right-moving real world-sheet fermions ψr cannot
always be paired (as a result of differing boundary conditions) to form left- or right-moving

2We choose the left-movers as the fermions assigned to carry world-sheet supersymmetry.

3The indices j and r denote complex and real fermions, respectively.
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complex fermions. Instead, a left-mover and a right-mover may be paired to form a non-chiral
Ising fermion, or some left-movers and/or right movers may remain unpaired, forming chiral
Ising fermions. In both of these cases, the boundary conditions are limited to αr = 0, 1.
Clearly, models must contain an even number of both left- and right-moving real Ising
fermions. For every two right-moving Ising fermions the rank of the gauge group is reduced
by one (independent of how these fermions divide into chiral or non-chiral Ising types).

To date, essentially only two primary embeddings of SM simple roots on charge lattices
have been used in free-fermionic models (although many other embeddings are possible).
The SM embedding used in [13] and [14] (and all other “NAHE” class models [15]) is
also the minimal embedding. That is, the necessary root charges are obtained using the
lowest possible number of complex world-sheet fermions, which is five. No fewer than five
are sufficient because level-one SU(n) roots can only be obtained by breaking SO(2n) →
SU(n)×U(1) (the exception to this rule is associated with SU(2)×SU(2) ≡ SO(4)). Thus,
the minimal free-fermionic SM embedding is,

G = SU(3)C × U(1)C × SU(2)L × U(1)L , (6)

where the rank 3 algebra, SU(3)C × U(1)C ∈ SO(6), originates in the charges of three
complex fermions, ψ̄j=1,2,3

c , and that of the rank 2 algebra, SU(2)L × U(1)L ∈ SO(4), from
those of two additional complex fermions, ψ̄j=4,5

c . In terms of the five charges of the 3 + 2
complex fermions, the simple roots for SU(3)C and SU(2)L are

SU(3)C : ( 1,−1, 0; 0, 0) (7)

( 0, 1,−1; 0, 0) (8)

SU(2)L : ( 0, 0, 0; 1,−1). (9)

In contrast, the seven models in [12] involve a non-minimal SM charge embedding, re-
quiring eight complex fermions,

SU(3)C : (
1

2
,

1

2
,−1

2
,−1

2
,−1, 0, 0, 0) (10)

( 0, 0, 0, 1,
1

2
,

1

2
,−1

2
,

1

2
) (11)

SU(3)C : (
1

2
,

1

2
,−1

2
,−1

2
, 1, 0, 0, 0) . (12)

The general form of hypercharge candidates in minimal SM embedding models is

U(1)Y = bCU(1)C + bLU(1)L +
∑

n

bnU(1)n , (13)

where the b’s are rational coefficients. It has been argued by claims of phenomenological
necessity [16] that viable hypercharge definitions are limited to

bC =
1

3
; bL = ±1

2
; bn = 0. (14)

Generally the “+” sign is chosen, as is true in particular for [13] and [14]. The choice of
the opposite sign corresponds to an exchange of particle identities uc ↔ dc, ec ↔ νc, and
HU ↔ HD.
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In the non-minimal SM embedding of [12] there are no apparent special Abelian symme-
tries like U(1)C and U(1)L, so the generic expression for a hypercharge candidate is simply

U(1)Y =
∑

n

bnU(1)n . (15)

Phenomenologically viable possibilities for bn in this class will be analyzed in the subsequent
section, including those presented for models CHL4 through CHL6 in [12].

Generally the currents Un of the Abelian symmetries U(1)n are not themselves simple
currents Uj as defined in (4) and (5). Instead, most of the Un are linear combinations of
simple currents,

Un =
∑

j

b′n,jUj . (16)

Often such linear combinations are not normalized to one, i.e.,

〈Un, Un〉 6= 1 . (17)

Differing hypercharge definitions can significantly alter the phenomenology of the effec-
tive field theory. In particular, the definition determines the value of kY for U(1)Y [17].4

From the low-energy point of view, the value of kY is especially important with regard to
shifts in the string unification scale Mstring. In string models, kY and the corresponding
levels, k3 and k2, of SU(3)C and SU(2)L, are related at tree level by

g2
i ki = g2 = g2

string/2, (18)

where gY,2,3 are the canonical gauge couplings of U(1)Y , SU(2)L, and SU(3)C , respectively
defined so that Y = 1

6
for a quark doublet QL and tr tatb = 1

2
δab (corresponding to the highest

root ψ normalized to ψ2 = 1) for the generators ta of the fundamental representations of
SU(2) and SU(3). At one-loop, these gauge couplings obey the renormalization group
equations of the effective field theory:

16π2

g2
i (µ)

= ki
16π2

g2
+ bi ln

M2
string

µ2
+ ∆i, (19)

for gi = gY , g2, g3. bi are the one-loop beta-function coefficients and ∆i are “threshold”
corrections from the infinite tower of massive string states. Mstring ∼ 5 × 1017 GeV is the
one-loop corrected coupling unification scale [18].

kY can be determined by studying a fermion-fermion-gauge coupling. While ki is limited
to positive integer values for NAB groups, ki is not necessarily integer in the Abelian case,
but can take on positive rational values. When SU(3)C ×SU(2)L is embedded in SU(5) (or
is embedded in SU(5) in a string model, but SU(5) is broken by string boundary conditions

4In string theory kY relates the definition of hypercharge Y to the hypercharge contribution hY

to the total conformal dimension, hY = Y 2/kY

2 , of a physical state.
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– as in minimally embedded “NAHE” free-fermionic models [15]), the lowest possible value
for kY is 5

3
. Note however that values of kY < 5

3
lead to somewhat better agreement between

the string scale and MSSM unification scale (assuming the MSSM particle content).
For a generic hypercharge

Y ≡
∑

n

bnQn =
∑

j

bjQj , (20)

kY can be expressed as [12,19],

kY = 2
∑

n

b2n〈Un, Un〉 = 2
∑

j

b2j , (21)

where each Un is the current associated with the corresponding U(1)n, which are linear
sums of the U(1)j with unit norm. The factor of two in eq. (21) is a result of differing string
and field-theoretic conventions with regard to traces of non-Abelian gauge generators [18]
(and the related highest root normalizations). While the canonical field-theoretic choice is
tr tatb = 1

2
δab (with ψ2 = 1) for SU(n) gauge groups, in string theory the corresponding

choice is tr tatb = δab (with ψ2 = 2) instead5. When the gauge group includes an anomalous
U(1) there is a simpler way of computing kY , as will be explained in the next sub-section.

B. Anomalous U(1) and Flat Directions

The appearance of anomalous U(1)’s in four-dimensional string models has been dis-
cussed extensively [4,5,10,20,21]. In the original free-fermionic charge basis of (3), models
usually contain more than one U(1)n with TrQn 6= 0. However, the anomaly can be trans-
ferred into a single U(1)A through the unique rotation

U(1)A ≡ cA
∑

n

{TrQn}U(1)n, (22)

with cA a normalization factor. Following this rotation, a complete orthogonal basis {U(1)a}
may be formed from the non-anomalous components of the original set of {U(1)n}.

The elimination of all triangle anomalies except those involving one or three U(1)A gauge
bosons is guaranteed by the Green-Schwarz (GS) relations,

1

kmk
1/2
A

Tr
Gm

T (R)QA =
1

3k
3/2
A

TrQ3
A =

1

kak
1/2
A

TrQ2
aQA =

1

24k
1/2
A

TrQA ≡ 8π2δGS , (23)

1

kmk
1/2
a

Tr
Gm

T (R)Qa =
1

3k
3/2
a

TrQ3
a =

1

kAk
1/2
a

TrQ2
AQa =

1

(kakbkA)1/2
TrQaQb6=aQA

=
1

24k
1/2
a

TrQa = 0 , (24)

5A factor of two was not included in the definition of hypercharge level used in [12]. Thus, the

correct values of the kY ’s in the models presented in [12] are actually twice that given in [12], and

are all greater than 5
3 .
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where km is the level of the gauge group Gm and 2T (R) is the index of the representation
R, defined by

TrT (R)
a T

(R)
b = T (R)δab . (25)

In a generic field-theoretic model, (22) would not necessarily place the entire anomaly into
a single U(1)A. The GS relations result from stringy modular invariance constraints and
guarantee the consistency of the model. The physical content behind these relations is that
the mixed anomalies are canceled by the pseudoscalar partner of the string dilaton, which
couples universally to all gauge groups. The relations (23) can be used to compute kY once
the states in the massless spectrum and their charges are known, without further knowledge
of the string origin of each state [22].

The standard anomaly cancellation mechanism [6–9] generates a FI D-term,

ξ =
g2
stringM

2
P

192π2
TrQA , (26)

where MP = MPlanck/
√

8π with MPlanck ∼ 1.2 × 1019 GeV.
The FI D- term is calculable in perturbative string theory, since it is a genus-one string

effect when determining masses [7] (and a genus-two effect when calculating the dilaton
tadpole [9]). The FI D- term triggers a shift to a nearby deeper vacuum with non-zero VEVs
for the scalar components ϕi of supermultiplets Φi such that the D-flatness constraints are
satisfied6

DA =
∑

i

Q
(A)
i |ϕi|2 + ξ = 0 , (27)

Da =
∑

i

Q
(a)
i |ϕi|2 = 0, (28)

along with F - flatness,

Fi =
∂W

∂Φi
= 0; W = 0. (29)

C. String Selection Rules for Superpotential Terms

The (perturbative) superpotential for the low-energy effective field theory of an underly-
ing string model is significantly more constrained than a generic field-theoretic superpoten-
tial, resulting from additional world-sheet symmetries than simply those that translate into

6Our convention for defining DA is that the corresponding D- term in the Lagrangian is 1
2kA

g2D2
A,

and similarly for Da.
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standard gauged spacetime symmetries. Consequently, stringy superpotentials will gener-
ically have fewer terms at a given order than one would expect simply from gauge group
charge conservation.

Coupling coefficients for a superpotential term of order (K+3), with K ≥ 0, can be cast
in terms of a (K + 3)–point tree-level string amplitude AK+3 of the form, [23,24]

AK+3 = g
CKIK

(πMP)K
, (30)

where g is the gauge coupling at Mstring and CK is a coefficient of O(1) that encompasses
different renormalization factors in the OPE of string vertex operators (including the target
space gauge group Clebsch-Gordan coefficients). For the renormalizable (K = 0) trilinear
terms, the I0 factor reduces to a correlation function f0 of world-sheet coordinates, whereas
for non-renormalizable (K > 0) terms, IK is an integral of a correlation function fK over
K − 3 world-sheet coordinates

IK =
∫

d2z3 · · · d2zK+2fK(z1 = ∞, z2 = 1, z3, · · · , zK+2, zK+3 = 0), (31)

where zi is the world-sheet coordinate of the conformal dimension (1, 1) vertex operator Vi for
the ith physical heterotic string state. By SL(2, C) world-sheet invariance, three coordinates
may be fixed. Generally, z1 → ∞, z2 = 1, and zK+3 = 0 is chosen.

In the free-fermionic construction, the vertex operator Vi may be factored into a prod-
uct of vertex operators associated with (i) the Lorentz spacetime momentum factor, V mom

i ;
(ii) the Lorentz spacetime spin factor, V spin

i ; (iii) the BRST superconformal ghost charge,
V BRST

i ; (iv) the global left-moving and local right-moving Abelian symmetry groups,
∏

n′ V
U(1)global

n′

i and
∏

n V
U(1)local

n
i , respectively; (v) the local right-moving NAB symmetry

groups
∏

m V
Gm
i ; (vi) the non-chiral Ising functions,

∏

q V
NCIq

i ; and (vii) the chiral Ising

functions
∏

q′ V
CIq′

i .
The correlation function fK similarly factors into products of correlation functions for

each of these classes of vertex operators [23],

fK(z) = 〈
K+3
∏

i=1

V mom
i 〉〈

K+3
∏

i=1

V spin
i 〉〈

K+3
∏

i=1

V BRST
i 〉

∏

n′

〈
K+3
∏

i=1

V
U(1)global

n′

i 〉
∏

n

〈
K+3
∏

i=1

V
U(1)local

n
i 〉

∏

m

〈
K+3
∏

i=1

V Gm

i 〉
∏

q

〈
K+3
∏

i=1

V
NCIq

i 〉
∏

q′
〈
K+3
∏

i=1

V
CIq′

i 〉 . (32)

The spacetime spin correlator for two spacetime fermions and K + 1 scalars is trivial,
contributing only a factor of

〈Sα(z1)Sβ(z2)〉 = (z1 − z2)
−1/2 (33)

to fK , where Sα is a conformal field representing a Lorentz spinor. With the exception of
the Ising correlation functions, the remaining correlation functions in the vertex operators
have exponential form. For an Abelian symmetry or the BRST ghost charge it is

9



〈
∏

i

eiQiH〉 =
∏

i<j

z
QiQj

ij , (34)

while for a non-Abelian symmetry the correlation function is

〈
∏

i

ei ~Qi· ~J〉 =
∏

i<j

z
~Qi· ~Qj

ij , (35)

where zij ≡ zi − zj (in this language, Qi = −ic is imaginary for ghost systems). Non-
conservation of any (local or global) Abelian or non-Abelian charge, i.e., a case of

∑

iQi 6= 0

or
∑

i
~Qi 6= ~0, yields IK = 0. On the other hand, the vertex operators must contribute a

total BRST superconformal ghost charge of −2 to cancel the superconformal ghost charge
carried by the vacuum [25]. The spacetime momentum correlation function is

〈
∏

i

ei 1

2
~Ki· ~Xiei 1

2
~Ki· ~̄Xi〉 =

∏

i<j

|zij|
1

2
~Ki· ~Kj . (36)

Ising correlators (both non-chiral and chiral classes) are non-trivial. For example, there
are six types of conformal fields (including the identity operator) associated with a non-chiral
Ising fermion: a left-moving real world-sheet fermion f(z), its right-moving counterpart
f(z), the energy operator ǫ(z, z) ≡ ff , and spin fields σ+(z, z̄) and σ−(z, z̄) (also known as
order/disorder operators). Correlators involving the spin fields of a given Ising fermion are
non-zero if and only if they can be factored into combinations of

〈σ+σ+〉, 〈σ−σ−〉, 〈σ+σ−f〉, and 〈σ+σ−f〉, (37)

while correlators not involving the spin fields require an even number of both f and f .
Chiral Ising correlation functions have additional subtleties over non-chiral Ising cor-

relators, but under certain conditions [2,26], they may be represented in terms of vertex
operators of “broken U(1) charges.” When these conditions are satisfied (such as in the
CHL models), the chiral Ising fermions may actually be paired in a vertex operator and
associated with a “broken charge” pair ±|Q|. Then the vertex operator of the set of all
chiral Ising fields, can be written for a physical state as

V CI
i =

∏

q′
V

CIq′

i , (38)

whose two charge vectors, ~Q(i) and −~Q(i), differ only by an overall sign. The correlation

function 〈∏K+3
i=1 V CI

i 〉 is nonzero when there is a choice of signs such that
∑

i ± ~|Q|
(i)

= ~0.
Both conservation of global world-sheet charges and the Ising field correlation selection

rules are truly stringy effects. In Section IV, we shall see examples in which these stringy
effects reduce the number of superpotential terms at a given order otherwise allowed by
gauge invariance [27].

1. Picture Changing and Charge Conservation

Satisfying both conservation of global world-sheet charges and the Ising field selection
rules of (37) in the superpotential terms of the effective field theory of a string model has its
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subtleties. The complications stem from cancelling the vacuum BRST ghost charge [28,25]
(mentioned above).

The correlation function fK is generated by the product of the vertex operators Vi for
the K + 3 superfields Φi forming the candidate superpotential term,

fK = 〈V f
1 (z1 → ∞)V f

2 (z2 = 1)V b
3 (z3) · · ·V b

K+3(zK+3 = 0)〉 , (39)

where V
f (b)
i is the fermionic (bosonic) part of the complete superfield vertex operator Vi.

The BRST ghost charge associated with the canonical fermionic (bosonic) vertex operator is
−1

2
(−1). Conformal invariance allows a physical vertex operator with a given ghost charge

to be “picture-changed” into an equivalent vertex operator with a new ghost charge differing
by an integer value from the first. However, as we discussed, cancellation of the vacuum
ghost charge anomaly requires that the net ghost charge for fK be −2. Since in the canonical
picture the net ghost charge is −2 + (3−K), the last K bosonic vertex operators should be
picture-changed to carry a ghost charge of 0.7 That is,

V b
4 (−1) · · ·V b

K+3(−1) → V b
4 (0) · · ·V b

K+3(0) , (40)

with ghost charge of a vertex operator explicitly denoted by the subscript in parenthesis.
The spin-3

2
supercurrent T3/2 of the N = 2 world-sheet supersymmetry acts as the

picture-changing operator for a superfield vertex operator, increasing the vertex operator
ghost charge by one unit:

V(c+1)(z) = lim
w→z

ec T3/2(w)V(c)(z) . (41)

T3/2 can be separated into three components distinguished by their respective charges (ap-
pearing as superscripts) under the U(1)N=2 current (of the N = 2 global world-sheet super-
symmetry) also present in the N = 2 algebra:

T3/2 = T 0
3/2 + T−1

3/2 + T+1
3/2 , (42)

where the superscripts denote world-sheet charges. The canonical bosonic (fermionic) vertex
operators with ghost charge −1 (−1

2
) also carry +1 (−1

2
) charge under U(1)N=2. Thus, when

acting on the ghost charge −1 vertex operators, only the T−1
3/2 component of T3/2 will lead

to conservation of fK ’s total U(1)N=2 charge in (32) and (39).
When all 20 left-moving real world-sheet fermions ψj=1,20 have only periodic/antiperiodic

boundary conditions,8 the 18 internal fermions can be regrouped into six sets of three
fermions (and appropriately relabelled):

{(ψ1ψ2), (x, y, ω)i=1 to 6} . (43)

7Any other set of picture-changes that similarly yield a net ghost charge of −2 for fK would also

be acceptable and would generate the same superpotential terms.

8N = 2 algebras for free-fermionic models containing left-moving fermions with rational, non-

integer boundary conditions have been studied in [29].
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While spacetime supersymmetry requires fermions x2j−1 and x2j to combine into complex
fermions X2j−1,2j ≡ 1√

2
(x2j−1 + ix2j), for j = 1 to 3, the various yi and ωi are unconstrained

and may form either complex or Ising types. In terms of the 20 real fermions (and two
transverse world-sheet bosons Xµ=1,2) the world-sheet supercurrent is

T3/2(z) = ψµ∂Xµ + i
6

∑

i=1

xiyiωi (44)

while the U(1)N=2 generator (connected with spacetime supersymmetry) is

J(z) =: X12∗X12 : + : X34∗X34 : + : X56∗X56 : . (45)

Eq. (45) indicates that the global U(1)N=2 charge of a state is the sum of all three of its
X2j−1,2j charges. Complex fermions like the X can be replaced by real bosons S, using the
U(1) current boson/fermion identity,

i∂zS(z) =: X∗X : . (46)

This equivalence allows J(z) to be expressed as

J(z) = i∂z(S12 + S34 + S56) . (47)

A related bosonized form of T3/2(z) is easily separated into the three components iden-
tified in (42) by their U(1)N=2 charges:

T 0
3/2(z) = ψµ∂Xµ (48)

T−1
3/2(z) = e−iS12τ12 + e−iS34τ34 + e−iS56τ56 (49)

T+1
3/2(z) = −(T−1

3/2(z))
∗, (50)

where,

τij ≡
i√
2
(yiωi + iyjωj). (51)

The form of T−1
3/2 in (49) implies that picture-changing a V b

−1 operator into a V b
0 operator

via (41), T−1
3/2 simultaneously alters both the U(1)N=2 charge and some y- and ω-related

charges or Ising fields. Consider, for example, the effect of the first component, e−iS12(yiωi),
of T−1

3/2 on a generic V b
−1. The operator e−iS12 decreases the X12 charge (and thus also the

total U(1)N=2 charge) by 1. Further, if y1 is an Ising fermion, then a spin field σy1

+ (σy1

− ) in

V b
−1 will be converted into the opposite spin field type, σy1

− (σy1

+ ), in V b
0 by the y1 factor in

this T−1
3/2 component. If, however, there were no such Ising spinor in V b

0 , then a new Ising

fermion excitation y1 would appear in V b
0 . On the other hand, if y1 was part of a complex

fermion, e.g., Y 1,3 ≡ 1√
2
(y1 + iy3), then the y1 operator in the T−1

3/2 component would create

two separate terms in V b
0 : one term would have its Y 1,3 charge raised by one unit and the

other term would have its Y 1,3 charge lowered by one unit. Raising and lowering of the
charge would both occur because in terms of Y 1,3(∗), y1 = 1√

2
(Y 1,3 + iY 1,3∗). That is, y1

12



contains both charge raising and lowering operators. The ω1 in factor T−1
3/2 component would

act similarly on V b
−1.

Therefore, terms that seem to be allowed (disallowed) prior to picture-changing may
actually be disallowed (allowed). Of particular importance is that picture-changed bosonic
vertex operators V b

0 can contain several different terms due to (i) the six separate terms in
T−1

3/2(z) and (ii) operators in each term of T−1
3/2(z) that can sometimes act as both raising and

lowering operators of y- and ω-associated charges. When a correlation function fK is under
examination, all possible combinations of terms in the K pictures-changed vertex operators
must be considered.

We now illustrate the technique explicitly, by considering a specific example. The free-
fermionic model presented in [13] contains among its N = 1 spacetime superfields four
denoted as H39, H37, H32, and H30 (these fields are identified in our Tables IIIa and IIIb
as S43, S28, S24, and S7, respectively). Their gauge charges can be found in Table 2 of [13].
This is the same set of four non-Abelian singlets for which in [24] we computed the integral
I1 of the correlation function f1. In Table I we list left-moving global U(1) charges and
non-chiral Ising fields in the fermion components of the superfields H39 and H37 and in the
bosonic components of H32 and H30.

The model in [13] contains six complex left-moving world-sheet fermions: ψ12 = ψ1+iψ2,
X12 = x1 + ix2, Y 16 = y1 + iω6, W 13 = y1 + iω3, X34 = x3 + ix4, and Y 36 = y3 + iy6. Table I
only lists charges under the first real fermion component of a complex fermion.

Additionally, the model possesses six non-chiral Ising pairs: (y2, ψ̄38), (ω2, ψ̄44), (y4, ψ̄40),
(ω4, ψ̄46), (y5, ψ̄41), and (ω5, ψ̄47). There are no anti-periodic excitations from any of the
right-moving ψ̄ components in non-chiral Ising fermion pairs for any of the four superfields.
Thus, the corresponding ψ̄ are not relevant to the picture-changing discussion below.

We choose to picture change H30. From Table I we see that the net S34 and S56 charges
are both zero before picture changing, while the net S12 charge is +1. Thus, we must use the
e−iS12τ12 component of T−1

3/2 to picture change H30 and cancel the S12 pre-picture changed

charge. Before picture changing, the Ising field correlations for (y2, ψ̄38) and (ω2, ψ̄44) are
non-zero (〈σ+σ+〉 and 〈σ−σ−〉, respectively), while the net Y 16 and W 13 global U(1) charges
are both −1 and −1, respectively.

The y2 and ω2 Ising correlations remain unaffected by the y1ω1 component of τ12 ≡
i√
2
(y1ω1 + iy2ω2). In contrast, the raising operator in y1 cancels the pre-picture change net

Y 16 charge by altering H30’s Y
16 charge from −1

2
to 1

2
. The raising operator in ω1 similarly

cancels the W 13 charge.
Determining if the string amplitude is non-zero is straightforward for low values of K.

This process might seem unwieldy for increasingly higher values of K; however, simple
arguments based on invariance [25] of outcome under differing choices of picture-changed
fields permit a more tenable approach which does not require that picture changing be
performed on (K − 3) individual states. Instead, essentially only the total picture-changing
effect from K various components of T−1

3/2 need act on an effective “composite field.” The
charges and Ising fields of the effective composite state are the summations of the separate
respective charges of the original K + 3 canonical fields. The “composite field” charges for
the W4 example above are given in the “net charges” row of Table I. A zero net “charge”
appears in an Ising field column if the Ising correlation function of the four fields is already
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non-zero.
For a non-zero string amplitude, there must be an allowed set of K + 3 =

∑6
i=1 Pi, for

Pi ∈ {Z+, 0}, picture changing operators
∑

P1

e−iS12(y1ω1) + i
∑

P2

e−iS12(y2ω2) +
∑

P3

e−iS34(y3ω3) + i
∑

P4

e−iS34(y4ω4) +

∑

P5

e−iS56(y5ω5) + i
∑

P6

e−iS56(y6ω6), (52)

that both contains an appropriate set of total U(1) charges to cancel the corresponding
charges of the “composite field” and provides for non-zero Ising y’s and ω’s correlations.

Cancellation of the total U(1)N=1 charge from two canonical fermion fields and K − 2
canonical scalar fields, Qnet

N=2 = 2× (−1/2)+(K−2)× (1) = K−3, is trivially accomplished
by any {Pi} set specifying the picture-changing operators in (52), since (

∑6
i=1 Pi) × (−1) =

−(K + 3). However, separate cancellation of the three charge components Qnet
i,i+1 of Qnet

N=2

associated with the three Si,i+1, imposes the first requirement for a good picture-changing
charge cancellation: each Qnet

i,i+1 must be a positive integer. Then cancellation of each Qnet
i,i+1

requires choices of Pi and Pi+1 such that

(Pi + Pi+1)(−1) = −Qnet
i,i+1. (53)

Values of the six Pi must lead to cancellation of all yi/ωi-related charges. Our previous
discussion of τi,i+1 operators implies that Pi and Pi′ lead to cancellation of a particular
charge Qi,i′ associated with a complex fermion formed from real fermions fi and fi′, (where
f is y or ω) if and only if

Qi,i′ = Pi + P ′
i (mod 2) (54)

|Qi,i′| ≤ Pi + P ′
i . (55)

Searching for possible {Pi} solutions to these constraints and corresponding Ising-related
constraints can be easily performed by a simple computer subroutine, making an efficient
determination of high order terms in the superpotential feasible.

III. FLAT DIRECTION ANALYSIS

A. Classification of Fields

Our strategy to find the set of flat directions which satisfy the flatness constraints (27),
(28), and (29) is the following. First, the moduli space of flat directions under the nonanoma-
lous U(1)’s only is determined. This space of flat directions can be described by a basis
of independent holomorphic gauge invariant (under the non-anomalous U(1)’s) monomials
(HIM’s) [11], or equivalently by a larger superbasis9 of all one dimensional HIM’s (i.e., with

9The elements of this superbasis are not linearly independent. However, it has the advantage that

any flat direction can be expressed simply as a product of the elements in the superbasis.
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one free VEV unconstrained by the flatness conditions). The HIM’s of the basis and the
superbasis are then classified according to their anomalous charge. If the sign of the anoma-
lous charge of a given HIM is opposite to that of the FI term some free VEV in the flat
direction will adjust itself to cancel the anomalous D-term (DA). The F -flatness conditions
are then addressed for this D- flat direction.

However, for the purpose of determining if there exist NAB singlet flat directions which
can cancel DA, there is a useful classification of the fields in the model which can show
immediately if such a flat direction is possible, as we explained in [10]. For the sake of
completeness, we repeat the strategy of this classification here. One defines an auxiliary
charge Q as a linear combination of non-anomalous U(1) charges

Qj ≡
m

∑

a=2

αaQ
(a)
j , (56)

where the αa are chosen for convenience trying to maximize the number of fields for which
QA = Q. This relation cannot hold for all the chiral fields in the model so we define the
quantities

Q̂j = QA
j −Qj , (57)

and classify all the chiral fields in three different types, depending on the sign of Q̂j :

Φ+
j , if Q̂j > 0,

Φ0
j , if Q̂j = 0,

Φ−
j , if Q̂j < 0. (58)

With this classification and knowledge of the sign of the FI term (26), we can determine
which fields are required for a flat direction that satisfies (27). The statement is as follows:
Theorem: If ξ > 0 (< 0), any flat direction must contain at least one of the fields Φ−

j (Φ+
j ).

Therefore, for each model our strategy is to determine Q, classify the NAB singlets
according to their values of Q̂j and use the theorem to determine if the model has flat
directions formed out of NAB singlets. If ξ > 0 (< 0) and no singlets of the type Φ−

j (Φ+
j )

exist, there is no possibility of forming D- flat directions out of singlets only which can
cancel the FI term. In that case, fields that transform under non-trivial representations of
NAB groups (either from the hidden sector or the observable sector) must get VEVs along
the flat directions of the model.

If the Q̂j classification of the fields is such that D- flat directions can be formed out
of the singlet fields, we follow our method of [10]: first we determine U(1)Y as a linear
combination of the non-anomalous U(1)’s, as described in detail below, select the singlets
with zero hypercharge (such that Gobs remains unbroken), and check whether fields of the
appropriate type (Φ−

j or Φ+
j ) remain with Y = 0. We then construct a basis of HIM’s, or

equivalently the superbasis of all one dimensional HIM’s, that describe the moduli space
of non-anomalous flat directions. The space of flat directions that also have DA = 0 is a
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subspace of this. It can be formed by combining the directions in the basis or superbasis,
ensuring that the anomalous charge10 of the resulting direction has sign opposite to ξ.

These D- flat directions are then tested for F - flatness. As discussed in [10], a subset
of the D- flat directions can be proved to be F - flat to all orders in the non-renormalizable
superpotential by imposing the constraints of gauge invariance and knowledge of the su-
perpotential to a given order. This subset, referred to as Type-B directions, are those in
which one cannot form total gauge singlet holomorphic operators from the fields that form
the direction11. Then, for these directions there are only a finite number of possible terms
in the superpotential which could lift F -flatness. Whether these terms are in fact present
(i.e., are allowed by string selection rules) is then checked explicitly. In contrast, Type-A
directions involve fields which can form gauge group singlets, so that terms which could lift
F - flatness could occur to all orders in the superpotential.

We will restrict our analysis to type-B flat directions. Of course, in doing so we may leave
out some flat directions which are in fact F - flat to all orders, but proving these directions
are F - flat is a difficult task. We list the one-dimensional (zero-dimensional after cancelling
the anomalous D- term) D- flat directions which remain F - flat to all orders, out of which
higher dimensional flat directions may be formed. We also list the number of broken U(1)’s
for each flat direction.

B. Hypercharge Determination

For each model, a viable hypercharge must be determined as a linear combination of the
nonanomalous12 U(1)’s which satisfies the following basic phenomenological criteria:

• Three generations of quarks and leptons, as well as a pair of electroweak Higgs doublets
with conventional hypercharges.

• Grouping of all particles with nonzero charge under SU(3)C or U(1)EM into mirror
pairs, such that mass terms can be generated and these particles made heavy. Oth-

10By gauge invariance the Q̂ charge of a HIM coincides with its anomalous charge.

11The presence of the anomalous U(1) is crucial to this point, as the HIM’s associated with good

flat directions are not invariant under U(1)A.

12We do not consider the possibility of U(1)Y having some component along the generators of

hidden sector NAB groups (broken at some scale). If that breaking is triggered by the FI term, we

should consider flat directions that involve fields in nontrivial representations of these NAB groups,

an analysis which is beyond the scope of this paper. We also ignore breaking at a lower scale (e.g.,

radiatively) for simplicity. The latter case would also significantly change the picture of SM gauge

coupling unification. However, the additional matter content in these models can also modify the

gauge unification. Such phenomenological issues are also beyond the scope of this paper.
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erwise, there would necessarily be exactly massless colored or charged fermions in the
theory, which are clearly excluded13.

In general, the number of fields in each model that are candidates for the observable sector
states is so large that a direct search for hypercharge candidates taking all combinations of
possible observable sector fields would be very inefficient. Therefore, depending on the
number of nonanomalous U(1)’s in the model, we seek the minimal number of constraints
that can determine a hypercharge candidate and then check explicitly if the above conditions
are satisfied.

In each model considered, there are only three candidates for the quark doublet states
(3, 2) under (SU(3)C , SU(2)L), so we require that these fields have the appropriate hyper-
charges Y (QL) = 1

6
. However, there are generally more than 6 candidates for the quark

singlets (3̄, 1). In some models, there are (3̄, 1) states which are also multiplets under the
NAB hidden sector gauge group, so that if the hidden sector gauge group is broken above
the electroweak scale, these states may also be included in the list of candidates for the
quark singlets. We scan all combinations of these fields such that we have three candidates
for the right-handed up-type quarks, with hypercharge Y (U c

L) = −2
3
. If these conditions are

not sufficient to determine Y , we also impose similar requirements for the existence of three
right-handed down-type quarks, with Y (Dc

L) = 1
3
. We also impose the condition that the

trace of the hypercharge over the remaining (3, 1) and (3̄, 1) states (not selected as quarks
candidates) is zero. This is a necessary condition (but not sufficient) for these particles to
obtain large masses and decouple from the low-energy theory.

Once a hypercharge candidate is found that satisfies these conditions we check explicitly
for complete families and pairing of the remaining fields in vector-like pairs of equal and op-
posite electric charge. (Some hypercharge definitions involve continuous parameters, which
can be varied in the search for pairs). When several Y definitions exist, one can use the
values of kY to discriminate between them [12], choosing the one closer to kY = 5/3.

IV. RESULTS

We now apply the methods discussed above to several quasi-realistic string models taken
from the literature, which provide an assorted sampling of the different situations one may
encounter. Model FNY1 is the one constructed in ref. [13], model AF1 is taken from ref. [14]
and the rest, CHL1 to CHL7, are the models presented in ref. [12]. The sign of the FI term,
proportional to the sign of the trace of the anomalous charge over all of the fields in the
model, is listed in Table II for the models considered.

13This is the weakest reasonable assumption; one could make a stronger assumption of no unpaired

SU(2)L chiral states. Such additional chiral fermions would be expected to acquire masses when

SU(2)L is broken, and would have important phenomenological consequences, such as yielding a

positive contribution to the electroweak S parameter. However, they are not absolutely excluded,

so we do not require their absence as a condition on the hypercharge definition.
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A. Model FNY1

The gauge group of this model is

{SU(3)C × SU(2)L}obs × {SU(3) × SU(2) × SU(2)}hid × U(1)A × U(1)11, (59)

and the particle content includes, besides the MSSM multiplets, additional chiral superfields:

1(3̄, 1; 1, 1, 1) + 1(3, 1; 1, 1, 1) +

10(1, 2; 1, 1, 1) + 5(1, 1; 3, 1, 1, 1) + 5(1, 1; 3̄, 1, 1) +

12(1, 1; 1, 2, 1) + 15(1, 1; 1, 1, 2) +

57(1, 1; 1, 1, 1) , (60)

where the representation under (SU(3)C , SU(2)L;SU(3), SU(2), SU(2)) is indicated. We
list the U(1) charges of the non-Abelian singlets (including the right-handed leptons) in
Table IIIa. The hypercharge definition is given by [13]

Y =
1

24
(2Q1 + 3Q2), (61)

[normalized to give Y (quark doublet)= 1/6], and Q is given by

Q =
28

3
(Q6 −Q10) −

1

3
Q7 + 28(Q9 −Q11). (62)

This model has a positive trace of the anomalous charge, so the FI term can be compensated
only along flat directions with negative values of Q̂. Anticipating the requirement that any
such flat direction preserves hypercharge, we consider only Y = 0 fields. By inspection, one
sees that S7, S20, S36, S38, and S46 have Y = 0 and Q̂ < 0, so this model has in principle
the possibility of good flat directions.

The basis for the Y = 0 non-anomalous moduli space is presented in Table IV. An
element like M31 = 〈322, 252, 6, 2, 1〉 stands for the HIM Φ2

32Φ
2
25Φ6Φ2Φ1. There are 41 fields

with Y = 0 and their 41 × 11 charge matrix Qn
i [i is a field index and n a U(1)n index] has

rank 9 [U(1)Y and U(1)11 are zero for this subset of fields]. This implies that the basis has
32 elements. In particular, the presence of primed copies of the fields S5 and S̄5 introduces
two basis elements (M6 and M7) which are trivially derived from M5. The last direction
in the table, M32, has Q̂ < 0 and can be used, by combining it with other directions, to
generate all Q̂ < 0 D- flat directions, i.e., those capable of giving DA = 0.

In this model, the superbasis, formed by all one-dimensional flat directions, has a very
large number of elements (ranging in the few thousands), and hence the complete determina-
tion of the superbasis loses its practical motivation. Nevertheless, all the information about
the moduli space of non-anomalous dimensions is already contained in the basis and any
flat direction can be expressed in terms of its elements. This moduli space contains many
directions which are DA flat (i.e., they have Q̂ < 0) and also remain F - flat. In Table V we
list several examples of such directions that involve different numbers of fields. All of these
directions are one-dimensional (before cancelling the FI term. The free VEV is then fixed
to be of order ξ) and so break different numbers of U(1)’s, as indicated. As an example, the
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simplest direction R1, involving only five different fields, breaks four non-anomalous U(1)’s.
Before compensating the FI term, this direction is one-dimensional, and so the VEV’s of the
five fields are all related (according to the powers to which they are raised in the associated
holomorphic invariant monomial). After compensating the FI term all the VEV’s are then
related to ξ according to

|ϕ1|2
4

= |ϕ4|2 = |ϕ6̄|2 =
|ϕ7|2

2
=

|ϕ9|2
2

= − ξ

Q̂(R1)
=

ξ

224
. (63)

The last directions presented in Table V are examples that break the maximal number of
U(1)’s compatible with unbroken U(1)Y . There is always another U(1) besides hypercharge
that remains unbroken.

Some of the listed directions do not have any possible superpotential term that could
lift the F - flatness (except mass terms that are absent in superstring models). Many other
directions are lifted already by terms in the trilinear superpotential, which at that order
reads:

W3 = S4S18S38 + S4S11S27 + S14S46S6 + S8S33S̄6 + S1S̄2S̄3 + S̄1S2S3

+ S31S35S2 + S17S7S̄2 + S26S28S1 + S25S32S1 + S19S20S̄3. (64)

B. Model AF1

The gauge group is

{SU(3)C × SU(2)L}obs × {SU(5) × SU(3)}hid × U(1)A × U(1)9. (65)

Besides the MSSM multiplets, the particle content includes additional chiral superfields:

2(3̄, 1; 1, 1) + 2(3, 1; 1, 1) + 8(1, 2; 1, 1) +

4(1, 1; 5, 1) + 4(1, 1; 5̄, 1) + 8(1, 1; 1, 3) +

8(1, 1; 1, 3̄) + 37(1, 1; 1, 1) , (66)

where the representation under (SU(3)C , SU(2)L;SU(5), SU(3)) is indicated. In Table VIa
we list the 40 NAB singlets (including right-handed leptons) of the model with their U(1)
charges (rescaled by a factor 4 with respect to ref. [14] to make them integers). The hyper-
charge definition is [14]

Y =
1

24
(2Q1 + 3Q2), (67)

[normalized to give Y (quark doublet)= 1/6], and Q is found to be:

Q =
1

2
(−15Q5 + 5Q6 + 4Q7 − 15Q8 +Q9). (68)
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In this model, negative values of Q̂ are required to construct flat directions and Table VIa
shows that two Y = 0 fields have the correct sign of Q̂: S7 and S10. In the table, we also
list two other U(1) charges, defined as:

Q′ = −26Q1 + 3Q8 + 5Q9, Q′′ = 15Q8 −Q9. (69)

Restricting our attention to Y = 0 fields, we see that S15, S16 and S17 are the only fields
with non-zero Q′ charges, and all of them are negative and equal. This implies that no HIM
built of non-Abelian Y = 0 singlets can contain these three fields, so they do not appear
in this type of flat direction and we can ignore them in the following. We are then left
with (note that all the fields have a mirror copy) N∗ = 13 × 2 (Y = 0) fields which have
zero charge under three independent U(1)’s: Y,Q′ and Q′′. The rank of the non-anomalous
charge matrix for this subset of fields is then equal to 6. Consequently, we expect a basis
of non-anomalous flat directions composed of 20 elements. Two such bases are presented in
Table VII. The first is constructed in such a way as to minimize the number (and power) of
the fields entering the basis elements. The second contains a sub-basis of Q̂ < 0 elements.
All type-B Q̂ < 0 directions can be obtained by combining the elements of this sub-basis.

The superbasis, containing all one-dimensional non-anomalous flat directions of the
model, can be readily constructed and is presented in tables VIIIa and VIIIb. It con-
tains a total of 157 × 2 elements (every flat direction is accompanied by another formed by
the mirror copies of the fields in the first one). The superscript 0 labels Q̂ = 0 directions
and the rest have Q̂ = −60 (+60 for the mirror direction not written). In total, 123 have
the correct sign of Q̂ to compensate the FI term, and thus are true flat directions. These
elements (Pα with α = 1, ..., 123) are the building blocks of all type-B D- flat directions.

Many of the D- flat directions built out of the Pα’s will be lifted by F - terms. The
superpotential of the model involving NAB singlets only is [14], up to the fourth order:

W2 = 0, (70)

W3 = S3S4S12 + S3S4S12

+ S11(S5S8 + S6S9 + S7S10 + S12S13)

+ S11(S5S8 + S6S9 + S7S10 + S12S13) (71)

+ S1S2S3,

W4 = 0. (72)

The different Yukawa couplings, of order g, are not indicated explicitly. The mirror copy of
the term S1S2S3 is absent, forbidden by world-sheet selection rules, as are all terms quadratic
and quartic in the fields, that would otherwise be allowed by gauge symmetries.

Knowledge of W up to fourth order terms is nearly all that is needed to determine which
Pα’s are also F - flat. It turns out that only 10 of them remain flat to all orders in the
presence of F - terms. The particular direction

P = R81 = 〈14, 2̄, 4̄, 5, 6, 7, 13
2〉, (73)

however, requires knowledge of up to sixth order terms in W , as it can be lifted if the terms
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W
(5)
B = S1S2S4S11S13,

W
(6)
B = S1S2S4(S5S8 + S6S9 + S7S10)S13, (74)

do appear in the actual superpotential.
While gauge invariant terms like W

(5)
B and W

(6)
B are expected to appear in field-theoretic

models unless additional symmetries are enforced ad hoc, the situation is different in string
models. Beyond spacetime symmetries, stringy superpotential terms must always satisfy a
set of world-sheet selection rules [30], as we discussed in section two. In this case, neither

W
(5)
B nor any of the three W

(6)
B terms meet world-sheet selection requirements and, therefore,

are eliminated from the superpotential. While the above terms are gauge group invariants,
their corresponding five- and six-point string amplitudes are zero as a result of string effects,
as explained below.

That W
(5)
B does not survive in the superpotential is relatively easy to demonstrate: fields

S1, S2, and S4 are Ramond fields, that is, they originate in twisted world-sheet super-
symmetric sectors of the string model. In contrast S11 and S13 come from the untwisted
Neveu-Schwarz world-sheet supersymmetric sector of the model. A picture changed [31] set
of 3 +K (with K ≥ 1) states can form an invariant under the global U(1)N=2 symmetry of
the N = 2 world-sheet supersymmetry only if no more than K − 1 fields are of the Neveu-
Schwarz type [32]. Hence, a stringy candidate W5 term with two Neveu-Schwarz fields has
a vanishing five-point amplitude, since such a term is not invariant under U(1)N=2.

The three W
(6)
B terms cannot be discarded so easily, for they each contain exactly one

Neveu-Schwarz field while up to two are allowed. For these terms we must also examine
their additional global U(1) world-sheet charges and/or Ising field correlation functions.
From this we can demonstrate that none of the three terms appear in the superpotential:
first, we can show that the pairs of fields that distinguish the three W

(6)
B terms, i.e., S5S8,

S6S9, and S7S10, all originate in the same twisted subsector of the model. The three pairs
all follow the same basic pattern with regard to their global world-sheet charges and Ising
fields.

Next, we choose the fields S1, S2, S4 to be the three that are not picture changed in any of
the three terms. Then S2, S4 contribute to the six-point string amplitude two distinct Ising
twist field correlators 〈σ+

i σ
−
i 〉 (i=1,2), associated, respectively, with two non-chiral Ising

world-sheet fermions, that we will denote (f1(z), f 1(z)) and (f2(z), f 2(z)) . Both before and
after all possible picture changing options (including those that lead to a U(1)N=2 conserving
term) are performed on the respective sets of fields, {S5S8S13}, {S6S9S13}, and {S13S7S10},
we find that there are no further contributions to either non-chiral Ising fermion’s correlation
functions. Since 〈σ+

i σ
−
i 〉 = 0, the entire six-point string amplitudes are zero and the terms

are removed from the superpotential. Thus, while we should generically expect flatness of
the particular direction (73) to be broken by the appearance of W

(5)
B and W

(6)
B in a generic

field-theoretic model, direction (73) remains flat in this string model due to additional world-
sheet selection rules.

Table IX lists all one-dimensional (zero-dimensional after cancelling the FI term) Pα

directions that remain F - flat to all orders. Other multi-dimensional flat directions can
be built by multiplying these together in different combinations. Some exceptions arise if
one combines Pα’s in such a way that the fields S12 and S13 (or S13 and S13) take VEV’s
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simultaneously. In the first case, F - terms are generated at the Yukawa level [see eq. (71)] and
lift the direction while in the second case the flat direction would be of type A (it contains
the HIM S13S13) and knowledge of the superpotential to all orders would be required to
ensure that no lifting term (S13S13)

n appear.

C. Model CHL1

This model has the gauge group

{SU(3)C × SU(2)L}obs × {SU(2)2 × SU(2)2}hid × U(1)A × U(1)13, (75)

and the particle content includes,14 besides the MSSM multiplets, the additional chiral
superfields:

5(3, 1; 1, 1, 1) + 5(3̄, 1; 1, 1, 1) +

4(1, 1; 2, 1, 2) + 4(1, 1; 2, 2, 1) + 4(1, 1; 1, 2, 2) +

2(1, 2; 2, 1, 1) + 2(1, 1; 3, 1, 1) +

16(1, 1; 2, 1, 1) + 10(1, 1; 1, 2, 1) + 10(1, 1; 1, 1, 2) +

14(1, 2; 1, 1, 1) + 84(1, 1; 1, 1, 1) , (76)

where the representation under (SU(3)C , SU(2)L;SU(2)2, SU(2)2) is indicated. There are
two bi-doublets (2, 2) under SU(2)L × SU(2)2 that mix the observable and hidden sectors,
so that only if these fields get string scale masses are the two sectors really separated. In
Table X we list the 87 non-Abelian singlets of the model with their U(1) charges (including
right-handed leptons).

In the CHL models [12], the trace of the anomalous charge is negative, and thus we
require positive values of Q̂. Q is given by

Q =
32

33
Q6 −

64

473
Q7 +

48

43
Q8 −

64

129
Q9 +

176

6063
Q10 −

288

2491
Q11 +

40

2067
Q12 +

11

39
Q13. (77)

As shown in Table X, there are four NAB-singlet fields with a positive value of Q̂ so that, in
principle, good flat directions may be formed. However, a viable definition of hypercharge
also must be determined, to see whether flat directions exist that preserve U(1)Y .

In Model CHL1, the search yielded no acceptable hypercharge which had three families,
had exotic SU(3)C triplet pairing, and the possibility of the decoupling of mixed observable
and hidden bi-doublet states. However, we can impose a weaker vector pairing requirement
allowing for the possible breaking of part of the hidden sector NAB gauge groups (i.e.,
allowing the pairing between fields belonging to different representations of those groups,

14The particle contents of models CHL1 though CHL3 are presented and discussed in another

paper in this series, [27].
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with typical masses at the breaking scale15). In that case, several definitions of Y could be
found. One particular example (which gives the lowest value of kY , kY = 8/3) is

Y =
1

8
(Q1 −Q3)

+
1

12

[

− 1

11
Q6 +

45

946
Q7 +

15

172
Q8 +

5

43
Q9 +

45

8084
Q10 +

69

4982
Q11 +

1

106
Q12

]

. (78)

The hypercharges of NAB-singlet fields according to this definition are also listed in Table X:
a total of 33 fields are left with Y = 0 (and sufficient candidates for singlet leptons with
Y = 1 appear). In addition, the charges of the fields under the linear combination

Q′ = Q1 +Q2, (79)

are also given. After examination of the Q′ charges of the Y = 0 fields, we conclude that the
field S33 cannot enter any flat direction (that preserves Y and is built of NAB singlets only).
The only field with Q̂ > 0 is S14, while S29, S34, S38, S47, S49, S55 and S63 have negative Q̂.

In this model, the number of elements of the superbasis is large, making its complete
determination unwieldy. Therefore, we use a basis that describes the space of Y = 0 non-
anomalous D- flat directions, which is presented in Table XI. It contains 21 elements, corre-
sponding to the fact that there are 32 (Y = 0) NAB singlets left after removing S33, and the
U(1) charge matrix for these 32 fields has rank 11 [13 minus 2 U(1)’s always unbroken: Y
and Q′]. All the basis elements have Q̂ either zero or negative, while a positive value would
be required to cancel the FI term. However, this does not necessarily imply that there are
no flat directions with Q̂ > 0 (in contrast to the case with the elements of the superbasis,
in which an element with the right sign of Q̂ is required for DA- flat directions). By the
definition of the basis, any D- flat direction P can be written in the form

P n = ΠiM
ni

i = Πi

[

Πjϕ
mij

j

]ni

, (80)

where n, ni and mij are integer numbers, with n,mij > 0, and the ni not necessarily positive.
The only condition for P n to be acceptable is that all the fields appearing in it are raised to
a positive power, which is not equivalent to requiring positive ni’s. From eq. (80) it follows

Q̂(P n) =
∑

i

niQ̂(Mi) =
∑

i

ni





∑

j

mijQ̂(ϕj)



 , (81)

opening the possibility of obtaining Q̂(P n) > 0 via ni < 0 for some Q̂(Mi) < 0. Whether
this can be realized depends on the details of the model. In the following we illustrate how
the knowledge of the basis can be used to prove general statements about flat directions.

15An alternative possibility is that the shift to a SUSY preserving vacuum requires non-zero VEV’s

of fields that transform under a non-trivial representation of some NAB hidden sector group. In

either case preservation of U(1)Y requires the breaking of the NAB group. We focus on the first

possibility, as we are interested in exploring vacuum shifts involving NAB-singlet fields only. In this

case, the NAB group can be broken at a lower scale, unrelated to the anomalous U(1) breaking.
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In this model and with the definition of Y given above, the only field with positive Q̂ is
S14, so, if a P exists for which Q̂(P ) > 0, its definition (80) in terms of the basis elements
must include M19 and/or M21 raised to some positive power, because these are the only
basis elements that contain S14. In both elements, S14 appears in combination with S49,
which neutralizes its positive Q̂. We are then forced to include in (80) some element which
contains also S49 but appears raised to a negative power so as to cancel the power of S49 in
the final expression for P . The only basis element available for this purpose is M20, but it
cannot have a negative power in (80) because it contains the field S34 which appears only
in this basis element and then, the final expression for P would contain a negative power of
S34, which cannot be accepted. This proves that no D- flat direction exists with Q̂ > 0.

If we do not fix the hypercharge definition from the beginning and include all the NAB
singlets in the analysis, the moduli space of non-anomalous flat directions is larger and is
described by the basis presented in Table XII. The number of basis elements is 74 [87 (fields)-
13(rank)] and only one of them has Q̂ non-zero (and negative). In this case, however, flat
directions with Q̂ > 0 exist. As an example,

P = 〈17, 5
7
, 615, 76, 146, 164, 2017, 2122, 272, 422, 755〉, (82)

has Q̂ = 64 × 12. Its expression in terms of the basis elements is

P =
1

M3
73

×
{

M17
42M

3
21M

6
74M

3
22M

5
31M

3
1M

5
39M

2
13M

2
57M34M

5
7

M5
16M

2
62M8M

8
6M14M9M

5
56M5M

17
12

}

. (83)

This gives an explicit example of a model in which the basis has no element with good Q̂
but good Q̂ D- flat directions exist16.

D. Model CHL2

The gauge group of this model is

{SU(3)C × SU(2)L}obs × {SO(7)× SU(2)2
2}hid × SU(2)4 × U(1)A × U(1)7, (84)

and the particle content [27] includes additional chiral superfields:

3(1, 1; 8, 1, 2, 1, 1, 1, 1) + (1, 1; 8, 1, 1, 1, 2, 1, 1) + (1, 1; 7, 3, 1, 1, 1, 1, 1) +

(1, 1; 1, 2, 3, 1, 1, 1, 1) + (1, 1; 7, 2, 1, 1, 1, 1, 1) + (1, 1; 7, 1, 1, 1, 1, 1, 1) +

2(1, 1; 1, 2, 2, 2, 1, 1, 1) + 2(1, 1; 1, 2, 2, 1, 1, 1, 2) + (1, 1; 1, 2, 1, 1, 1, 2, 2) +

(1, 1; 1, 2, 1, 2, 2, 1, 1) + 3(1, 1; 1, 1, 1, 1, 2, 2, 1) + 2(1, 1; 1, 1, 1, 1, 2, 1, 2) +

3(1, 1; 1, 1, 1, 2, 1, 1, 2) + (1, 1; 1, 1, 1, 1, 1, 2, 2) + (1, 1; 1, 1, 1, 1, 2, 1, 2) +

3(1, 1; 1, 1, 1, 2, 1, 2, 1) + 3(1, 1; 1, 3, 1, 1, 1, 1, 1) + (1, 1; 1, 1, 3, 1, 1, 1, 1) +

16 This is in contrast with the situation for the fields themselves: no good flat directions can exist

if the model does not contain fields with the appropriate value of Q̂.
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10(1, 1; 1, 2, 1, 1, 1, 1, 1) + 4(1, 2; 1, 2, 1, 1, 1, 1, 1) + (1, 2; 1, 2, 2, 1, 2, 1, 1) +

(1, 2; 1, 1, 1, 1, 1, 2, 2) + 4(1, 2; 1, 1, 1, 1, 1, 1, 1) + 3(3̄, 1; 1, 2, 1, 1, 1, 1, 1) +

(3, 1; 1, 2, 1, 1, 1, 1, 1) + (3, 1; 1, 1, 1, 2, 2, 1, 1) + 2(3̄, 1; 1, 1, 1, 1, 1, 1, 1) +

16(1, 1; 1, 1, 1, 1, 1, 1, 1) , (85)

where the representation under (SU(3)C , SU(2)L;SO(7), SU(2)2
2, SU(2)4) is indicated. In

Table XIII we list the 19 non-Abelian singlets (including right-handed leptons) of the model
with their U(1) charges.

Q is given by

Q =
1

3
(28Q4 +Q5). (86)

Inspection of the list of singlets in this model shows that all of the fields either have zero or
negative values of Q̂, so that in this model non-Abelian fields are required for a flat direction.
We conclude that the shifting to a SUSY preserving vacuum is necessarily accompanied by
the spontaneous breaking of some non-Abelian group. To be more precise, we find that only
a single hidden sector non-Abelian field has a positive Q̂ value. This field is a doublet under
a level-one SU(2) and both level-two SU(2)’s, which implies that in the least these three
gauge groups must be broken if the SM is to survive after anomaly cancellation.

For completeness, we construct the basis of non-anomalous flat directions built out of
NAB singlets, which can be useful for more general discussions when non-singlet fields are
also included. In Table XIII we also list the charges under the linear combination of U(1)’s
defined as:

Q′ = 6Q1 + 4Q4 −Q5 +Q7. (87)

We see that S11, S12, S13 and S14 are the only fields with non-zero Q′ charges, and all of them
are positive and equal. This implies that no HIM built of non-Abelian singlets can contain
these four fields, so they do not appear in this type of flat direction and we can ignore them
in the following discussion. We are then left with 15 fields which have zero charge under
(87). The rank of the non-anomalous charge matrix for this subset of fields is then equal to
6 and we expect a basis of non-anomalous flat directions composed of 9 elements. Such a
basis is presented in Table XIV.

E. Model CHL3

The gauge group is

{SU(3)C × SU(2)L}obs × {SO(5)2 × SU(2)2}hid × U(1)A × U(1)11, (88)

and the particle content [27] includes the additional chiral superfields:

4(3, 1; , 1, 1, 1) + 4(3, 1; 1, 1, 1) + 8(1, 2; 1, 1, 1) +

4(1, 1; 1, 1, 3) + 16(1, 1; 1, 4, 1) + 8(1, 1; 4, 1, 1) +

2(1, 1; 1, 5, 1) + 2(1, 1; 5, 1, 1) + (1, 1; 5, 5, 1) +

4(1, 1; 4, 1, 2) + 2(1, 1; 1, 4, 2) + 2(1, 2; 4, 1, 1) +

76(1, 1; 1, 1, 1) , (89)
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where the representation under (SU(3)C , SU(2)L;SO(5), SO(5), SU(2)2) is indicated. In
Table XV we list the 79 non-Abelian singlets (including right-handed leptons) of the model
with their U(1) charges.

In this model, Q is :

Q = −1

5
(6Q8 + 9Q10 − 4Q11). (90)

As in CHL2, all of the fields have either zero or negative values of Q̂ so that non-Abelian
fields are required to cancel the FI term along any flat direction. We present in Table XVI
the basis of non-anomalous D- flat directions for non-Abelian singlets. Imposing 11 non-
anomalous D- term conditions on 79 fields leads to a moduli space of 68 dimensions.

F. Model CHL4

The gauge group of this model is

{SU(3)C × SU(2)L}obs × {SU(4)2 × SU(2)2}hid × U(1)A × U(1)6, (91)

and the particle content beyond the MSSM consists of the chiral superfields:

12(1, 2; 1, 1) + 2(3, 1; 1, 1) + 2(3̄, 1; 1, 1) +

2(1, 1; 6, 2) + 2(1, 1; 4̄, 2) + 4(1, 1; 6, 1) +

14(1, 1; 4, 1) + 10(1, 1; 4̄, 1) + 3(1, 1; 1, 3) + 8(1, 1; 1, 2) +

48(1, 1; 1, 1) , (92)

where the representation under (SU(3)C , SU(2)L;SU(4)2, SU(2)2) is indicated. In Ta-
ble XVII we list the 51 non-Abelian singlets (including right-handed leptons) of the model
with their U(1) charges.

Phenomenological considerations lead to the hypercharge definition [12]

Y =
1

24

(

−3

5
Q1 +

27

80
Q2 +

3

10
Q3 +

1

6
Q4 −

1

6
Q5 +

5

48
Q6

)

, (93)

[normalized to give Y (quark doublet)= 1/6]. As previously explained, kY for this definition
of hypercharge can be readily calculated using the universal GS relation with only the
knowledge of the charges of the massless spectrum of the string model. In this way, we find
kY = 35/12, a factor of 2 larger than the kY quoted in [12], and thus greater than 5/3.
This discrepancy by a factor of 2 affects all other determinations of kY presented in [12] and
seems to eliminate the examples with kY < 5/3.

In this model, Q is particularly simple:

Q = −1

2
Q6. (94)

As is shown in Table XVII, Q̂ is negative or zero for all of the non-Abelian singlet fields,
while TrQA < 0, so it is not possible to form a good flat direction without utilizing the
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non-Abelian fields. From Table XVII one concludes also that alternative definitions of Y do
not change this situation.

Even if non-Abelian fields would have to take non-zero VEV’s along any true flat direc-
tion, it may be necessary to give VEV’s to singlets as well. For this reason we present, as in
previous cases, the basis of non-anomalous D- flat directions for non-Abelian Y = 0 singlets
in Table XVIII. There are 17 Y = 0 fields plus 3 copies, and 5 non-anomalous U(1)’s besides
hypercharge so that the number of elements of the basis is 12 (plus 3 more involving copies
of fields, that are not shown).

G. Model CHL5

This model, with gauge group

{SU(3)C × SU(2)L}obs × {SU(4)2 × SU(2)2}hid × U(1)A × U(1)6, (95)

was already considered in ref. [10] to which we refer the reader for further details. The model
contains a NAB singlet with Q̂ > 0 that can appear in several flat directions with good
Q̂ > 0. A total of 5 one-dimensional type-B flat directions were found that could be used as
building blocks for directions which are D- and F - flat to all orders. The phenomenological
analysis of the model along some of these directions will be presented elsewhere [33].

H. Model CHL6

The gauge group of this model is

{SU(3)C × SU(2)L}obs × {SU(2)2
2}hid × U(1)A × U(1)10, (96)

and it includes the additional chiral superfields:

3(3̄, 1; 1, 1) + 3(3, 1; 1, 1) + 6(1, 2; 1, 1) +

4(1, 2; 2, 1) + 26(1, 1; 2, 1) + 40(1, 1; 1, 2) +

1(1, 1; 3, 3) + 1(1, 1; 3, 1) + 1(1, 1; 1, 3) + 49(1, 1; 1, 1) , (97)

where the representation under (SU(3)C , SU(2)L;SU(2)2, SU(2)2) is indicated. In Ta-
ble XIX we list the 52 non-Abelian singlets (including right-handed leptons) of the model
with their U(1) charges.

Q is given by

Q = −1

5
(6Q7 + 9Q9 − 4Q10). (98)

Inspection of the list of singlets in this model shows that all of the fields have zero values of
Q̂, except for S24 with Q̂ = −144, which is of sign opposite to the FI term, so that hidden
(or observable) non-Abelian fields must take non-zero VEV’s along a flat direction.

The basis of non-anomalous flat directions is presented in Table XX. The number of
elements is obtained subtracting from the total number of fields (N=52) the rank of the
charge matrix (10) giving a dimension equal to 42 (in this case, we explicitly include primed
fields).

27



I. Model CHL7

The gauge group of this model is

{SU(3)C × SU(2)L}obs × {SO(7)2 × SU(2)2}hid × U(1)A × U(1)8, (99)

and the particle content includes, besides the MSSM multiplets, additional chiral superfields:

14(1, 2; 1, 1) + 6(3, 1; 1, 1) + 4(3̄, 1; 1, 1) +

1(1, 2; 1, 2) + 1(3̄, 1; 1, 2) + 4(1, 1; 8, 1) +

1(1, 1; 7, 1) + 4(1, 1; 1, 3) + 31(1, 1; 1, 2) +

94(1, 1; 1, 1) , (100)

where the representation under (SU(3)C , SU(2)L;SU(4)2, SU(2)2) is indicated. In Ta-
ble XXI we list the 81 non-Abelian singlets (including right-handed leptons. The 13 fields
with zero charges under all of the Abelian groups are not listed) of the model with their
U(1) charges.

Q is given by

Q = −4Q3 − 4Q4 +Q6 − 2Q7 −
4

3
Q8, (101)

and there are fields with positive Q̂ that can in principle form a good flat direction. Once
again, a viable hypercharge must be determined to ensure that such good flat directions
preserve the SM gauge group.

Upon further inspection of the list of states, one can see that in this model there is
an additional mixed state which is a color antitriplet and hidden sector doublet (3̄, 1; 1, 2).
Thus, to enforce triplet pairing (i.e., to avoid an exactly massless colored fermion),the hidden
sector SU(2) must be broken to have the appropriate number of degrees of freedom.

Even allowing for the breaking of any group [except SU(3)C ×U(1)EM ], no definition of
Y as a linear combination of the non-anomalous U(1)’s exists that gives full vector pairing
of the additional multiplets present in this model. As explained in section III.B we did not
consider the possibility that the hypercharge definition involves the U(1)’s that arise from
the breaking of the hidden sector NAB gauge group. In case such a possibility can indeed
be realized it can be useful to know the basis of non-anomalous flat directions of all NAB
singlets, which is presented in Table XXII.

V. CONCLUSIONS

We have applied the strategy developed in [10] for the classification of flat directions to
several quasi-realistic models [with an anomalous U(1)] taken from the literature [13,14,12].
The results are summarized in Table II and offer a survey of the different possibilities that
can be encountered in this type of analyses.
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• In some cases (CHL2, CHL3, CHL4 and CHL6) it is possible to show that the FI term
ξ cannot be compensated by giving VEV’s to non-Abelian singlet fields only. The
technical reason is that no such fields exist with Q̂ of sign opposite to that of ξ (or of
TrQA, as listed in Table II). This holds irrespective of the definition of hypercharge and
is the reason why we did not search for a viable Y in some of these models (marked ’?’
in the corresponding column of Table II). For these models we thus conclude that the
vacuum shifting triggered by the FI term is necessarily accompanied by the reduction
of the rank of the non-Abelian group. The analysis of flat directions involving fields
in non trivial representations of the non-Abelian groups is beyond the scope of this
paper. Such an analysis could address the issue of whether the SM gauge group will
be necessarily broken.

• In other models (e.g., CHL1), even if they contain non-Abelian singlets with good Q̂
(and possibly flat directions) it can happen that, after determining a viable definition
of hypercharge Y , no flat directions remain that preserve U(1)Y . This can happen
because no Y = 0 fields are left with good Q̂ or, in a more subtle way, because, even
if they exist the charge structure of the fields conspire to produce directions with only
the wrong sign of Q̂ (this was the case of CHL1 with the particular choice of Y ).
If that U(1)Y is to survive unbroken in the low-energy effective theory, the vacuum
restabilization must be accompanied by the breaking of some non-Abelian gauge group.

• Models exist (CHL7) for which no definition of hypercharge is phenomenologically
viable (the presence of massless charged particles in the spectrum cannot be avoided).

• Other models (FNY1, AF1, CHL5) are more successful and have both a viable hyper-
charge and hypercharge-preserving flat directions. In these cases, our conservative aim
is to classify all such directions that can be proven to be flat to all orders. This can
be done by constructing the superbasis that contains all one-dimensional directions
which are D- flat for the non-anomalous U(1)’s. Of these directions, only those that
carry an anomalous charge of sign opposite to ξ are also DA-flat. The F - flatness to all
orders of these particular directions (and some combinations of them) can be assessed
by knowing the superpotential up to a finite order, and thus those directions which
are both D- and F - flat can in principle be classified.

This program can be readily completed [10] for model CHL5, which contains a small
number of all-order flat directions. The number of flat directions increases for model
AF1 and hence the superbasis is large, but the number of flat directions which are F -
flat to all orders is still relatively small. However, for model FNY1 the superbasis is
too large to be of practical use. This model simply contains too many flat directions
to give a complete classification (even though in principle this can be done).

For these models we find and list several flat directions that break different numbers
of U(1)’s. In general, not only U(1)Y survives down to low-energies but other U(1)’s
remain unbroken at the string scale. The fate of these additional Abelian factors
depends on the details of the model and was addressed, for example, in refs. [34,24].

Having found a classification of the different vacua to which a particular model can relax,
the next step is to analyze the spectrum, gauge group and superpotential of the resulting
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model, and investigate their phenomenological consequences. This analysis for model CHL5
is currently under investigation [33].
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Field ψ12 S12 y1 ω1 y2 ω2 S34 y
3 ω3 y4 ω4 S56 y5 ω5 y6 ω6

H39, ferm (− 1

2
)

1
2

0 0 −1
2

0 σ− 0 0 σ− 0 −1
2

0 0

H37, ferm (− 1

2
)

1
2

0 0 −1
2

0 σ− 0 0 σ− 0 −1
2

0 0

H32, bos (−1) 0 1
2

−1
2

0 σ+ 0 0 0 0 0 1
2
σ+ 0

H30, bos (−1) 0 1
2

−1
2

0 σ+ 0 0 0 0 0 1
2
σ+ 0

net charges 0 +1 −1 −1 0 0 0 0 0 0 0 0 0
T−1

3/2 term 0 −1 +1 +1 0 0 0 0 0 0 0 0 0

Table I: Picture-changing example in a W4 term H39H37H32H30 in [13]. These fields are
identified in our Tables IIIa and IIIb as S43, S28, S24, and S7. The “net charges” row
contains the charge vector formed from the four canonical H fields that must be cancelled
by picture-changing affects.

Model TrQA Y def. D-flat D-flat (Y = 0) F -flat

FNY1 1344 Y Y Y Y
AF1 720 Y Y Y Y

CHL1 −3072 Y Y N −
CHL2 −2688 ? N − −
CHL3 −3456 ? N − −
CHL4 −2016 Y N − −
CHL5 −1536 Y Y Y Y
CHL6 −3456 Y N − −
CHL7 −768 N Y − −

Table II: Summary of results for the different models considered. The second column gives
the total trace of the anomalous U(1). The third shows whether a viable definition of
hypercharge exists (a question mark indicates that no answer to that question is required
to proceed with the analysis). The fourth and fifth columns relate to the existence of D-flat
directions, in the latter case imposing also that Y = 0 along them. The last column reports
the existence of D- flat directions which remain F - flat.
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NA

Singlet QA Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 QY Q̂

S1

√ −36 0 0 4 16 0 0 108 0 0 0 0 0 0
S2

√ −28 0 0 4 −32 0 0 84 0 0 0 0 0 0
S3

√ −8 0 0 0 48 0 0 24 0 0 0 0 0 0
S4

√ −8 0 0 0 0 0 −8 −200 0 0 0 0 0 0
S5

(′) √(′) 0 0 0 0 0 0 0 0 4 0 0 0 0 0
S6

√
0 0 0 0 0 8 0 0 0 0 0 0 0 0

S7 −24 −3 2 −2 −17 2 0 −96 0 1 −3 0 0 −112
S8 −16 3 −2 0 −3 4 2 −64 2 −1 3 0 0 0
S9 −12 3 −2 −6 −15 2 4 −20 0 −1 3 0 0 0
S10 −12 0 4 −2 10 2 −2 −20 2 2 0 2 1 0
S11 −12 3 −2 0 −3 0 6 36 −2 −1 3 0 0 0
S12 −8 3 2 2 11 2 4 −32 2 −1 −3 −2 1 −112
S13 −8 3 2 2 −13 2 0 −144 −2 −1 −3 2 1 0
S14 −8 3 −2 0 −3 −4 −2 136 −2 −1 3 0 0 112
S15 −8 0 −4 −2 10 −2 2 80 2 2 0 2 −1 0
S16 −8 0 −4 −2 −14 −2 −2 −32 2 2 0 2 −1 0
S17 −4 3 −2 6 −15 −2 0 180 0 −1 3 0 0 112
S18 −4 3 −2 0 −3 0 2 236 2 −1 3 0 0 112
S19 −4 0 0 0 24 0 0 12 2 −2 6 0 0 112
S20 −4 0 0 0 24 0 0 12 −2 2 −6 0 0 −112
S21 −4 0 4 −2 −14 2 2 68 2 2 0 2 1 0
S22 −4 −3 −2 −2 13 2 0 −156 −2 1 3 2 −1 0
S23 −4 3 2 2 11 −2 −4 68 2 −1 −3 2 1 112
S24 0 −3 2 2 11 −2 0 168 0 −3 −3 0 0 112
S25 20 0 0 −2 −8 −2 2 −4 0 2 6 0 0 0
S26 20 −3 2 −6 −9 2 0 108 0 1 −3 0 0 0
S27 20 −3 2 0 3 0 2 164 2 1 −3 0 0 0
S28 16 3 −2 2 −7 −2 0 −216 0 −1 3 0 0 0
S29 16 0 0 4 4 0 0 −48 2 2 6 0 0 0
S30 16 0 0 4 4 0 0 −48 −2 −2 −6 0 0 0
S31 16 0 0 −2 16 2 2 8 0 2 6 0 0 0
S32 16 0 0 −2 −8 2 −2 −104 0 −2 −6 0 0 0
S33 16 −3 2 0 3 4 −2 64 −2 1 −3 0 0 0
S34 12 6 4 2 −10 2 2 20 0 0 0 0 2 0
S35 12 0 0 −2 16 −2 −2 −92 0 −2 −6 0 0 0
S36 12 −3 2 6 −9 −2 4 −92 0 1 −3 0 0 −112
S37 12 0 −4 2 −10 −2 2 20 2 −2 0 −2 −1 0
S38 12 −3 2 0 3 0 6 −36 −2 1 −3 0 0 −112
S39 8 6 4 −4 2 0 0 −24 −2 0 0 0 2 0
S40 8 6 −4 −4 2 0 0 −24 −2 0 0 0 0 0
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NA

Singlet QA Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 QY Q̂

S41 8 6 −4 2 −10 −2 −2 −80 0 0 0 0 0 0
S42 8 6 4 2 14 −2 2 32 0 0 0 0 2 0
S43 8 3 −2 −2 13 2 0 144 0 3 3 0 0 0
S44 8 −3 −2 −2 −11 −2 −4 32 2 1 3 2 −1 112
S45 8 −3 −2 −2 13 −2 0 144 −2 1 3 −2 −1 0
S46 8 −3 2 0 3 −4 2 −136 2 1 −3 0 0 −112
S47 8 0 4 2 −10 2 −2 −80 2 −2 0 −2 1 0
S48 8 0 4 2 14 2 2 32 2 −2 0 −2 1 0
S49 4 6 −4 2 14 2 −2 −68 0 0 0 0 0 0
S50 4 0 −4 2 14 −2 −2 −68 2 −2 0 −2 −1 0
S51 4 3 2 2 −13 −2 0 156 −2 −1 −3 −2 1 0
S52 4 −3 −2 −2 −11 2 4 −68 2 1 3 −2 −1 −112

Table IIIa: List of non-Abelian singlet fields and their U(1) gauge charges for model FNY1,
with hypercharge and Q̂ = QA−Q as defined in eqs. (61) and (62) respectively. A

√
indicates

the presence of another field with equal and opposite U(1) charges, while a ′ indicates the
presence of another field with identical U(1) charges.
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r1 : r2 = 3:6 4:20 5:11 9:12 10:19 15:18 7:38 8:44 13:40 14:46 16:41 17:47
Singlet Si Q I

S1 .5 .5 −.5
S̄1 .5 .5 −.5
S2 .5 −.5 .5
S̄2 .5 −.5 .5
S3 −.5 .5 .5
S̄3 −.5 .5 .5
S4 −.5 .5 .5
S̄4 −.5 .5 .5
S5 .5 −.5 .5 f̄
S̄5 .5 −.5 .5 f̄
§′5 .5 .5 −.5 f̄
S̄ ′

5 .5 .5 −.5 f̄
S6 −.5 .5 .5
S̄6 −.5 .5 .5
S7 .5 .5 σ− σ+

S8 .5 −.5 σ− σ+

S9 −.5 .5 σ− σ−

S10 .5 .5 σ+ σ−

S11 .5 −.5 σ+ σ−

S12 .5 .5 σ− σ−

S13 −.5 .5 σ+ σ+

S14 .5 −.5 σ− σ−

S15 .5 .5 σ− σ−

S16 .5 .5 σ− σ−

S17 −.5 .5 σ− σ+

S18 .5 −.5 σ+ σ+

S19 .5 .5 σ+ σ−

S20 .5 −.5 σ+ σ−

S21 .5 .5 σ+ σ−

S22 −.5 .5 σ− σ+

S23 −.5 .5 σ− σ−

S24 .5 .5 σ− σ+

S25 .5 .5 σ− σ+

S26 .5 .5 σ+ σ−

S27 .5 .5 σ+ σ−

S28 −.5 .5 σ+ σ−

S29 .5 .5 σ+ σ+

S30 .5 −.5 σ− σ−
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r1 : r2 = 3:6 4:20 5:11 9:12 10:19 15:18 7:38 8:44 13:40 14:46 16:41 17:47
Singlet Si Q I

S31 .5 .5 σ+ σ+

S32 −.5 .5 σ− σ+

S33 .5 .5 σ− σ+

S34 .5 .5 σ− σ+

S35 −.5 .5 σ+ σ+

S36 .5 .5 σ+ σ+

S37 −.5 .5 σ− σ−

S38 .5 .5 σ+ σ+

S39 .5 .5 σ− σ−

S40 .5 .5 σ+ σ+

S41 .5 .5 σ+ σ+

S42 .5 .5 σ+ σ+

S43 −.5 .5 σ+ σ−

S44 −.5 .5 σ+ σ−

S45 .5 .5 σ− σ+

S46 .5 .5 σ− σ−

S47 −.5 .5 σ+ σ−

S48 −.5 .5 σ+ σ−

S49 .5 .5 σ− σ+

S50 −.5 .5 σ− σ−

S51 .5 .5 σ+ σ+

S52 .5 .5 σ+ σ−

Table IIIb: The non-gauge worldsheet charges of the 60 NAB singlets in model FNY1. r1
and r2 specify the two real fermions ψr1

and ψr2
comprising either a complex left-moving

fermion when r2 ≤ 20, or a non-chiral Ising fermion when r2 > 20. A global U(1) charge Q
carried by a singlet Si is listed in the column of the complex worldsheet fermion associated
with the charge. Likewise, a conformal field I ∈ {f, f̄ , σ+, σ−} of a non-chiral Ising fermion
carried by a singlet is listed in the column of the appropriate Ising fermion.
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BASIS Q̂ Q̂

M1 = 〈1, 1〉 0 M17 = 〈33, 8, 6〉 0
M2 = 〈2, 2〉 0 M18 = 〈20, 19, 3〉 0
M3 = 〈3, 3〉 0 M19 = 〈49, 25, 24, 7〉 0
M4 = 〈4, 4〉 0 M20 = 〈43, 28, 24, 7〉 0
M5 = 〈5, 5〉 0 M21 = 〈40, 29, 24, 7〉 0
M6 = 〈5′, 5〉 0 M22 = 〈41, 31, 24, 7〉 0

M7 = 〈5, 5′〉 0 M23 = 〈46, 40, 33, 19, 2〉 0
M8 = 〈6, 6〉 0 M24 = 〈38, 27, 14, 8, 4〉 0
M9 = 〈32, 25, 1〉 0 M25 = 〈43, 36, 24, 9, 4〉 0
M10 = 〈28, 26, 1〉 0 M26 = 〈31, 30, 14, 7, 5〉 0
M11 = 〈3, 2, 1〉 0 M27 = 〈35, 29, 18, 7, 5〉 0
M12 = 〈35, 31, 2〉 0 M28 = 〈30, 27, 25, 9, 4, 1〉 0
M13 = 〈27, 11, 4〉 0 M29 = 〈33, 32, 29, 9, 6, 1〉 0
M14 = 〈38, 18, 4〉 0 M30 = 〈49, 46, 26, 19, 5, 2〉 0
M15 = 〈46, 14, 6〉 0 M31 = 〈352, 252, 6, 2, 1〉 0
M16 = 〈17, 7, 2〉 0 M32 = 〈38, 14, 9, 7, 5, 4, 12〉 −112

Table IV: Basis of the moduli space of Y = 0 non-anomalous D-flat directions of model
FNY1.
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FLAT DIRECTION Dim. # U(1)’s −Q̂/112

R1 = 〈14, 4, 6, 72, 92〉 0 4 2
R2 = 〈13, 2, 6, 74, 192, 402〉 0 5 2
R3 = 〈12, 72, 9, 14, 29, 35〉 0 5 1
R4 = 〈12, 4, 6, 76, 142, 192, 492〉 0 6 2
R5 = 〈1, 5, 6, 73, 18, 19, 49〉 0 6 1
R6 = 〈1, 5, 73, 142, 19, 38, 49〉 0 6 1
R7 = 〈13, 6, 74, 9, 14, 19, 49〉 0 6 2
R8 = 〈12, 3, 4, 76, 142, 192, 412〉 0 6 2
R9 = 〈1, 32, 5, 75, 82, 144, 36〉 0 6 2
R10 = 〈13, 3, 4, 5, 73, 92, 142, 36〉 0 7 2
R11 = 〈12, 3, 5, 75, 10, 142, 19, 41〉 0 7 2
R12 = 〈16, 3, 6, 78, 92, 142, 192, 412〉 0 7 4
R13 = 〈15, 6, 76, 9, 14, 192, 40, 41〉 0 7 3
R14 = 〈1, 2, 6, 78, 144, 194, 272, 382, 494〉 0 8 2
R15 = 〈15, 32, 5, 79, 92, 144, 192, 36, 412〉 0 8 4
R16 = 〈16, 33, 6, 716, 112, 144, 182, 194, 414〉 0 8 6

R17 = 〈16, 3, 6
3
, 716, 112, 144, 182, 194, 494〉 0 8 6

R18 = 〈1, 32, 76, 82, 144, 18, 29, 35, 36〉 0 8 2
R19 = 〈1, 32, 76, 82, 144, 19, 27, 36, 41〉 0 8 2
R20 = 〈1, 32, 76, 8, 143, 18, 19, 36, 41〉 0 8 2
R21 = 〈1, 32, 76, 83, 145, 27, 29, 35, 36〉 0 8 2
R22 = 〈13, 32, 78, 9, 143, 18, 192, 36, 412〉 0 8 3
R23 = 〈15, 32, 710, 92, 144, 193, 27, 36, 413〉 0 8 4
R24 = 〈13, 33, 712, 11, 144, 182, 193, 36, 413〉 0 8 4
R25 = 〈12, 3, 76, 142, 18, 192, 36, 40, 41〉 0 8 2
R26 = 〈14, 4, 79, 143, 194, 35, 38, 413, 43〉 0 8 3
R26 = 〈18, 5, 6, 715, 113, 144, 195, 352, 413, 432〉 0 9 6

R27 = 〈17, 52, 6
2
, 715, 113, 145, 194, 35, 43, 493〉 0 9 6

R28 = 〈16, 6, 79, 9, 11, 142, 193, 35, 412, 43〉 0 9 4

R29 = 〈112, 6
2
, 723, 114, 145, 18, 198, 353, 415, 433〉 0 9 9

R30 = 〈19, 6
4
, 721, 113, 145, 182, 196, 35, 43, 495〉 0 9 8

Table V: List of some type-B D-flat directions that are F -flat to all orders for the model
FNY1. The dimension of the direction, after cancellation of the Fayet-Iliopoulos term, is
indicated in the second column. The third column gives the number of non-anomalous U(1)’s
broken along the flat direction and the fourth lists the corresponding values of −Q̂/112.
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NA

Singlet QA Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 QY Q̂ Q′ Q′′

S1

√ −16 0 0 0 4 0 0 −8 0 0 0 0 0 0
S2

√ −10 −3 2 2 −2 0 0 −5 −1 −15 0 0 0 0
S3

√ −6 3 −2 −2 6 0 0 −3 1 15 0 0 0 0
S4

√ −6 3 −2 2 −6 0 0 −3 1 15 0 0 0 0
S5

√ −4 0 0 4 0 0 −8 8 0 0 0 0 0 0
S6

√ −4 0 0 4 0 4 4 8 0 0 0 0 0 0
S7

√ −4 0 0 4 0 −4 4 8 0 0 0 −60 0 0
S8

√ −4 0 0 −4 0 0 −8 8 0 0 0 0 0 0
S9

√ −4 0 0 −4 0 4 4 8 0 0 0 0 0 0
S10

√ −4 0 0 −4 0 −4 4 8 0 0 0 −60 0 0
S11

√
0 0 0 8 0 0 0 0 0 0 0 0 0 0

S12

√
0 0 0 4 −12 0 0 0 0 0 0 0 0 0

S13

√
0 0 0 4 12 0 0 0 0 0 0 0 0 0

S14

√ −8 −3 −2 0 0 4 −4 1 −3 15 −1 0 144 −60
S15 6 6 −4 2 2 −2 −2 −2 0 0 0 0 −156 0
S16 6 6 −4 −2 2 2 −2 −2 0 0 0 30 −156 0
S17 6 6 −4 0 −4 0 4 −2 0 0 0 0 −156 0
S18 6 −3 −2 −2 −2 2 2 −7 3 −15 −1 60 12 60
S19 6 −3 −2 2 −2 −2 2 −7 3 −15 −1 30 12 60
S20 6 −3 −2 0 4 0 −4 −7 3 −15 −1 60 12 60
S21 2 6 4 2 2 2 2 6 0 0 2 0 −156 0
S22 2 6 4 −2 2 −2 2 6 0 0 2 −30 −156 0
S23 2 6 4 0 −4 0 −4 6 0 0 2 0 −156 0
S24 2 3 2 2 2 2 2 −9 −3 15 1 0 −12 −60
S25 2 3 2 −2 2 −2 2 −9 −3 15 1 −30 −12 −60
S26 2 3 2 0 −4 0 −4 −9 −3 15 1 0 −12 −60

Table VIa: List of non-Abelian singlets for model AF1, with hypercharge and Q̂ = QA −Q
as defined in eqs. (67) and (68), respectively. Also shown are the Q′ and Q′′ charges defined
in eq. (69).
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r1 : r2 = 3:6 4:17 8:14 9:12 10:19 15:18 5:43 7:38 11:45 13:40 16:41 20:48
Singlet Si Q I

S1 .5 σ− σ− σ− σ−

S̄1 .5 σ− σ+ σ− σ+

S2 .5 σ− σ+ σ− σ+

S̄2 .5 σ+ σ+ σ+ σ+

S3 .5 σ− σ+ σ− σ+

S̄3 .5 σ+ σ+ σ− σ−

S4 .5 σ+ σ+ σ− σ−

S̄4 .5 σ− σ+ σ− σ+

S5 .5 σ+ σ− σ+ σ+

S̄5 .5 σ+ σ+ σ+ σ−

S6 .5 σ+ σ− σ− σ−

S̄6 .5 σ+ σ+ σ− σ+

S7 .5 σ− σ+ σ+ σ+

S̄7 .5 σ− σ− σ+ σ−

S8 .5 σ+ σ+ σ+ σ−

S̄8 .5 σ+ σ− σ+ σ+

S9 .5 σ+ σ+ σ− σ+

S̄9 .5 σ+ σ− σ− σ−

S10 .5 σ− σ− σ+ σ−

S̄10 .5 σ− σ+ σ+ σ+

S11 .5 .5 −.5
S̄11 .5 .5 −.5
S12 −.5 .5 .5
S̄12 −.5 .5 .5
S13 .5 −.5 .5
S̄13 .5 −.5 .5
S14 .5 −.5 .5
S̄14 .5 −.5 .5
S15 .5 .5 σ+ σ−

S16 .5 .5 σ+ σ−

S17 −.5 .5 σ− σ−

S18 .5 .5 σ+ σ−

S19 −.5 .5 σ+ σ+

S20 .5 .5 σ− σ+

S21 .5 .5 σ+ σ+

S22 .5 .5 σ+ σ+

S23 .5 .5 σ+ σ+

S24 .5 −.5 σ− σ+

S25 .5 .5 σ− σ−

S26 −.5 .5 σ+ σ−

Table VIb: The non-gauge worldsheet charges of the 40 NAB singlets in AF1.
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BASIS A Q̂ BASIS B Q̂

M1 = 〈1, 1̄〉 0 P1 = 〈13, 5, 6, 10, 13〉 −60
M2 = 〈2, 2̄〉 0 P2 = 〈13, 5, 7, 9, 13〉 −60
M3 = 〈3, 3̄〉 0 P3 = 〈13, 5, 9, 10, 12〉 −60
M4 = 〈4, 4̄〉 0 P4 = 〈13, 6, 7, 8, 13〉 −60
M5 = 〈5, 5̄〉 0 P5 = 〈12, 2, 4, 5, 9, 10〉 −60
M6 = 〈6, 6̄〉 0 P6 = 〈13, 3̄, 4, 5, 9, 10〉 −60
M7 = 〈7, 7̄〉 0 P7 = 〈13, 5̄, 6, 7, 82, 12〉 −60
M8 = 〈8, 8̄〉 0 P8 = 〈13, 5, 6̄, 7, 92, 12〉 −60
M9 = 〈9, 9̄〉 0 P9 = 〈13, 5, 6, 7̄, 102, 12〉 −60
M10 = 〈10, 10〉 0 P10 = 〈13, 5, 6, 7, 11, 13〉 −60

M11 = 〈11, 11〉 0 P11 = 〈13, 5, 6, 7, 12, 13
2〉 −60

M12 = 〈12, 12〉 0 P12 = 〈13, 52, 8̄, 9, 10, 13〉 −60
M13 = 〈13, 13〉 0 P13 = 〈13, 5, 9, 10, 11, 13〉 −60
M14 = 〈1, 2, 3̄〉 −60 P14 = 〈13, 62, 8, 9̄, 10, 13〉 −60
M15 = 〈3, 4̄, 12〉 0 P15 = 〈13, 72, 8, 9, 10, 13〉 −60
M16 = 〈5, 8̄, 11〉 0 P16 = 〈13, 8, 9, 10, 122, 13〉 −60
M17 = 〈6, 9̄, 11〉 0 P17 = 〈23, 33, 5, 6, 10, 13〉 −60

M18 = 〈7, 10, 11〉 0 P18 = 〈14, 2̄, 4̄, 5, 6, 7, 13
2〉 −60

M19 = 〈11, 12, 13〉 0 P19 = 〈13, 3, 4̄, 5, 6, 7, 13
2〉 −60

M20 = 〈13, 5, 6, 10, 13〉 −60 N1 = 〈1, 1̄〉 0

Table VII: Two different bases of the moduli space of non-anomalous D-flat directions of
the model AF1.
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R0
1 = 〈1, 1〉 R0

41 = 〈1, 2, 4, 6, 9, 13〉 R81 = 〈14, 2, 4, 5, 6, 7, 13
2〉

R0
2 = 〈2, 2〉 R42 = 〈12, 2, 4, 7, 8, 9〉 R82 = 〈12, 2, 4, 5, 6, 10, 11〉

R0
3 = 〈3, 3〉 R0

43 = 〈1, 2, 4, 7, 10, 13〉 R83 = 〈12, 2, 4, 5, 7, 9, 11〉
R0

4 = 〈4, 4〉 R44 = 〈13, 3, 4, 5, 9, 10〉 R84 = 〈12, 2, 4, 6, 7, 8, 11〉
R0

5 = 〈5, 5〉 R45 = 〈13, 3, 4, 6, 8, 10〉 R85 = 〈12, 2, 4, 8, 9, 10, 11〉
R0

6 = 〈6, 6〉 R46 = 〈13, 3, 4, 7, 8, 9〉 R86 = 〈1, 22, 42, 8, 9, 10, 13〉
R0

7 = 〈7, 7〉 R47 = 〈13, 5, 6, 7, 82, 12〉 R87 = 〈13, 3, 4, 5, 6, 7, 82〉
R0

8 = 〈8, 8〉 R48 = 〈13, 5, 6, 7, 92, 12〉 R88 = 〈13, 3, 4, 5, 6, 7, 92〉
R0

9 = 〈9, 9〉 R49 = 〈13, 5, 6, 7, 102, 12〉 R89 = 〈13, 3, 4, 5, 6, 7, 102〉
R0

10 = 〈10, 10〉 R50 = 〈13, 5, 6, 7, 11
2
, 12〉 R90 = 〈13, 3, 4, 5, 6, 7, 11

2〉
R0

11 = 〈11, 11〉 R51 = 〈13, 5, 6, 7, 11, 13〉 R91 = 〈13, 3, 4, 5, 6, 7, 13
2〉

R0
12 = 〈12, 12〉 R52 = 〈13, 5, 6, 7, 12, 13

2〉 R92 = 〈13, 3, 4, 5, 6, 10, 11〉
R0

13 = 〈13, 13〉 R53 = 〈13, 5, 6, 10, 11, 12〉 R93 = 〈13, 3, 4, 5, 7, 9, 11〉
R0

14 = 〈1, 2, 3〉 R54 = 〈13, 5, 7, 9, 11, 12〉 R94 = 〈13, 3, 4, 6, 7, 8, 11〉
R0

15 = 〈5, 8, 11〉 R55 = 〈13, 52, 8, 9, 10, 13〉 R95 = 〈13, 3, 4, 8, 9, 10, 11〉
R0

16 = 〈6, 9, 11〉 R56 = 〈13, 5, 9, 10, 11, 13〉 R96 = 〈13, 3
2
, 42, 8, 9, 10, 13〉

R0
17 = 〈7, 10, 11〉 R57 = 〈13, 6, 7, 8, 11, 12〉 R97 = 〈23, 32, 4, 5, 6, 7, 82〉

R0
18 = 〈11, 12, 13〉 R58 = 〈13, 62, 8, 9, 10, 13〉 R98 = 〈23, 32, 4, 5, 6, 7, 92〉

R0
19 = 〈3, 4, 12〉 R59 = 〈13, 6, 8, 10, 11, 13〉 R99 = 〈23, 32, 4, 5, 6, 7, 102〉

R0
20 = 〈1, 2, 4, 12〉 R60 = 〈13, 72, 8, 9, 10, 13〉 R100 = 〈23, 32, 4, 5, 6, 7, 11

2〉
R0

21 = 〈5, 6, 8, 9〉 R61 = 〈13, 7, 8, 9, 11, 13〉 R101 = 〈23, 34, 4, 5, 6, 7, 13
2〉

R0
22 = 〈5, 7, 8, 10〉 R62 = 〈13, 8, 9, 10, 11, 12〉 R102 = 〈23, 32, 4, 5, 6, 10, 11〉

R0
23 = 〈6, 7, 9, 10〉 R63 = 〈13, 8, 9, 10, 112, 13〉 R103 = 〈23, 32, 4, 5, 7, 9, 11〉

R0
24 = 〈5, 8, 12, 13〉 R64 = 〈13, 8, 9, 10, 122, 13〉 R104 = 〈23, 32, 4, 6, 7, 8, 11〉

R0
25 = 〈6, 9, 12, 13〉 R65 = 〈23, 32, 4, 5, 9, 10〉 R105 = 〈23, 32, 4, 8, 9, 10, 11〉

R0
26 = 〈7, 10, 12, 13〉 R66 = 〈23, 32, 4, 6, 8, 10〉 R106 = 〈23, 3, 42, 8, 9, 10, 13〉

R0
27 = 〈3, 4, 11, 13〉 R67 = 〈23, 32, 4, 7, 8, 9〉 R107 = 〈23, 33, 5, 6, 7, 82, 12〉

R0
28 = 〈1, 2, 4, 11, 13〉 R68 = 〈23, 33, 5, 6, 10, 13〉 R108 = 〈23, 33, 5, 6, 7, 92, 12〉

R29 = 〈13, 5, 6, 10, 13〉 R69 = 〈23, 33, 5, 7, 9, 13〉 R109 = 〈23, 33, 5, 6, 7, 102, 12〉
R30 = 〈13, 5, 7, 9, 13〉 R70 = 〈23, 33, 5, 9, 10, 12〉 R110 = 〈23, 33, 5, 6, 7, 11

2
, 12〉

R31 = 〈13, 5, 9, 10, 12〉 R71 = 〈23, 33, 6, 7, 8, 13〉 R111 = 〈23, 33, 5, 6, 7, 11, 13〉
R32 = 〈13, 6, 7, 8, 13〉 R72 = 〈23, 33, 6, 8, 10, 12〉 R112 = 〈23, 33, 5, 6, 7, 12, 13

2〉
R33 = 〈13, 6, 8, 10, 12〉 R73 = 〈23, 33, 7, 8, 9, 12〉 R113 = 〈23, 33, 5, 6, 10, 11, 12〉
R34 = 〈13, 7, 8, 9, 12〉 R74 = 〈23, 43, 5, 9, 10, 12

2〉 R114 = 〈23, 33, 5, 7, 9, 11, 12〉
R0

35 = 〈3, 4, 5, 8, 13〉 R75 = 〈23, 43, 6, 8, 10, 12
2〉 R115 = 〈23, 33, 52, 8, 9, 10, 13〉

R0
36 = 〈3, 4, 6, 9, 13〉 R76 = 〈23, 43, 7, 8, 9, 12

2〉 R116 = 〈23, 33, 5, 9, 10, 11, 13〉
R0

37 = 〈3, 4, 7, 10, 13〉 R77 = 〈12, 2, 4, 5, 6, 7, 82〉 R117 = 〈23, 33, 6, 7, 8, 11, 12〉
R0

38 = 〈1, 2, 4, 5, 8, 13〉 R78 = 〈12, 2, 4, 5, 6, 7, 92〉 R118 = 〈23, 33, 62, 8, 9, 10, 13〉
R39 = 〈12, 2, 4, 5, 9, 10〉 R79 = 〈12, 2, 4, 5, 6, 7, 102〉 R119 = 〈23, 33, 6, 8, 10, 11, 13〉
R40 = 〈12, 2, 4, 6, 8, 10〉 R80 = 〈12, 2, 4, 5, 6, 7, 11

2〉 R120 = 〈23, 33, 72, 8, 9, 10, 13〉

Table VIIIa: Superbasis of the moduli space of non-anomalous D-flat directions of model
AF1.
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R121 = 〈23, 33, 7, 8, 9, 11, 13〉 R134 = 〈23, 43, 5
2
, 6, 83, 10, 132〉 R147 = 〈23, 43, 6, 7

2
, 8, 103, 132〉

R122 = 〈23, 33, 8, 9, 10, 11, 12〉 R135 = 〈23, 43, 5, 6
2
, 93, 10, 132〉 R148 = 〈23, 43, 6, 7, 8, 11, 12

2〉
R123 = 〈23, 33, 8, 9, 10, 112, 13〉 R136 = 〈23, 43, 5, 6, 10, 11, 12

2〉 R149 = 〈23, 43, 6, 7, 8, 11
3
, 132〉

R124 = 〈23, 33, 8, 9, 10, 122, 13〉 R137 = 〈23, 43, 5, 6, 10, 11
3
, 132〉 R150 = 〈23, 43, 6, 7, 8, 12

3
, 13〉

R125 = 〈23, 43, 5, 6, 7, 82, 12
2〉 R138 = 〈23, 43, 5, 6, 10, 12

3
, 13〉 R151 = 〈23, 43, 6, 8, 92, 10, 132〉

R126 = 〈23, 43, 5
3
, 6, 7, 84, 132〉 R139 = 〈23, 43, 5

2
, 7, 83, 9, 132〉 R152 = 〈23, 43, 6, 8, 10, 11

2
, 132〉

R127 = 〈23, 43, 5, 6, 7, 92, 12
2〉 R140 = 〈23, 43, 5, 7

2
, 9, 103, 132〉 R153 = 〈23, 43, 7, 8, 9, 102, 132〉

R128 = 〈23, 43, 5, 6
3
, 7, 94, 132〉 R141 = 〈23, 43, 5, 7, 9, 11, 12

2〉 R154 = 〈23, 43, 7, 8, 9, 11
2
, 132〉

R129 = 〈23, 43, 5, 6, 7, 102, 12
2〉 R142 = 〈23, 43, 5, 7, 9, 11

3
, 132〉 R155 = 〈23, 43, 8, 9, 10, 11, 12

2〉
R130 = 〈23, 43, 5, 6, 7

3
, 104, 132〉 R143 = 〈23, 43, 5, 7, 9, 12

3
, 13〉 R156 = 〈23, 43, 8, 9, 10, 11, 132〉

R131 = 〈23, 43, 5, 6, 7, 11
2
, 12

2〉 R144 = 〈23, 43, 5, 82, 9, 10, 132〉 R157 = 〈23, 43, 8, 9, 10, 12, 13〉
R132 = 〈23, 43, 5, 6, 7, 11

4
, 132〉 R145 = 〈23, 43, 5, 9, 10, 11

2
, 132〉 − −−−−−−−−−−−−

R133 = 〈23, 43, 5, 6, 7, 12
4
, 13

2〉 R146 = 〈23, 43, 6
2
, 7, 8, 93, 132〉 − −−−−−−−−−−−−

Table VIIIb: Superbasis of the moduli space of non-anomalous D-flat directions of model
AF1 (continued).

FLAT DIRECTION Dim. # U(1)’s

R1 = 〈13, 5, 6, 10, 13〉 0 4
R2 = 〈13, 5, 7, 9, 13〉 0 4
R3 = 〈13, 5, 9, 10, 12〉 0 4
R4 = 〈13, 6, 7, 8, 13〉 0 4
R5 = 〈13, 6, 8, 10, 12〉 0 4
R6 = 〈13, 7, 8, 9, 12〉 0 4
R7 = 〈12, 2, 4, 5, 9, 10〉 0 5
R8 = 〈12, 2, 4, 6, 8, 10〉 0 5
R9 = 〈12, 2, 4, 7, 8, 9〉 0 5
R10 = 〈1, 22, 42, 8, 9, 10, 13〉 0 6

Table IX: List of type-B D-flat directions that are F -flat to all orders for the model AF1.
The dimension of the direction, after cancellation of the Fayet Iliopoulos term, is indicated
in the second column. The third column gives the number of non-anomalous U(1)’s broken
along the flat direction.
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NA

Singlet QA Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 QY Q̂ Q′

S1

√
40 0 0 0 0 0 −8 16 0 −4 336 −40 −248 136 0 0 0

S2

√
20 0 0 0 0 0 2 18 −10 −32 −114 −20 −124 68 −1/2 0 0

S3

√
16 0 4 0 0 0 0 −44 0 −32 −64 −64 112 −48 −1/2 0 4

S4

√
16 0 −4 0 0 0 0 −44 0 −32 −64 −64 112 −48 −1/2 0 −4

S5

√
12 0 0 0 0 0 0 −22 12 −26 8 8 −332 −36 −1/2 0 0

S6

√
12 0 0 0 0 0 −12 2 0 −22 −44 −232 −124 −36 −1/2 0 0

S7 36 0 0 0 0 0 −10 −46 30 8 −178 −84 −12 20 0 0 0
S8 12 0 0 0 4 0 0 −22 12 −26 8 8 −332 −36 −1/2 0 0
S9 12 0 0 0 4 0 −12 2 0 −22 −44 −232 −124 −36 −1/2 0 0
S10 12 0 0 0 0 0 8 −16 12 −6 220 408 28 92 1/2 0 0
S11 12 0 0 0 0 0 −16 32 −12 2 116 −72 444 92 1/2 0 0
S12 12 0 0 0 −4 0 0 −22 12 −26 8 8 −332 −36 −1/2 0 0
S13 12 0 0 0 −4 0 −12 2 0 −22 −44 −232 −124 −36 −1/2 0 0
S14 8 0 0 2 −2 −2 4 14 −2 34 58 −36 −96 −152 0 64 0
S15 8 0 0 0 0 0 18 30 −2 30 222 −60 264 −24 1/2 0 0
S16 8 0 0 −2 2 2 4 14 −2 34 58 −36 −96 −152 1/2 64 0
S17 4 2 −2 −2 2 0 12 20 16 −4 −272 104 −76 −12 1/2 0 0
S18 4 2 −2 −2 2 0 2 −4 −26 −6 202 108 76 116 1/2 0 0
S19 4 2 −2 −2 2 0 0 44 4 0 −324 −136 132 −12 1/2 0 0
S20 4 0 0 0 0 0 12 86 12 −10 40 40 −388 −12 0 0 0
S21 4 0 0 0 0 0 2 −70 −22 0 −110 172 388 116 0 0 0
S22 4 0 0 0 0 0 0 110 0 −6 −12 −200 −180 −12 0 0 0
S23 4 −2 2 2 −2 0 12 20 16 −4 −272 104 −76 −12 −1/2 0 0
S24 4 −2 2 2 −2 0 2 −4 −26 −6 202 108 76 116 −1/2 0 0
S25 4 −2 2 2 −2 0 0 44 4 0 −324 −136 132 −12 −1/2 0 0
S26 0 0 0 2 −2 2 −8 38 10 18 86 180 56 −128 1/2 64 0
S27 0 0 0 −2 2 −2 −8 38 10 18 86 180 56 −128 1 64 0
S28 −44 0 0 0 0 0 8 6 −8 −2 300 112 −196 −124 0 0 0
S29 −44 0 0 0 0 0 2 −26 2 12 34 −60 52 260 0 −128 0
S30 −44 0 0 0 0 0 −2 −18 −10 20 −354 116 −44 4 0 0 0
S31 −44 0 0 0 0 0 −4 30 −20 2 248 −128 12 −124 0 0 0
S32 −32 0 0 0 0 0 −6 −10 −10 18 −186 284 192 96 1/2 0 0
S33 −28 2 2 −2 2 0 −2 4 −14 −18 −106 −12 −244 −44 0 0 4
S34 −28 0 0 2 −2 −2 −6 −32 12 −2 56 56 220 84 0 −64 0
S35 −28 0 0 0 0 0 4 −8 0 2 −168 208 484 −44 1/2 0 0
S36 −28 0 0 −2 2 2 −6 −32 12 −2 56 56 220 84 1/2 −64 0
S37 −28 −2 −2 2 −2 0 −2 4 −14 −18 −106 −12 −244 −44 −1 0 −4
S38 −24 0 0 2 2 2 −4 30 2 −2 6 100 −16 200 0 −64 0
S39 −24 0 0 0 0 0 −10 −46 22 −14 −90 4 152 −184 0 0 0
S40 −24 0 0 −2 −2 −2 −4 30 2 −2 6 100 −16 200 1/2 −64 0
S41 −20 0 0 0 4 0 −2 −18 10 32 114 20 124 −68 1/2 0 0
S42 −20 0 0 0 0 4 −8 16 12 −14 −140 48 −84 −68 0 0 0
S43 −20 0 0 0 0 0 −8 16 −8 −26 424 48 −84 −68 0 0 0
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NA

Singlet QA Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 QY Q̂ Q′

S44 −20 0 0 0 0 0 −2 70 22 0 110 204 332 −68 1 0 0
S45 −20 0 0 0 0 −4 −8 16 12 −14 −140 48 −84 −68 0 0 0
S46 −20 0 0 0 −4 0 −2 −18 10 32 114 20 124 −68 1/2 0 0
S47 −20 0 0 2 2 2 6 32 12 −18 24 24 276 60 0 −64 0
S48 −20 0 0 2 −2 2 6 −56 0 14 28 −160 68 60 −1/2 −64 0
S49 −20 0 0 −2 2 −2 6 −56 0 14 28 −160 68 60 0 −64 0
S50 −20 0 0 −2 −2 −2 6 32 12 −18 24 24 276 60 1/2 −64 0
S51 −16 2 2 −2 2 0 −6 12 −14 −20 62 156 −8 48 1/2 0 4
S52 −16 2 −2 2 2 0 −6 12 −14 −20 62 156 −8 48 0 0 0
S53 −16 0 0 2 2 −2 8 6 −10 14 −22 −116 −168 176 −1/2 −64 0
S54 −16 0 0 0 0 0 18 30 −22 18 −246 36 96 48 0 0 0
S55 −16 0 0 −2 −2 2 8 6 −10 14 −22 −116 −168 176 0 −64 0
S56 −16 −2 2 −2 −2 0 −6 12 −14 −20 62 156 −8 48 0 0 0
S57 −16 −2 −2 2 −2 0 −6 12 −14 −20 62 156 −8 48 −1/2 0 −4
S58 −12 0 4 0 0 0 10 46 10 16 82 −12 180 −92 1/2 0 4
S59 −12 0 0 2 2 −2 18 8 0 −2 −4 −192 124 36 −1/2 −64 0
S60 −12 0 0 0 0 0 4 −8 0 2 −168 −168 −236 −92 −1/2 0 0
S61 −12 0 0 0 0 0 −12 −42 12 22 104 104 −500 36 0 0 0
S62 −12 0 0 0 0 0 −24 −18 0 26 52 −136 −292 36 0 0 0
S63 −12 0 0 −2 −2 2 18 8 0 −2 −4 −192 124 36 0 −64 0
S64 −12 0 −4 0 0 0 10 46 10 16 82 −12 180 −92 1/2 0 −4
S65 −8 2 2 2 −2 0 6 −12 −26 −4 34 −60 −160 24 −1/2 0 4
S66 −8 2 −2 −2 −2 0 6 −12 −26 −4 34 −60 −160 24 0 0 0
S67 −8 0 0 0 0 0 −6 −10 10 30 282 188 360 24 1 0 0
S68 −8 0 0 0 0 0 14 −6 10 −14 −150 −244 56 −232 −1/2 0 0
S69 −8 −2 2 2 2 0 6 −12 −26 −4 34 −60 −160 24 −1 0 0
S70 −8 −2 −2 −2 2 0 6 −12 −26 −4 34 −60 −160 24 −1/2 0 −4
S71 −4 2 2 −2 −2 0 0 −44 16 12 −240 136 −132 12 1/2 0 4
S72 −4 2 2 −2 −2 0 −2 4 6 −6 362 −108 −76 −116 1/2 0 4
S73 −4 2 2 −2 −2 0 −12 −20 4 16 −292 −104 76 12 1/2 0 4
S74 −4 0 0 0 0 0 22 22 −2 32 54 −228 28 −116 0 0 0
S75 −4 0 0 0 0 0 8 −38 32 −10 140 −48 84 −244 0 0 0
S76 −4 0 0 0 0 0 2 −26 2 12 34 316 −500 140 0 0 0
S77 −4 0 0 0 0 0 −4 −14 20 −6 88 −288 292 −244 0 0 0
S78 −4 0 0 0 0 0 −22 22 −22 20 −70 −164 −84 140 0 0 0
S79 −4 −2 −2 2 2 0 0 −44 16 12 −240 136 −132 12 −1/2 0 −4
S80 −4 −2 −2 2 2 0 −2 4 6 −6 362 −108 −76 −116 −1/2 0 −4
S81 −4 −2 −2 2 2 0 −12 −20 4 16 −292 −104 76 12 −1/2 0 −4

Table X: List of non-Abelian singlets for model CHL1, with Q̂ = QA − Q, Y and Q′ as
defined in eqs. (77), (78) and (79) respectively.
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BASIS Q̂ Q̂

M1 = 〈1, 1〉 0 M12 = 〈77, 62, 212, 202〉 0
M2 = 〈54, 39, 1〉 0 M13 = 〈77, 61, 22, 212, 20〉 0
M3 = 〈54, 43, 7〉 0 M14 = 〈45, 42, 31, 292, 28, 1〉 −256
M4 = 〈31, 21, 20, 7〉 0 M15 = 〈43, 39, 31, 30, 292, 20, 1〉 −256
M5 = 〈28, 22, 21, 7〉 0 M16 = 〈63, 45, 39, 38, 31, 30, 29, 28〉 −256
M6 = 〈74, 56, 52, 7〉 0 M17 = 〈55, 47, 45, 39, 31, 30, 29, 28〉 −256
M7 = 〈78, 75, 21, 20〉 0 M18 = 〈55, 45, 39, 38, 31, 29, 28, 1〉 −256
M8 = 〈77, 76, 22, 21〉 0 M19 = 〈49, 42, 39, 22, 212, 20, 14, 1〉 0
M9 = 〈77, 30, 21, 20, 1〉 0 M20 = 〈49, 43, 42, 34, 31, 30, 29, 20, 1〉 −256
M10 = 〈75, 30, 22, 21, 1〉 0 M21 = 〈742, 662, 562, 49, 45, 393, 384, 14〉 −256
M11 = 〈74, 45, 42, 21, 1〉 0 −−−−−−−−−−−−−−−−−−−−−−− −−−

Table XI: Basis of the moduli space of non-anomalous D-flat directions of model CHL1,
with Y = 0.
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BASIS Q̂ Q̂

M1 = 〈1, 1〉 0 M38 = 〈22, 21, 5, 2〉 0
M2 = 〈2, 2〉 0 M39 = 〈60, 10, 6, 5〉 0
M3 = 〈3, 3〉 0 M40 = 〈24, 17, 6, 2〉 0
M4 = 〈4, 4〉 0 M41 = 〈23, 18, 6, 2〉 0
M5 = 〈5, 5〉 0 M42 = 〈21, 20, 6, 2〉 0
M6 = 〈6, 6〉 0 M43 = 〈57, 33, 15, 7〉 0
M7 = 〈68, 32, 1〉 0 M44 = 〈51, 37, 15, 7〉 0
M8 = 〈60, 35, 1〉 0 M45 = 〈58, 37, 18, 7〉 0
M9 = 〈54, 39, 1〉 0 M46 = 〈64, 33, 24, 7〉 0
M10 = 〈36, 14, 2〉 0 M47 = 〈70, 65, 44, 7〉 0
M11 = 〈34, 16, 2〉 0 M48 = 〈69, 66, 44, 7〉 0
M12 = 〈49, 26, 2〉 0 M49 = 〈74, 57, 51, 7〉 0
M13 = 〈48, 27, 2〉 0 M50 = 〈74, 56, 52, 7〉 0
M14 = 〈67, 60, 2〉 0 M51 = 〈73, 57, 15, 8〉 0
M15 = 〈58, 43, 7〉 0 M52 = 〈67, 66, 25, 8〉 0
M16 = 〈78, 68, 10〉 0 M53 = 〈81, 51, 15, 12〉 0
M17 = 〈76, 68, 11〉 0 M54 = 〈69, 67, 19, 12〉 0
M18 = 〈64, 30, 3, 1〉 0 M55 = 〈68, 35, 30, 12〉 0
M19 = 〈58, 30, 4, 1〉 0 M56 = 〈74, 39, 32, 2, 1〉 0
M20 = 〈46, 41, 22〉 0 M57 = 〈74, 45, 42, 21, 1〉 0
M21 = 〈28, 7, 5, 2〉 0 M58 = 〈602, 44, 21, 1〉 0
M22 = 〈31, 7, 6, 2〉 0 M59 = 〈64, 61, 5, 3, 2〉 0
M23 = 〈46, 8, 5, 2〉 0 M60 = 〈64, 62, 6, 3, 2〉 0
M24 = 〈46, 9, 6, 2〉 0 M61 = 〈49, 42, 35, 14, 2, 1〉 0
M25 = 〈41, 12, 5, 2〉 0 M62 = 〈48, 45, 35, 16, 2, 1〉 0
M26 = 〈41, 13, 6, 2〉 0 M63 = 〈65, 64, 56, 41, 7, 2〉 0
M27 = 〈80, 71, 5, 2〉 0 M64 = 〈40, 38, 16, 14, 4, 3〉 0
M28 = 〈79, 72, 5, 2〉 0 M65 = 〈55, 38, 27, 14, 4, 3〉 0
M29 = 〈81, 72, 6, 2〉 0 M66 = 〈53, 40, 26, 16, 4, 3〉 0
M30 = 〈80, 73, 6, 2〉 0 M67 = 〈63, 32, 14, 11, 8, 5〉 0
M31 = 〈78, 75, 6, 2〉 0 M68 = 〈55, 35, 14, 11, 8, 5〉 0
M32 = 〈77, 76, 5, 2〉 0 M69 = 〈59, 32, 16, 12, 11, 5〉 0
M33 = 〈32, 15, 6, 5〉 0 M70 = 〈71, 70, 47, 14, 11, 5〉 0
M34 = 〈67, 54, 6, 5〉 0 M71 = 〈79, 65, 50, 16, 11, 5〉 0
M35 = 〈60, 11, 6, 5〉 0 M72 = 〈71, 70, 59, 26, 11, 5〉 0
M36 = 〈25, 18, 5, 2〉 0 M73 = 〈82, 45, 42, 31, 292, 28〉 −256
M37 = 〈24, 19, 5, 2〉 0 M74 = 〈39, 35, 29, 16, 14, 22, 1〉 0

Table XII: Basis of the moduli space of non-anomalous D-flat directions of model CHL1.

48



NA

Singlet QA Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q̂ Q′

S1

√
40 0 0 −4 4 8 8 −8 0 0

S2 32 −4 0 4 4 −16 0 −8 0 0
S3 8 6 4 0 0 24 0 −12 0 0
S4 8 6 −4 0 0 24 0 −12 0 0
S5 0 0 8 0 0 0 16 0 0 0
S6 0 0 −8 0 0 0 16 0 0 0
S7 0 −4 0 0 0 0 0 24 0 0
S8 −40 2 4 −4 −4 −8 0 −4 0 0
S9 −40 2 −4 −4 −4 −8 0 −4 0 0
S10 −40 0 0 4 −4 −8 8 8 0 0
S11 −40 0 0 0 8 −8 8 8 −112 48
S12 −16 0 0 0 0 −48 0 0 0 48
S13 −8 2 4 0 0 −24 0 12 0 48
S14 −8 2 −4 0 0 −24 0 12 0 48
S15 −8 −2 4 0 0 −24 16 −12 0 0
S16 −8 −2 4 0 0 −24 −16 −12 0 0
S17 −8 −2 −4 0 0 −24 16 −12 0 0
S18 −8 −2 −4 0 0 −24 −16 −12 0 0

Table XIII: List of non-Abelian singlet fields for model CHL2, with Q̂ = QA −Q as defined
in eq. (86). Also shown is the Q′ charge defined in eq. (87).

BASIS Q̂

M1 = 〈1, 1〉 0
M2 = 〈2, 3, 7, 9〉 0
M3 = 〈2, 4, 7, 8〉 0
M4 = 〈3, 6, 7, 16〉 0
M5 = 〈4, 5, 7, 18〉 0
M6 = 〈1, 3, 7, 10, 18〉 0
M7 = 〈1, 4, 7, 10, 16〉 0
M8 = 〈32, 72, 17, 18〉 0
M9 = 〈3, 4, 72, 15, 18〉 0

Table XIV: Basis of the moduli space of non-anomalous D-flat directions of model CHL2.
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NA

Singlet QA Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q̂

S1

√
40 0 0 0 0 −4 −4 −4 −8 4 8 56 0

S2

√
24 0 0 0 4 0 0 8 0 0 −24 −24 0

S3

√
24 4 0 0 0 0 0 8 0 0 −24 −24 0

S4

√
24 −4 0 0 0 0 0 8 0 0 −24 −24 0

S5

√
24 0 0 0 −4 0 0 8 0 0 −24 −24 0

S6

√
0 4 0 0 4 0 0 0 0 0 0 0 0

S7

√
0 4 0 0 −4 0 0 0 0 0 0 0 0

S8

√
0 0 4 −4 0 0 0 0 0 0 0 0 0

S9

√
0 0 4 4 0 0 0 0 0 0 0 0 0

S10 40 0 0 0 0 −4 4 −4 8 4 −24 8 0
S11 28 2 −2 2 2 2 0 −8 8 −2 −12 20 0
S12 28 −2 2 −2 −2 2 0 −8 8 −2 −12 20 0
S13 24 0 0 0 0 0 0 8 −16 0 8 24 0
S14 24 0 0 −4 0 0 0 8 −16 0 8 24 0
S15 24 0 0 4 0 0 0 8 −16 0 8 24 0
S16 16 0 0 0 0 −2 0 4 −12 10 −8 −16 0
S17 16 0 0 0 0 −6 0 4 −12 −2 −8 −16 0
S18 16 0 4 0 0 −2 0 4 −12 10 −8 −16 0
S19 16 0 4 0 0 −6 0 4 −12 −2 −8 −16 0
S20 16 0 0 0 4 −4 0 8 8 4 0 32 0
S21 16 0 0 0 −4 −4 0 8 8 4 0 32 0
S22 16 0 −4 0 0 −2 0 4 −12 10 −8 −16 0
S23 16 0 −4 0 0 −6 0 4 −12 −2 −8 −16 0
S24 8 0 0 0 0 4 0 8 32 −4 −8 40 0
S25 4 2 2 2 2 4 −4 0 −12 4 4 −4 0
S26 4 2 2 2 2 2 4 4 8 −2 12 44 0
S27 4 2 2 2 2 0 −4 0 −12 −8 4 −4 0
S28 4 2 −2 2 −2 4 4 0 −12 4 4 −4 0
S29 4 2 −2 2 −2 2 −4 4 8 −2 12 44 0
S30 4 2 −2 2 −2 0 4 0 −12 −8 4 −4 0
S31 4 −2 2 −2 2 4 4 0 −12 4 4 −4 0
S32 4 −2 2 −2 2 2 −4 4 8 −2 12 44 0
S33 4 −2 2 −2 2 0 4 0 −12 −8 4 −4 0
S34 4 −2 −2 −2 −2 4 −4 0 −12 4 4 −4 0
S35 4 −2 −2 −2 −2 2 4 4 8 −2 12 44 0
S36 4 −2 −2 −2 −2 0 −4 0 −12 −8 4 −4 0
S37 0 0 0 0 0 2 0 −4 −4 6 −40 −96 0
S38 0 0 0 0 0 2 0 −4 −36 6 24 0 0
S39 0 0 0 0 0 −2 0 −4 −4 −6 −40 −96 0
S40 0 0 0 0 0 −2 0 −4 −36 −6 24 0 0
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NA

Singlet QA Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q̂

S41 −48 0 0 0 0 2 −4 0 −4 6 8 −48 0
S42 −48 0 0 0 0 0 0 0 8 0 −16 96 −144
S43 −48 0 0 0 0 0 4 4 16 0 16 0 0
S44 −48 0 0 0 0 −2 −4 0 −4 −6 8 −48 0
S45 −28 2 2 −2 2 −2 0 8 −8 2 12 −20 0
S46 −28 −2 −2 2 −2 −2 0 8 −8 2 12 −20 0
S47 −24 0 −4 0 0 0 0 −8 16 0 −8 −24 0
S48 −24 0 4 0 0 0 0 −8 16 0 −8 −24 0
S49 −16 4 0 0 0 4 0 −8 −8 −4 0 −32 0
S50 −16 0 0 4 0 6 0 −4 12 2 8 16 0
S51 −16 0 0 4 0 2 0 −4 12 −10 8 16 0
S52 −16 0 0 0 0 −6 0 −4 12 14 8 16 0
S53 −16 0 0 0 0 −10 0 −4 12 2 8 16 0
S54 −16 0 0 −4 0 6 0 −4 12 2 8 16 0
S55 −16 0 0 −4 0 2 0 −4 12 −10 8 16 0
S56 −16 −4 0 0 0 4 0 −8 −8 −4 0 −32 0
S57 −8 0 0 0 0 0 0 0 8 16 24 56 0
S58 −8 0 0 0 0 −8 0 0 8 −8 24 56 0
S59 −4 2 2 −2 −2 0 −4 0 12 8 −4 4 0
S60 −4 2 2 −2 −2 −2 4 −4 −8 2 −12 −44 0
S61 −4 2 2 −2 −2 −4 −4 0 12 −4 −4 4 0
S62 −4 2 −2 −2 2 0 4 0 12 8 −4 4 0
S63 −4 2 −2 −2 2 −2 −4 −4 −8 2 −12 −44 0
S64 −4 2 −2 −2 2 −4 4 0 12 −4 −4 4 0
S65 −4 −2 2 2 −2 0 4 0 12 8 −4 4 0
S66 −4 −2 2 2 −2 −2 −4 −4 −8 2 −12 −44 0
S67 −4 −2 2 2 −2 −4 4 0 12 −4 −4 4 0
S68 −4 −2 −2 2 2 0 −4 0 12 8 −4 4 0
S69 −4 −2 −2 2 2 −2 4 −4 −8 2 −12 −44 0
S70 −4 −2 −2 2 2 −4 −4 0 12 −4 −4 4 0

Table XV: List of non-Abelian singlet fields for model CHL3, with Q̂ = QA −Q as defined
in eq. (90).
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BASIS Q̂ Q̂

M1 = 〈1, 1〉 0 M35 = 〈6, 11, 45〉 0
M2 = 〈2, 2〉 0 M36 = 〈8, 14, 48〉 0
M3 = 〈3, 3〉 0 M37 = 〈9, 18, 51〉 0
M4 = 〈4, 4〉 0 M38 = 〈9, 19, 50〉 0
M5 = 〈5, 5〉 0 M39 = 〈6, 20, 49〉 0
M6 = 〈6, 6〉 0 M40 = 〈6, 25, 64〉 0
M7 = 〈7, 7〉 0 M41 = 〈6, 26, 63〉 0
M8 = 〈8, 8〉 0 M42 = 〈6, 27, 62〉 0
M9 = 〈9, 9〉 0 M43 = 〈7, 28, 61〉 0
M10 = 〈2, 3, 7〉 0 M44 = 〈7, 29, 60〉 0
M11 = 〈2, 4, 6〉 0 M45 = 〈7, 30, 59〉 0
M12 = 〈3, 5, 6〉 0 M46 = 〈1, 3, 43, 56〉 0
M13 = 〈6, 12, 46〉 0 M47 = 〈10, 14, 41, 51〉 0
M14 = 〈6, 21, 56〉 0 M48 = 〈10, 14, 44, 50〉 0
M15 = 〈6, 34, 67〉 0 M49 = 〈10, 24, 38, 44〉 0
M16 = 〈6, 35, 66〉 0 M50 = 〈10, 24, 40, 41〉 0
M17 = 〈6, 36, 65〉 0 M51 = 〈10, 25, 35, 44〉 0
M18 = 〈7, 20, 56〉 0 M52 = 〈10, 25, 36, 43〉 0
M19 = 〈7, 31, 70〉 0 M53 = 〈10, 25, 46, 55〉 0
M20 = 〈7, 32, 69〉 0 M54 = 〈10, 26, 36, 41〉 0
M21 = 〈7, 33, 68〉 0 M55 = 〈10, 28, 32, 44〉 0
M22 = 〈8, 11, 46〉 0 M56 = 〈10, 29, 33, 41〉 0
M23 = 〈8, 15, 47〉 0 M57 = 〈10, 29, 45, 56〉 0
M24 = 〈8, 22, 51〉 0 M58 = 〈132, 47, 48〉 0
M25 = 〈8, 23, 50〉 0 M59 = 〈14, 37, 50, 58〉 0
M26 = 〈8, 28, 70〉 0 M60 = 〈14, 39, 51, 57〉 0
M27 = 〈8, 29, 69〉 0 M61 = 〈162, 51, 55〉 0
M28 = 〈8, 30, 68〉 0 M62 = 〈16, 17, 50, 55〉 0
M29 = 〈9, 14, 47〉 0 M63 = 〈1, 14, 37, 43, 51〉 0
M30 = 〈9, 22, 55〉 0 M64 = 〈1, 14, 39, 43, 50〉 0
M31 = 〈9, 23, 54〉 0 M65 = 〈3, 12, 38, 43, 70〉 0
M32 = 〈9, 34, 64〉 0 M66 = 〈3, 14, 50, 53, 56〉 0
M33 = 〈9, 35, 63〉 0 M67 = 〈3, 14, 51, 52, 56〉 0
M34 = 〈9, 36, 62〉 0 M68 = 〈37, 40, 41, 422, 432, 44〉 −288

Table XVI: Basis of the moduli space of non-anomalous D-flat directions of model CHL3.
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NA

Singlet QA Q1 Q2 Q3 Q4 Q5 Q6 QY Q̂

S1

√
16 0 0 −20 4 20 −32 −1/2 0

S2

√
16 4 0 −12 −20 −4 −32 −1/2 0

S3

√
16 2 −32 0 −8 −28 −32 −1/2 0

S4

√
16 −2 0 −4 −20 32 −32 −1/2 0

S5

√
16 −2 −32 −8 16 −4 −32 −1/2 0

S6

√
16 −4 −32 8 −8 8 −32 −1/2 0

S7

√
8 8 −16 4 −4 4 −16 −1/2 0

S8

√
8 4 −16 −4 20 28 −16 −1/2 0

S9

√
8 2 −16 12 −4 40 −16 −1/2 0

S10

√
8 −4 16 −16 −16 −8 −16 0 0

S11

√
0 6 0 −8 0 −36 0 0 0

S12

√
0 2 32 −12 −12 24 0 0 0

S13 40 2 16 16 −8 −4 −80 0 0
S14 8 2 48 20 20 −8 −16 1 0
S15 8 −2 −16 4 −28 −56 −16 0 0
S16 8 −6 −16 −4 −4 −32 −16 0 0
S17 8 −8 −16 12 −28 −20 −16 0 0
S18 0 4 0 8 −24 −24 0 0 0
S19 0 −4 32 −4 −12 60 0 0 0
S20 0 −2 32 −20 12 48 0 0 0
S21 0 −2 0 16 −24 12 0 0 0
S22 −32 −2 32 20 4 8 64 1 0
S23 −24 0 48 −4 −12 −36 48 1 0
S24 −24 −6 16 0 24 −36 48 1 0
S25 −16 4 −32 −16 −16 40 32 −1 0
S26

(′′′) −12 −4 −8 6 18 −30 24 1/2 0
S27

(′) −8 0 8 6 10 14 −152 −1/2 −84
S28 −8 10 −16 8 16 −28 16 0 0
S29 −8 6 −16 0 40 −4 16 0 0
S30

(′) −4 0 0 0 8 −20 −160 −1/2 −84
S31

(′′′) −4 4 8 14 −22 10 8 0 0

Table XVII: Same as Table I but for model CHL4, with hypercharge and Q̂ = QA − Q as
defined in eqs. (93) and (94) respectively.

53



BASIS Q̂

M1 = 〈10, 10〉 0
M2 = 〈11, 11〉 0
M3 = 〈12, 12〉 0
M4 = 〈10, 12, 16〉 0
M5 = 〈10, 15, 20〉 0
M6 = 〈10, 11, 28〉 0
M7 = 〈11, 12, 19〉 0
M8 = 〈12, 18, 20〉 0
M9 = 〈10, 21, 29〉 0
M10 = 〈12, 17, 29〉 0
M11 = 〈15, 19, 29〉 0
M12 = 〈16, 20, 29, 312〉 0

Table XVIII: Basis of the moduli space of non-anomalous D-flat directions of model CHL4,
involving Y = 0 fields only.
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NA

Singlet QA Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q̂A

S1

√
40 0 0 0 −4 −4 −4 −8 4 8 56 0

S2

√
28 0 0 0 2 0 −8 8 −2 −12 20 0

S3

√
24 0 0 0 0 0 8 −16 0 8 24 0

S4
(′) √(′) 24 0 0 0 0 0 8 0 0 −24 −24 0
S5

√
16 0 0 0 −2 0 4 −12 10 −8 −16 0

S6

√
16 0 0 0 −6 0 4 −12 −2 −8 −16 0

S7

√
16 0 0 0 −4 0 8 8 4 0 32 0

S8

√
4 0 0 0 4 4 0 −12 4 4 −4 0

S9

√
4 0 0 0 4 −4 0 −12 4 4 −4 0

S10

√
4 0 0 0 2 4 4 8 −2 12 44 0

S11

√
4 0 0 0 2 −4 4 8 −2 12 44 0

S12

√
4 0 0 0 0 4 0 −12 −8 4 −4 0

S13

√
4 0 0 0 0 −4 0 −12 −8 4 −4 0

S14

√
0 4 0 4 0 0 0 0 0 0 0 0

S15

√
0 4 0 −4 0 0 0 0 0 0 0 0

S16 40 0 0 0 −4 4 −4 8 4 −24 8 0
S17 8 0 0 0 4 0 8 32 −4 −8 40 0
S18 0 0 0 0 2 0 −4 −36 6 24 0 0
S19 0 0 0 0 −2 0 −4 −36 −6 24 0 0
S20 0 0 0 0 2 0 −4 −4 6 −40 −96 0
S21 0 0 0 0 −2 0 −4 −4 −6 −40 −96 0
S22 −48 0 0 0 2 −4 0 −4 6 8 −48 0
S23 −48 0 0 0 0 4 4 16 0 16 0 0
S24 −48 0 0 0 0 0 0 8 0 −16 96 −144
S25 −48 0 0 0 −2 −4 0 −4 −6 8 −48 0
S26 −24 0 4 0 0 0 −8 16 0 −8 −24 0
S27 −24 0 −4 0 0 0 −8 16 0 −8 −24 0
S28 −16 0 4 0 6 0 −4 12 2 8 16 0
S29 −16 0 4 0 2 0 −4 12 −10 8 16 0
S30 −16 0 0 0 −6 0 −4 12 14 8 16 0
S31 −16 0 0 0 −10 0 −4 12 2 8 16 0
S32 −16 0 −4 0 6 0 −4 12 2 8 16 0
S33 −16 0 −4 0 2 0 −4 12 −10 8 16 0
S34 −8 0 0 0 0 0 0 8 16 24 56 0
S35 −8 0 0 0 −8 0 0 8 −8 24 56 0

Table XIX: Same as Table I but for model CHL6, with Q̂ = QA −Q as defined in eq. (98).
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BASIS Q̂ Q̂

M1 = 〈1, 1〉 0 M22 = 〈2, 7, 8, 25〉 0
M2 = 〈2, 2〉 0 M23 = 〈2, 7, 12, 22〉 0
M3 = 〈3, 3〉 0 M24 = 〈32, 26, 27〉 0
M4 = 〈4, 4〉 0 M25 = 〈3, 5, 26, 33〉 0
M5 = 〈5, 5〉 0 M26 = 〈3, 5, 27, 29〉 0
M6 = 〈6, 6〉 0 M27 = 〈3, 6, 26, 32〉 0
M7 = 〈7, 7〉 0 M28 = 〈3, 6, 27, 28〉 0
M8 = 〈8, 8〉 0 M29 = 〈3, 5, 16, 22〉 0
M9 = 〈9, 9〉 0 M30 = 〈3, 6, 20, 35〉 0
M10 = 〈10, 10〉 0 M31 = 〈3, 5, 21, 34〉 0
M11 = 〈11, 11〉 0 M32 = 〈3, 5, 11, 12〉 0
M12 = 〈12, 12〉 0 M33 = 〈3, 5, 17, 19〉 0
M13 = 〈13, 13〉 0 M34 = 〈3, 6, 17, 18〉 0
M14 = 〈14, 14〉 0 M35 = 〈1, 3, 5, 20, 23〉 0
M15 = 〈15, 15〉 0 M36 = 〈1, 3, 6, 21, 23〉 0
M16 = 〈1, 4, 7, 23〉 0 M37 = 〈1, 8, 11, 17, 25〉 0
M17 = 〈2, 3, 9, 22〉 0 M38 = 〈1, 2, 3, 9, 31〉 0
M18 = 〈2, 3, 10, 23〉 0 M39 = 〈1, 2, 3, 13, 30〉 0
M19 = 〈2, 3, 13, 25〉 0 M40 = 〈5, 7, 23, 24, 25〉 −144
M20 = 〈2, 5, 10, 25〉 0 M41 = 〈4′, 4〉 0

M21 = 〈2, 6, 9, 23〉 0 M42 = 〈4, 4′〉 0

Table XX: Basis of the moduli space of non-anomalous D-flat directions of model CHL6.
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NA

Singlet QA Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q̂

S1

√
16 0 0 −2 0 0 8 −4 6 0

S2
(′) √ 12 2 0 −2 0 4 −4 0 −6 0

S3
(′) √ 4 2 2 −1 0 4 −8 −6 3 0

S4
(′) √ 4 2 −2 −1 0 4 −8 −6 3 0
S5

√
4 −2 0 4 0 −4 −4 4 0 32

S6
(′) √(′) 0 4 0 0 0 0 0 0 0 0
S7

√
0 0 0 2 4 0 −8 −4 6 32

S8

√
0 0 0 2 −4 0 −8 −4 6 0

S9

√
8 0 2 1 4 0 −4 2 −3 32

S10

√
8 0 2 1 −4 0 −4 2 −3 0

S11

√
8 0 −2 1 4 0 −4 2 −3 32

S12

√
8 0 −2 1 −4 0 −4 2 −3 0

S13 12 0 0 0 −2 4 12 8 −6 0
S14 12 −2 2 1 −4 −4 8 −2 9 0
S15 12 −2 −2 1 −4 −4 8 −2 9 0
S16 8 2 0 2 0 8 0 −4 −6 0
S17 8 2 0 0 0 8 −8 8 0 32
S18 8 2 0 0 −2 8 0 −4 6 0
S19 8 2 0 −2 2 8 8 0 0 0
S20 8 −2 0 2 0 −8 0 −4 −6 0
S21 8 −2 0 0 0 −8 −8 8 0 32
S22 8 −2 0 0 −2 −8 0 −4 6 0
S23 8 −2 0 −2 2 −8 8 0 0 0
S24 4 0 2 3 2 4 0 −2 9 32
S25 4 0 0 −2 2 −4 −4 4 −12 0
S26 4 0 −2 3 2 4 0 −2 9 32
S27 4 −2 0 6 0 −4 4 −8 −6 0
S28 4 −2 0 2 0 −4 −12 16 6 64
S29 4 −2 0 −2 4 −4 20 0 6 0
S30 0 2 0 4 2 0 8 4 6 32
S31 0 2 0 2 −2 0 16 8 0 0
S32 0 2 0 −2 2 0 −16 −8 0 0
S33 0 2 0 −4 −2 0 −8 −4 −6 −32
S34 −20 2 0 0 4 4 −12 −4 0 0
S35 −20 0 0 2 2 4 4 4 0 0
S36 −12 0 2 3 −2 4 0 6 −3 0
S37 −12 0 2 1 0 4 16 −2 −3 −32
S38 −12 0 2 −1 0 4 8 10 3 0
S39 −12 0 0 0 0 −4 −4 −4 −12 −32
S40 −12 0 0 −2 0 −4 −12 8 −6 0
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NA

Singlet QA Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q̂

S41 −12 0 0 −4 2 −4 4 0 −6 −32
S42 −12 0 −2 3 −2 4 0 6 −3 0
S43 −12 0 −2 1 0 4 16 −2 −3 −32
S44 −12 0 −2 −1 0 4 8 10 3 0
S45 −8 2 0 2 −2 −8 −8 0 0 0
S46 −8 2 0 0 2 −8 0 4 −6 0
S47 −8 2 0 0 0 −8 8 −8 0 −32
S48 −8 2 0 −2 0 −8 0 4 6 0
S49 −8 −2 0 2 −2 8 −8 0 0 0
S50 −8 −2 0 0 2 8 0 4 −6 0
S51 −8 −2 0 0 0 8 8 −8 0 −32
S52 −8 −2 0 −2 0 8 0 4 6 −32
S53 −4 0 2 1 −2 −4 −16 −6 3 0
S54 −4 0 2 −1 0 −4 0 −14 3 −32
S55 −4 0 2 −3 0 −4 −8 −2 9 0
S56 −4 0 0 4 2 4 −4 8 −6 32
S57 −4 0 0 2 4 4 12 0 −6 0
S58 −4 0 0 2 −4 4 12 0 −6 −32
S59 −4 0 0 0 4 4 4 12 0 32
S60 −4 0 0 0 −4 4 4 12 0 0
S61 −4 0 0 −2 −2 4 20 4 0 −32
S62 −4 0 −2 1 −2 −4 −16 −6 3 0
S63 −4 0 −2 −1 0 −4 0 −14 3 −32
S64 −4 0 −2 −3 0 −4 −8 −2 9 0

Table XXI: List of non-Abelian singlets for model CHL7, with Q̂ = QA − Q as defined in
eq. (101).
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BASIS Q̂ Q̂

M1 = 〈1, 1〉 0 M35 = 〈8, 35, 41〉 −32
M2 = 〈2, 2〉 0 M36 = 〈9, 58, 64〉 0
M3 = 〈3, 3〉 0 M37 = 〈9, 60, 63〉 0
M4 = 〈4, 4〉 0 M38 = 〈9, 61, 62〉 0
M5 = 〈5, 5〉 0 M39 = 〈10, 26, 41〉 0
M6 = 〈6, 6〉 0 M40 = 〈10, 57, 64〉 0
M7 = 〈7, 7〉 0 M41 = 〈10, 59, 63〉 0
M8 = 〈8, 8〉 0 M42 = 〈11, 53, 61〉 0
M9 = 〈9, 9〉 0 M43 = 〈11, 54, 60〉 0
M10 = 〈10, 10〉 0 M44 = 〈11, 55, 58〉 0
M11 = 〈11, 11〉 0 M45 = 〈12, 24, 41〉 0
M12 = 〈12, 12〉 0 M46 = 〈13, 22, 34〉 0
M13 = 〈1, 2, 5〉 32 M47 = 〈2, 13, 32〉 0
M14 = 〈1, 9, 12〉 32 M48 = 〈6, 16, 48〉 0
M15 = 〈1, 10, 11〉 32 M49 = 〈3, 16, 55〉 0
M16 = 〈1, 16, 21〉 32 M50 = 〈4, 16, 64〉 0
M17 = 〈1, 17, 20〉 32 M51 = 〈6, 17, 47〉 0
M18 = 〈1, 45, 50〉 0 M52 = 〈3, 17, 54〉 0
M19 = 〈1, 46, 49〉 0 M53 = 〈1, 18, 23〉 0
M20 = 〈2, 9, 15〉 32 M54 = 〈2, 18, 25〉 0
M21 = 〈2, 11, 14〉 32 M55 = 〈1, 19, 22〉 0
M22 = 〈2, 22, 35〉 0 M56 = 〈3, 19, 53〉 0
M23 = 〈3, 20, 44〉 0 M57 = 〈5, 22, 56〉 0
M24 = 〈3, 21, 43〉 0 M58 = 〈3, 24, 33〉 0
M25 = 〈3, 23, 42〉 0 M59 = 〈6, 30, 33〉 0
M26 = 〈4, 20, 38〉 0 M60 = 〈6, 31, 32〉 0
M27 = 〈4, 21, 37〉 0 M61 = 〈2, 33, 35〉 −32
M28 = 〈4, 23, 36〉 0 M62 = 〈7, 34, 66〉 −32
M29 = 〈5, 18, 41〉 0 M63 = 〈1, 7, 39, 60〉 0
M30 = 〈5, 32, 61〉 0 M64 = 〈13, 24, 39, 64〉 0
M31 = 〈6, 20, 52〉 0 M65 = 〈2, 8, 29, 65〉 0
M32 = 〈6, 21, 51〉 0 M66 = 〈2, 27, 38, 64〉 0
M33 = 〈6, 22, 50〉 0 M67 = 〈2, 28, 37〉 0
M34 = 〈6, 23, 49〉 0 M68 = 〈64, 39, 24, 9〉 0

Table XXII: Basis of the moduli space of non-anomalous D-flat directions of model CHL7.
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