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Abstract

Motivated by the Super-Kamiokande data, we revisit models with U(1) symmetries
and discuss the origin of neutrino masses and mixings in such theories. We show that,
in models with just three light neutrinos and a hierarchy of neutrino masses, large (2-3)
mixing fixes the lepton doublet U(1) charges and is thus related to the structure of the
charged lepton mass matrix. We discuss the fermion mass structure that follows from the
Abelian family symmetry with an extended gauge group. Requiring that the quark and
lepton masses be ordered by the family symmetry, we identify the most promising scheme.
This requires large, but not necessarily maximal, mixing in the µτ sector and gives eµ

mixing in the range that is required for the small angle solution of the solar neutrino
deficit.

1 Introduction

Recent reports by the Super-Kamiokande collaboration [1], indicate that the number of νµ in the
atmosphere is decreasing, due to neutrino oscillations. These reports seem to be supported by the
recent findings of other experiments [2], as well as by previous observations [3]. The data indicates
that the number of νµ is almost half of the expected number, while the number of νe is consistent with
the expectations. νµ − ντ oscillations, with

δm2
νµντ

≈ (10−2 to 10−3) eV2 (1)

sin22θµτ ≥ 0.8 (2)
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match the data very well, while dominant νµ → νe oscillations are disfavoured by Super-Kamiokande [1]
and CHOOZ [4].

On the other hand, the solar neutrino puzzle can be resolved through matter enhanced oscillations [5]
with either a small mixing angle:

δm2
νeνα

≈ (3− 10) × 10−6 eV2 (3)

sin22θαe ≈ (0.4− 1.3) × 10−2 (4)

or a large mixing angle:

δm2
νeνα

≈ (1− 20) × 10−5 eV2 (5)

sin22θαe ≈ (0.5− 0.9) (6)

or vacuum oscillations:

δm2
νeνα

≈ (0.5 − 1.1)× 10−10 eV2 (7)

sin22θαe ≥ 0.67 (8)

where α is µ or τ1.

If neutrinos were to provide a hot dark matter component, then the heavier neutrino(s) should have
mass in the range ∼ (1 − 6) eV, where the precise value depends on the number of neutrinos that

have masses of this order of magnitude [7]. Of course, this requirement is not as acute, since there are
many alternative ways to reproduce the observed scaling of the density fluctuations in the universe.

Finally, let us note that there is another indication of neutrino mass. The collaboration using the
Liquid Scintillator Neutrino Detector at Los Alamos (LSND) has reported evidence for the appearance
of ν̄µ − ν̄e [8] and νµ − νe oscillations [9]. Interpretation of the LSND data favours the choice

0.2 eV2 ≤ δm2 ≤ 10 eV2

0.002 ≤ sin2 2θ ≤ 0.03 (9)

The experiment KARMEN 2 [10] (the second accelerator experiment at medium energies) is also
sensitive to this region of parameter space and restricts the allowed values to a relatively small subset
of the above region.

The implications of these measurements are very exciting, for non-zero neutrino mass means a

departure from the Standard Model and neutrino oscillations indicate violation of lepton family

number, again lying beyond the Standard Model. The first question that needs to be answered,

is why are the neutrino masses so small. In this paper we will follow what we believe to be

the most promising explanation, namely that neutrino masses are small due to the “see-saw”

mechanism [11] in which the light neutrino are suppressed by a very large scale associated with

1Best fit regions for solutions to the solar neutrino deficit have been identified in [6] .
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the onset of new (unified?) physics. The “see-saw” mechanism follows naturally in the case

that right-handed neutrinos exist.

Suppose that there is no weak isospin 1 Higgs field and hence there are no mass terms of the

νLνL type. In this case there are two possible neutrino masses

mDiracνLνR + MMajoranaνRνR ≡
(

νL νR

)( 0 mD

mD MM

)(
νL

νR

)
(10)

The Dirac mass is similar to an up quark mass and one’s naive expectation is that they should

have similar magnitude. On the other hand, the Majorana mass term is invariant under the

Standard Model gauge group and does not require a stage of electroweak breaking to generate

it. For this reason, one expects the Majorana mass to be much larger than the electroweak

breaking scale, perhaps as large as the scale of the new physics beyond the Standard Model;

for example, the Grand Unified scale or even the Planck scale. Diagonalising the mass matrix

gives the eigenvalues

mHeavy ' MM (11)

mLight ' m2
D

MM

The see-saw mechanism generates an effective Majorana mass for the light neutrino (predom-

inantly νL) by mixing with the heavy state (predominantly νR) of mass MM . It is driven by

an effective Higgs ΦIW =1 made up of HIW =1/2HIW =1/2/MM (hence the two factors of mD in

eq.(11) ). eq.(11) shows that a large scale for the Majorana mass gives a very light neutrino.

For example with MM = 1016 GeV and mD taken to be the top quark mass gives

mLight ' 3.10−3 eV

This estimate shows that it is quite natural to have neutrinos in a mass range appropriate to

give, for example, solar neutrino oscillations. However, in many cases, larger masses capable

of explaining the other oscillation phenomena are possible because the Majorana mass for the

right handed neutrinos is often smaller than the Grand Unified mass. A Majorana mass for

the right-handed neutrino requires a Higgs carrying right-handed isospin 1 (in analogy with the

left-handed case when it needed left-handed isospin 1). If this field is not present (for example

in level one string theory this is always the case) one may get a double see-saw because the

Majorana mass for the right-handed neutrino is also generated by an effective Higgs, made up

of HIW,R=1/2HIW,R=1/2/M ′, where M ′ denotes a scale of physics beyond the Grand Unification

scale. Taking this to be the Planck scale (probably the largest reasonable possibility) and

< HIW,R=1/2 > to be the Grand Unified scale (it breaks any Grand Unified group) one finds

MM ' (1016)2

1019
GeV
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giving

mLight ' 1 eV

Thus, one sees that the see saw mechanism naturally gives neutrino masses in the range relevant

to neutrino oscillation measurements. Moreover, as the neutrino mass is proportional to the

Dirac mass squared, taking the Dirac mass of each family of neutrinos to be of the order of the

equivalent up quark mass, one obtains a large hierarchy between different families of neutrino.

This is what is required if one is to explain several oscillation phenomena, for it allows the

existence of several mass differences.

In what follows, we will concentrate on the possibility that there is a minimal extension of

the Standard Model involving just three new right-handed neutrino states and that the mass

structure of the neutrinos is intimately related to that of the charged leptons and quarks. This

implies that the three different indications for neutrino oscillations discussed above cannot

be simultaneously explained, because three neutrino masses allow only two independent mass

differences. To explain all three observations requires another (sterile) light neutrino state.

However, introducing such a state breaks any simple connection between neutrino masses and

those of the other Standard Model states and here we wish to explore whether the apparently

complex pattern of quark and lepton masses and mixing angles can be simply understood. In

this, while the structure of the see-saw mechanism leads naturally to light neutrino masses in

a physically interesting range, it does not by itself explain the pattern of neutrino masses and

mixing angles.

To go further requires some family symmetry capable of relating the masses of different gen-

erations. The recent Super-Kamiokande measurements have triggered a large amount of work

studying the implications for neutrino masses in extensions of the fundamental theory [12].

Actually, the origin of fermion masses and mixing angles, including those of neutrinos, has

been studied in numerous publications [13, 14, 15]. An obvious possibility is that the various

hierarchies arise due to some symmetry at a higher scale. An indication that additional sym-

metries exist, has been provided by the observation that the fermion mixing angles and masses

have values consistent with the appearance of “texture” zeros in the mass matrices. In this

framework, the predictions for neutrino textures in models have been studied in [16, 17, 18, 19].

In many cases, a large mixing angle is not easy to reproduce, principally because of the con-

strained form of the Dirac mass matrices [17]. However, in certain cases, the Dirac sector may

lead naturally to such a large mixing, as we showed in [18] (similar conclusions were recently

discussed in [20]). Here, we revisit these models in the light of the recent results and study the

expected predictions in more detail. In order to avoid the hierarchy problem that is associated

with the large mass scale necessary for the see-saw mechanism, we assume the Standard Model

descends from a supersymmetric theory with a low scale of supersymmetry breaking.
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2 Family symmetry and hierarchical quark and lepton

masses

It has been observed [13, 14] that the hierarchical structure for the fermion mass matrices

strongly suggests it originates from a spontaneously broken family symmetry. In this approach,

when the family symmetry is exact, only the third generation will be massive corresponding to

only the (3,3) entry of the mass matrix being non-zero. When the symmetry is spontaneously

broken, the zero elements are filled in at a level determined by the symmetry. Suppose a field θ

which transforms non-trivially under the family symmetry acquires a vacuum expectation value,

thus spontaneously breaking the family symmetry. The zero elements in the mass matrix will

now become non-zero at some order in < θ > . If only the 2-3 and 3-2 elements are allowed by

the symmetry at order θ/M, where M is a mass scale to be determined, then a second fermion

mass will be generated at O((θ/M)2). In this way one may build up an hierarchy of masses.

M∼

 0 0 0

0 0 0

0 0 1

→

 0 0 0

0 0 < θ > /M

0 < θ > /M 1

 (12)

How do these elements at O(θ/M) arise? A widely studied approach communicates symmetry

breaking via an extension of the “see-saw” mechanism mixing light to heavy states - in this

context it is known as the Froggatt Nielsen mechanism [13]. To illustrate the mechanism,

suppose there is a vector-like pair of quark states X and X with mass M and carrying the

same Standard Model quantum numbers as the cR quark, but transforming differently under

the family symmetry, so that the Yukawa coupling hcLXH is allowed. Here H is the Standard

Model Higgs responsible for giving up quarks a mass. When H acquires a vacuum expectation

value (vev), there will be mixing between cL and X. If in addition there is a gauge singlet field

θ transforming non-trivially under the family symmetry so that the coupling h′XcRθ is allowed,

then the mixing with heavy states will generate the mass matrix.

(
cL X

)( 0 h < H >

h′ < θ > M

)(
cR

X

)
Diagonalising this gives a see-saw mass formula

mc ' hh′ < H >< θ >

M
(13)

This mass arises through mixing of the light with heavy quarks.

A similar mechanism can generate the mass through mixing of the light Higgs with heavy Higgs

states. Suppose HX , HX are Higgs doublets with mass M. If HX has family quantum numbers

allowing the coupling HHXθ, there will be mixing between H and HX . If the family symmetry
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Qi uc
i dc

i Li ec
i νc

i H2 H1

U(1)FD αi βi γi bi ci di −α3 − β3 −α3 − γ3

Table 1: U(1)FD charges

also allows the coupling cLcRHX , the light-heavy Higgs mixing induces a mass for the charm

quark of the form given in eq.(13).

R

θ M

X Xc

Figure 1: Generation of non-renormalisable operators through quark mixing

HX H

θ M

XH

Figure 2: Generation of non-renormalisable operators through Higgs mixing

2.1 Abelian family symmetry

How difficult is it to find a family symmetry capable of generating an acceptable fermion mass

matrix? The surprising answer is “Not at all difficult” and the simplest possibility using an

Abelian family symmetry group [15, 21] works very well.

As a bonus, such symmetries can also give texture zeros simultaneously in the (1,1) and (1,3)

positions, generating good predictions relating masses and mixing angles [15]. The basic idea is

that the structure of the mass matrices is determined by a flavour dependent family symmetry,

U(1)FD. The most general charge assignments of the various states under this symmetry are

given in Table 1. If the light Higgs, H2, H1, that generate the up-quark (Dirac neutrino) and

down-quark (charged lepton) masses respectively, have U(1) charge so that only the (3,3) renor-

malisable Yukawa coupling to H2, H1 is allowed, then only the (3,3) element of the associated

mass matrix will be non-zero. The remaining entries are generated when the U(1) symmetry

is broken. This breaking is taken to be spontaneous via Standard Model singlet fields carrying

family charge acquiring vacuum expectation values (vevs). For example the fields, θ, θ̄, with
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U(1)FD charge -1, +1 respectively 2, may acquire equal vevs along D−flat directions. After this

breaking, the structure of the mass matrices is generated. Let us discuss, as an example, the ori-

gin of the (3,2) entry in the up quark mass matrix. This appears at order ε|α2−α3| because U(1)

charge conservation allows only the non-renormalisable operator cctH2(θ/M2)
β2−α3 , β2 > α3

or cctH2(θ̄/M2)
α3−β2, α3 > β2. Here ε = (< θ > /M2) and M2 is the unification mass scale

which governs the higher dimension operators. As we discussed above this is most likely to

be the mass of the heavy quark or heavy Higgs which, on spontaneous breaking of the family

symmetry, mixes with the light states.

2.2 Abelian family symmetry and large lepton mixing

Let us consider in more detail the 2×2 heavier sector of the theory, relevant to the atmospheric

neutrino oscillations for the case only one mass squared difference contributes. The charged

lepton matrix constrained by the U(1) family symmetry has the form

M`

mτ

=

(
c
(

θ
M

)qL
(

θ
M

)qR a
(

θ
M

)qL

b
(

θ
M

)qR 1

)
(14)

where the origin of the intermediate mass scale, M, will be discussed shortly. The parameters

a, b, c are constants of O(1), reflecting the unknown Yukawa couplings and qL = b2 − b3,

qR = c2 − c3
3.

It is instructive to write this in the form

M`

mτ
= E

(
(

θ

M
)qL

)
· A · E

(
(

θ

M
)qR

)
(15)

where

E(x) =

(
x 0

0 1

)
, A =

(
c a

b 1

)
, (16)

The matrix A is determined by the Yukawa couplings only. If the only symmetry restricting

the form of the mass matrices is the Abelian family symmetry there is no reason to expect

correlations between the elements of A and so we expect Det(A) = O(1). This is the situation

we will explore in this paper. Given this we may see that MD
` has the form

M` = V`L · M`,Diagonal · V T
`R (17)

2In some models only fields with one sign of family charge acquire vevs. In this case holomorphic zeros may
occur in the mass matrices as is discussed below.

3Here, for simplicity, we assume bi, ci, qL, qR are all positive. The analysis also applies without this restriction
for the case < θ >≈< θ > . We will discuss what happens when these conditions are not satisfied later.
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where
M`,Diagonal

mτ

=

(
r( θ

M
)qL( θ

M
)qR 0

0 1

)
(18)

and

V`L = V

(
r′(

θ

M
)qL

)
, V`R = V

(
r′′(

θ

M
)qR

)
(19)

with r, r′, r′′ = O(1) and V (x) =

(
1 x

−x 1

)
. The lepton analogue [22] of the CKM mixing

matrix for quarks is given by

VMNS ≈ V †
νL · V`L (20)

The important point to note is that the left-handed lepton mixing matrix contribution is deter-

mined entirely by the left-handed lepton doublet family symmetry charges while the eigenvalues

are determined by both the left-handed and right-handed charges.

A similar analysis may be applied to the neutrino sector. We have

Meffective
ν = MD

ν · (MM
ν )−1 · MDT

ν (21)

= (VνL · MD
ν,Diagonal · V (D)T

νR ) · (MM
ν )−1 · (VνL · MD

ν,Diagonal · V (D)T
νR )T

≡ VνL · VνR ·Meffective
ν,Diagonal · V T

νR · V T
νL

We see that there are two contributions to VMNS in eq.(20) coming from the neutrino sector.

The first is

VνL = V

(
s(

θ

M ′ )
qL

)
(22)

where s = O(1) and we have allowed for a different intermediate scale M ′ (see below). It is

determined by the same left-handed lepton doublet family symmetry charges that determine

V`L.

The second contribution, VνR, is sensitive to the right-handed neutrino family charges. However

in the case the light neutrinos have a hierarchical mass pattern (necessary if we are to explain

both the atmospheric and solar oscillations) this contribution cannot be large. To see this note

that if the elements of VνR are all of O(1) and one neutrino mass, m1, dominates then the

elements of the matrix VνR ·Meffective
ν,Diagonal ·V T

νR are all of O(m1) but its determinant is << O(m2
1).

This matrix is also given by (MD
ν,Diagonal ·V (D)T

νR ) · (MM
ν )−1 · (MD

ν,Diagonal ·V (D)T
νR )T . As discussed

above, the Abelian family symmetry cannot give correlations between the Yukawa couplings

determining different matrix elements of MD
ν,Diagonal and MM

ν . Thus, its determinant cannot

be of a different order than the product of its diagonal elements, in contradiction with the

conclusion that follows if the neutrinos are hierarchical in mass. The implication is that large

mixing can only come from the right-handed neutrino sector if there are two nearly degenerate

neutrinos. If we are to describe solar neutrino mixing too, this has to be extended to three
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nearly degenerate neutrinos [23] and since an Abelian symmetry alone cannot generate this

structure we dismiss this possibility here. As a result, we require a hierarchical neutrino mass

pattern and this implies VMNS ≈ V T
νL · V`L giving

sin θµντ ≈ r′(
θ

M
)qL − s(

θ

M ′ )
qL (23)

with the implication that qL = 0 for near maximal mixing.

At this point, it is important to discuss what are the expansion parameters in the various

sectors, i.e. what are M, and M ′ . As discussed above, the most reasonable origin of the higher

dimension terms ∝
(

θ
Mi

)a

is via the Froggatt-Nielsen mechanism [13], through the mixing of

the lepton states or the Higgs states. In the case of the mixing responsible for VMNS, the former

is irrelevant for in this case the mixing arises via heavy states which belong to SU(2) doublets

and hence are closely degenerate (M ′ = M). In this case, the contributions to eq.(20) or (23)

cancel. We conclude that the relevant mixing is generated through the Higgs states. Thus, M

should be interpreted as the mass of the heavy Higgs states mixing with H1, generating the

down quark and charged lepton masses, while M ′ is the mass of the Heavy Higgs state mixing

with H2, generating the up quark masses. Consequently, the expectation is that M1 > M2

because the same expansion parameters govern the hierarchy of quark masses, and typically

one needs a smaller expansion parameter in the up-quark sector to explain the larger hierarchy

of masses in that sector. This in turn implies that the lepton mixing comes primarily from the

charged lepton sector. Of course, this conclusion depends on the relative up and down-quark

charges - we will return in a discussion of this shortly.

Although we have argued that the mixing matrix VMNS is determined by the left-handed charges

only, the mass eigenvalues are sensitive to the right-handed charges. In particular the Majorana

mass has a similar form to that in eq.(15)

MM
ν ∝ E

(
(

θ

M ′′ )
qR

)
· B · E

(
(

θ

M ′′ )
qR

)
(24)

where we have allowed for a different intermediate mass scale, M ′′, in the right-handed sector

and B is a matrix of Yukawa couplings of O(1). This gives

Det(meff ) =
[Det(MD

ν )]2

Det(MR
ν )

∝
( θ

M ′ )
2qR( θ

M
)2qL

( θ
M ′′ )2qR

(25)

To summarise, the choice qL = 0 leads to O(1) mixing, although there is no reason for the

mixing to be really maximal i.e. π/4 (for this, a non-Abelian symmetry is necessary [23]). The

lepton mass may be adjusted by the choice of q`R, while the neutrino masses may be adjusted

by the choice of qνR. Thus, a U(1) family symmetry is readily compatible with an hierarchical

neutrino mass matrix and a large mixing angle in the lepton sector although it is unlikely to

be maximal.
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At this point it is perhaps useful to comment how maximal mixing can be obtained from the

right-handed neutrino sector [19, 24, 25] via an Abelian symmetry. This may be arranged

using the holomorphic structure of the superpotential in supersymmetric theories. Suppose the

< θ >= 0 i.e. only the positive family charge field θ acquires a vev. Suppose further the family

charges of the heavy lepton doublets are given by qµL
= n, qτL

= 0 while the right-handed

neutrinos have charge given by qνµ = (p + r) qντ = −p with n, p and r positive and n 1 p.

Then we have

MD
ν ∝

(
( θ

M
)n+p+r ( θ

M
)n−p

( θ
M

)p+r 0

)
(26)

MM
ν ∝

(
( θ

M ′ )
2p+r 1

1 0

)

The zeros here arise because the net charge in the (2, 2) element is negative (the case not

allowed in the discussion above). For the simple case M = M ′ we have

Meffective
ν = MD

ν · (MM
ν )−1 · MDT

ν (27)

∝
(

( θ
M

)n 1

1 0

)

(a similar structure applies for a range of M/M ′). This gives maximal mixing and two nearly

degenerate neutrinos. Thus if we wish to describe solar as well as atmospheric oscillations it is

necessary to add a sterile neutrino [25, 26]. We do not consider such schemes here.

3 Gauge unification constraints

While an Abelian family symmetry provides a promising origin for an hierarchical pattern of

fermion masses, in order to go further it is necessary to specify the charges of the quarks,

charged leptons and neutrinos. As we discussed in the last section, it is straightforward to fit

all the observed masses and mixing angles by the choice of the U(1) charges not constrained

by the Standard Model gauge symmetry. However, the structure of the Standard Model is

suggestive of an underlying unification which may relate quark and lepton multiplets. The

success of the unification of the gauge couplings also supports this picture. Thus, we think it of

interest to consider whether realistic quark mass structures are consistent with the constraints

on an Abelian family symmetry that result from some underlying unified gauge symmetry.
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3.1 SO(10)× U(1)

Consider first the possibility that the family symmetry commutes with an SO(10) GUT. In

this case, all quark and lepton charges for the left- and charge conjugate right-handed fields

in a given generation are the same. This gives rise to a left-right symmetric mass matrix

with similar structure for the up quark, the down quark, the charged lepton and the Dirac

neutrino mass matrices. The only difference between these sectors is due to the possibility

the expansion parameters can be different. Thus SO(10) provides a specific realisation of

the first model of lepton masses that has been discussed in reference [15] for the case b = 0.

Following the discussion of Section 2.2 we note that the expansion parameters determining

VMKS are principally those arising from Higgs mixing. Since the same Higgs is responsible for

the structure of the down quark mass and the charged lepton mass this leads to the prediction

Vµτ ≈ Vcb (28)

Clearly this is in gross conflict with observations so to rescue it it is necessary for the coefficients

of O(1) associated with the down quark and leton sectors to differ. In our analysis, we are

going to discard solutions that, in order to match the observations, require the existence of

either cancellations that are not predicted by the Abelian family symmetry, or coefficients with

magnitude comparable to that of the expansion parameter ordering the elements of the mass

matrices 4. For this reason we do not consider this SO(10) possibility further. We also apply

these criteria to the analysis in the rest of this section.

We should further stress that in our analysis we use the GUT structure only in order to constrain

the U(1) flavour charges of the light fields. In particular we assume that all terms allowed at

a given order by the family symmetry do in fact occur. This condition can be avoided if the

heavy fields responsible for the Froggatt Nielsen mixing have restricted U(1) family charges. A

simple example of this mechanism appears in [15]; viable SO(10) examples appear in [27, 28].

We do not consider such a possibility here, because we wish to explore whether the U(1) family

symmetry structure of the light fields alone is sufficient to determine the pattern of light fermion

masses and mixings.

3.2 SU(5)× U(1)

We turn to the possibility that the family symmetry commutes with an SU(5) GUT. This is, of

course, consistent with an underlying SO(10) structure but to avoid the bad relation of eq.(28)

it is necessary for the Abelian family symmetry to have a component along the SO(10) neutral

4This requirement is unreasonable in the case the down quark and lepton couplings are predicted to differ by
the underlying GUT. We consider such a possibility for the case of SU(5) in the next Section but choose not
to pursue it for SO(10).
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generator ∝ (B − L) which commutes with SU(5). There are only three U(1) family charges

needed for each family. These are given by

Q(q,uc,ec)i
= Q10

i (29)

Q(l,dc)i
= Q5

i

Q(νR)i
= QνR

i

From the above it immediately follows that :

(i) The up-quark mass matrix is symmetric.

(ii) the charged lepton mass matrix is the transpose of the down quark mass matrix.

The expansion parameters in the various sectors can be different (depending on whether the

non-renormalisable contributions are due to fermion or to Higgs mixing, or a to combination

of the two). However, as discussed in Section 2.2, a single expansion parameter describing H1

mixing determines the down quark and charged lepton mixing, and similarly a single expansion

parameter describing H2 mixing determines the up quark and Dirac neutrino mixing. The fact

that the right-handed neutrino charges are unconstrained means the neutrino mass spectrum

is not restricted but, again as discussed in Section 2.2, the mixing angle in the µτ sector is

insensitive to these charges and is determined primarily by Q5
µ,τ .

At first sight this charge structure seems to offer an immediate explanation for the difference

between large mixing angle observed in atmospheric neutrino mixing and the small quark mixing

angles. This is because the former is determined by Q5
µ,τ while the corresponding quark mixing

matrix element, Vcb, is determined by Q10
i . However the main difficulty in using this freedom

to describe both mixings arises from the associated correlations between the eigenvalues of the

charged lepton and the down quark mass matrices due to structure (ii) above. Indeed, if the

eigenvalues of the down mass matrix (with expansion parameter e) are given by a sequence

1, e, ek the eigenvalues for the leptons (with expansion parameter ε̃) are 1, ε̃, ε̃k. The down

quark masses are well described by the choice e ' ε2 ' 0.04 and k = 2. while for the leptons

the hierarchies are well described by ε̃ ' ε̄ ' 0.2 and k = 5. This is clearly inconsistent with

the pattern coming from the family symmetry which requires the same k in the down quark

and lepton sectors.

One way to reconcile the two forms for the mass matrix, originally advocated by Georgi and

Jarlskog [29], is to have different Yukawa couplings in the quark and lepton sectors. These

couplings are determined by the underlying SU(5) gauge group. If the mass comes from the

coupling to a 5 of Higgs then mdi
= mli while if the mass comes from the coupling to a 45 of

Higgs then mdi
= 3mli .The observed hierarchy for the lepton masses is well described by the

eigenvalues 1, 3ε̄2, ε̄4/3. Georgi and Jarlskog achieved this by restricting the mass matrices by
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family symmetries to have the form

Md =

 0 a′ < H5 > 0

a < H5 > c < H45 > 0

0 0 b < H5 >

 (30)

M` =

 0 a′ < H5 > 0

a < H5 > 3c < H45 > 0

0 0 b < H5 >


While this gives an acceptable pattern of masses it clearly does not give the large mixing angle

in the µτ sector. Here we will determine whether it is possible in more general schemes. To

do so, we look explicitly at the forms of the matrices. Given that the top quark is very heavy

it is reasonable to assume that it is given by an O(1) renormalisable contribution. Then, the

up-quark mass matrix is specified to be:

Mu ∝

 ε|2x| ε|x+b| ε|x|

ε|x+b| ε|2b| ε|b|

ε|x| ε|b| 1

 (31)

where x = Q10
1 −Q10

3 and b = Q10
2 −Q10

3 . Then mc

mt
= e|2b| and e|b| ≈ 0.045 gives a good fit. The

contribution of the up sector to Vcb is given by V up
cb = e|b| = 0.045.

What about the light up-quark hierarchies? We have

mu

mc

= max(
e|x+b|

e|2b| ,
e|x|

e|b|
), (32)

indicating that either

e |x+b|−2|b| = O(10−6) (33)

or

e|x|−|b| = O(10−6) (34)

We now pass to the down-quark and charged lepton hierarchies. We consider the case that the

(3,3) element of the quark and lepton mass matrices is allowed by the family symmetry and

the difference between the top and the bottom quark masses is largely due to tanβ ≡< H1 >

/ < H2 > being large. In this case the charge of H2 is fixed to be the same as of H1. Then, the

down quark and charged lepton textures have the form :

M` ∝ ε̃|Q
5
3−Q10

3 |

 ε̃|x+y| ε̃|y+b| ε̃|y|

ε̃|x+a| ε̃|a+b| ε̃|a|

ε̃|x| ε̃|b| 1

 , Mdown ∝ ε̄|Q
5
3−Q10

3

 ε̄|x+y| ε̄|x+a| ε̄|x|

ε̄|y+b| ε̄|a+b| ε̄|b|

ε̄|y| ε̄|a| 1

 (35)
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where a = Q5
2 −Q5

3 and y = Q5
2 −Q5

3.

From the above matrices, we see that the eigenvalues for the lepton mass matrix are

1, ε̃|a+b|, max(ε̃|x+y|,
ε̃|x+a|ε̃|y+b|

ε̃|a|ε̃|b|
), (36)

while for the down quarks

1, ε̄|a+b|, max(ε̄|x+y|,
ε̄|x+a|ε̄|y+b|

ε̄|a|ε̄|b|
) (37)

Clearly, irrespective of the choice of expansion parameters, this form will not simultaneously

generate the correct ratios for down quarks and leptons without requiring the lepton Yukawa

couplings are different from the quark Yukawa couplings. Following the suggestion of Georgi

and Jarlskog we assume the Higgs responsible for the (2,2) entry is a 45 representation of SU(5).

This generates a relative factor of 3 in the (22) entry of the lepton mass matrix. Then provided

that the (11) entry is smaller than the (12) entry, the smallest eigenvalue is suppressed by a

factor of 3. For this to occur, we need: xy > 0, while |y + b| + |x + a| − |a| − |b| has to be

smaller than x + y.

Can we reconcile these constraints with an acceptable pattern of mixing angles? Let us first

consider the most predictive case which has texture zeros in the (1, 1) and (1, 3) positions (see

Section 4 and ref. [15]). In this case the left-handed quarks have charges −4, 1, 0 and V 12
CKM

has to arise from the down sector. If we want near-maximal lepton mixing, the two heavier

right-handed down charges (which are the same as those of the two heavier left-handed lepton

charges respectively) have to be zero. In this case, the second generation left-handed quark

charge, |α2| = 1, give an unacceptably large ms/mb.

To obtain the correct ms/mb for the case of maximal lepton mixing we must give up the texture

zero structure and choose |α2| = 2 and |α3| = 0. Then, to obtain the correct (12)-quark mixing

from the down sector (note that to get such a large mixing from the up sector is more difficult,

as it would lead to a large up-quark mass), we need |α1| = 3. What does this imply for Mu?

For α1 = 3, the mass of the up-quark is given by

mup

mc
≈ Mu(1, 1)−M2

u(1, 2)/Mu(2, 2)

Mu(2, 2)
≈ O(ε6 − ε6) (38)

where now ε = 0.23 (this is in order to obtain the correct charm mass, for our choice |α2| = 2).

Thus we see that there must be a cancellation between the two terms, or the introduction of

small coefficients to obtain the correct ratio for these masses.

Let us now go back to the down mass matrix. The only charge undetermined is that for dc
1.

Fixing this to +1, gives the correct mass for the down quark.
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The obtained mass matrices are:

Mu

mt
=

 ε̄6 ε̄5 ε̄3

ε̄5 ε̄4 ε̄2

ε̄3 ε̄2 1

 ,
Mdown

mb
=

 ε̄4 ε̄3 ε̄3

ε̄3 ε̄2 ε̄2

ε̄ 1 1

 ,
M`

mτ
=

 ε̄4 ε̄3 ε̄

ε̄3 ε̄2 1

ε̄3 ε̄2 1

 , (39)

This is the choice of charges that appears in [30] (with the exception of the down and lepton

charges of the first generation). To summarise, we see that within the framework of SU(5),

viable solutions only exist provided (c.f. eq.(38) ) the O(1) coefficients have a special form

not guaranteed by the Abelian symmetry applied to the light fields alone (c.f the discussion in

Section 3.1). Since here we are concerned to explore how much of the fermion mass patterns can

be generated by the Abelian symmetry alone, we will not discuss these SU(5) × U(1) models

further.

3.3 Flipped SU(5)× U(1)

In the case of the flipped SU(5), the fields Qi, d
c
i and νc

i belong to 10 of SU(5), while uc
i and

Li belong to a 5. Finally the ec
i fields belong to singlet representations of SU(5).

The above assignment, implies that the down quark mass matrices are symmetric, and therefore

they are expected to have the form presented in [15]. Then we obtain viable hierarchies by

fixing the down-quark charges to ie 4,−1, 0 and the expansion parameter in the down mass

matrix to be ε̄ = 0.23.

Mdown ∝

 ε̄8 ε̄3 ε̄4

ε̄3 ε̄2 ε̄

ε̄4 ε̄ 1

 (40)

Since the charge conjugate of the right-handed neutrinos have the same charge as the down

quarks the Majorana mass matrix will be constrained by this charge assignment. For example,

for a zero Σ charge for the Higgs generating this mass term, νR
i νR

j Σ, the Majorana mass matrix

has the same form as eq.(40) although with a different expansion parameter. Moreover, due to

the above charge assignments, the Dirac neutrino mass matrix is the transpose of the up-quark

mass matrix.

The structure of the up-quark mass matrix will depend on the charges of the right-handed

quarks. However as these are the same with the charges of the left-handed leptons the mass

matrix will be constrained by the need to generate large mixing for atmospheric neutrinos.

Assigning the left-handed leptons charges y, x and 0, and the right-handed leptons charges a, b

and 0 we see that maximal (2-3) mixing requires x = 0. 5 Then:

5Acceptable solutions may also be generated for x = ±1/2 which gives large but non-maximal mixing. We
discuss an example of this in detail later.
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M` ∝

 ε̄|a+y| ε̄|b+y| ε̄|y|

ε̄|a| ε̄|b| 1

ε̄|a| ε̄|b| 1

 (41)

The lepton eigenvalues are of order 1, ε̄|b| and max(ε̄|a+y|, ε̄|a| · ε̄|b+y|/ε̄|b|). Fitting me/mµ con-

strains the combined charges a, y and b for a given choice of the expansion parameter.

Now, we are ready to go to the up-quark mass matrix: Its form, for x = 0, is:

Mup ∝

 ε|−4+y| ε4 ε4

ε|1+y| ε ε

ε|y| 1 1

 (42)

In order to obtain the correct value for mc/m we need to make the assignment ε = ε̄4 = 0.234

(where ε is the up-matrix expansion parameter and ε̄ the down-quark and the charged lepton

one). Note that this is a direct outcome of the requirement to obtain maximal (2-3) charged

lepton mixing, which constrained x to zero. Finally we can chose y so as to get the correct

mu/mc ratio. An obvious choice is to take y = 2 (remember that ε is now ε̄4).

Turning to the implications for the mixing angles we see that the contribution from the up quark

sector to Vcb is very small. Thus from eq.(40) we see that the expectation is that Vcb '
√

ms/mb.

This is too large and requires a very small coefficient in the (2,3) entry of eq.(40). For this

reason, we consider that this model seems less promising in the framework of a single U(1)

symmetry6.

3.4 SU(3)c ⊗ SU(3)L ⊗ SU(3)R ⊗ U(1)

This is a particular GUT group which readily emerges from an underlying string theory with

an intrinsic E(6) symmetry. In it a single family of quarks and leptons are accommodated in

a (3, 3, 1) ⊕ (3̄, 1, 3̄) ⊕ (1, 3, 3̄) under SU(3)c ⊗ SU(3)L ⊗ SU(3)R. The left- and right-handed

quarks belong to (3, 3, 1) and (3̄, 1, 3̄) respectively and thus their U(1) charges are not related.

On the other hand the left handed and (charge conjugate) right handed leptons belong to the

same (1, 3, 3̄) representation and hence must have the same U(1) charge. Thus, the lepton mass

matrices have to be symmetric.

This freedom allows us to construct fully realistic mass matrices. Let us start from the lepton

mass matrices. Taking the charges

bi = ci = di = (−7

2
,
1

2
, 0)

6Note that in realistic models with more U(1) groups coming from the string, solutions have been found in
[31] .
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bi = ci = di = (
5

2
,
1

2
, 0)

bi = ci = di = (3, 0, 0) (43)

leads to the three possible charged lepton matrices

M`

mτ
=

 ε̄7 ε̄3 ε̄7/2

ε̄3 ε̄ ε̄1/2

ε̄7/2 ε̄1/2 1

 ,
M`

mτ
=

 ε̄5 ε̄3 ε̄5/2

ε̄3 ε̄ ε̄1/2

ε̄5/2 ε̄1/2 1

 ,
M`

mτ
=

 ε̄6 ε̄3 ε̄3

ε̄3 1 1

ε̄3 1 1

 , (44)

We see that the third matrix leads to maximal mixing, however it requires an accurate cancel-

lation in the (2,3) sector in order to get the correct mµ/mτ . On the other hand, the other two

matrices, lead to natural lepton hierarchies and predict large but non-maximal lepton mixing.

We study this case in detail in section 4.

What about the quark mass matrices? The choice of U(1) charges given by

αi = (3, 2, 0)

βi = γi = (1, 0, 0) (45)

leads to the mass matrices

Mu

mt
=

 ε4 ε3 ε3

ε3 ε2 ε2

ε 1 1

 ,
Mdown

mb
=

 ε̄4 ε̄3 ε̄3

ε̄3 ε̄2 ε̄2

ε̄ 1 1


For ε = ε̄2 we obtain viable quark hierarchies. The VCKM mixing is dominated by the contri-

bution from the down quark sector. However the structure of charges chosen here means that

Vcb ' ms/mb. This is in good agreement with the measured value.

The structure of the neutrino mass matrices is fixed because the left and right handed neutrino

charges are determined because they belong to the same (1, 3, 3̄) representation as the charged

leptons. Both the Dirac and Majorana mass matrices have a symmetric form with the Dirac

mass matrix of the same form as the charged leptons but with a different expansion parameter.

This case is discussed in detail in the next section where we consider symmetric mass matrices

in general. The first two forms of eq.(44) lead to large mixing in the atmospheric neutrino

sector and generate solar neutrino oscillation with parameters in the small mixing angle range

of eq.(2).

3.5 Left-Right symmetric models.

Another gauge structure that has been widely explored is one which is left-right symmetric

[32]. The simplest possibility is SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L ⊗ U(1) with a discrete
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Qi uc
i dc

i Li ec
i νc

i H2 H1

U(1)FD αi αi αi bi bi bi −2α3 −2α3

Table 2: Symmetric U(1)FD charges

Z2 symmetry interchanging the two SU(2) factors and their associated quark and lepton repre-

sentations. This is readily generalised to larger groups. For example, the case considered above

SU(3)c ⊗ SU(3)L ⊗ SU(3)R ⊗ U(1) may similarly be rendered left-right symmetric through

a Z2 symmetry interchanging the two SU(3) factors. Such a structure is found in the three

generation string theories resulting from compactifying on a specific Calabi-Yau manifold [33].

A partial unification based on SU(2)L ⊗ SU(2)R ⊗ SU(4)C was proposed by Pati and Salam

[34].

In these models the U(1) family charges are strongly constrained because the Z2 symmetry

requires that the U(1) charges of the left- and right- handed fields be the same. As a result

the mass matrices will be symmetric. The left- right- symmetry together with the SU(2)L

symmetry requires that the left- and right-handed components of up and down quarks of each

generation should have the same charge and the left- and right-handed components of the

charged leptons and neutrinos of each generation should have also have the same charge. This

means that only six U(1) charges need to be specified to completely fix the model. Given

the interest in left- right- symmetric models and the highly constrained nature of the U(1)

we think it of some interest to explore this possibility in some detail. As we shall discuss

the fully left- right- symmetric models with symmetric quark, lepton and neutrino masses, are

in remarkably good agreement with the measured values of masses and mixing angles, with

texture zeros leading to definite relations between masses and mixing angles in good agreement

with experiment. However as noted above, particularly in Section 3.4, it may be that only

a sub-sector has a symmetric mass matrix. To deal with all these cases in the next Section

we turn to a detailed discussion of the implications of an Abelian family symmetry leading to

symmetric mass matrices.

4 Symmetric textures and neutrino masses

4.1 Quark Masses

Here we consider in more detail the implications of the symmetric charge assignments discussed

in the last section. Although we are primarily interested in neutrino masses, in order to answer

the question whether the neutrino masses and mixings fit into the pattern of quark and lepton

masses, it is necessary to discuss the latter first. We start with an Abelian family symmetry
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with the most general symmetric charge assignments given in Table 2. Following the discussion

of Section 2.1 we find mass matrices of the form

Mu

mt

≈

 h11ρ11ε
|2+6a|
a h12ρ12ε

|3a|
b h13ρ13ε

|1+3a|
a

h21ρ21ε
|3a|
b h22ρ22ε

2 h23ρ23ε
1

h31ρ31ε
|1+3a|
a h32ρ32ε

1 h33

 (46)

Md

mb
≈

 k11σ11ε̄a
|2+6a| k12σ12ε̄b

|3a| k13σ13ε̄a
|1+3a|

k21σ21ε̄b
|3a| k22σ22ε̄

2 k23σ23ε̄
1

k31σ31ε̄a
|1+3a| k32σ32ε̄

1 k33

 (47)

where ε̄ = (<θ>
M1

)|α2−α1|, ε = (<θ>
M2

)|α2−α1|, and a = (2α1 − α2 − α3)/3(α2 − α1), hij , kij are

Yukawa couplings all assumed to be of O(1) and ρ, σ are related to Yukawa couplings in the

Higgs sector (again we expect them to be O(1)) and describe Higgs or quark mixing in the way

discussed below.

It is straightforward now to see how texture zeros occur. For −3a > 1 εa = εb = ε and

ε̄a = ε̄b = ε̄. In this case it is easy to check that there are no texture zeros because all matrix

elements contribute at leading order to the masses and mixing angles. For 1 > −3a > 0,

εa, ε̄a change and are given by ε̄a = (<θ̄>
M1

)|α2−α1|, εa = (<θ̄>
M2

)|α2−α1|. In this case texture

zeros in the (1,1) and (1,3) positions automatically appear for small < θ̄ > /Mi. However the

(1,2) matrix element is too large (cf. eqs. (46),(47). For a > 0 however ε̄a,b = (<θ̄>
M1

)|α2−α1|,
εa,b = (<θ̄>

M2
)|α2−α1|, the texture zeros in the (1,1) and (1,3) positions persist, and the (1,2)

matrix element can be of the correct magnitude.

Thus we see that the simplest possibility of an additional U(1) gauge family symmetry requires

texture zeros in the phenomenologically desirable positions for a large range of the single rele-

vant free parameter, a. In addition it generates structure for the other matrix elements which

can duplicate the required hierarchical structure of masses and mixing angles. To illustrate

the mechanism we consider Froggatt-Nielsen mixing in the Higgs sector masses along the lines

mapped out in Section 2.2. After mixing the light Higgs states are given by H2
33 +

∑
ρijH

2
ijε

nij

a, ,b

and H1
33+

∑
σijH

1
ij ε̄

nij

a, ,b where the powers nij are those appearing in eq.(47) and ρ, σ are related

to Yukawa couplings in the Higgs sector. Similarly mixing in the quark sector can also generate

the elements of eq.(47).

As discussed above, for a > 0, there are two approximate texture zeros in the (1,1) and (1,3),

(3,1) positions. These give rise to excellent predictions for two combinations of the CKM

matrix. The magnitude of the remaining matrix elements is sensitive to the magnitude of a

and the values of the expansion parameters. Then choosing a = 1 the remaining non-zero

entries have magnitude in excellent agreement with the measured values. From eqs. (46) and

(47), we see that to a good approximation we have the relation [15]
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ε = ε̄2 (48)

corresponding to the choice M2 > M1.

Such a choice gives an excellent description of quark masses and mixing angles, after allowing

for the unknown coefficients of O(1). It is instructive to determine the magnitude needed for

these coefficients to fit all measured masses and mixings. This is clearly an under-determined

problem, so the best we can do is to give an illustrative example. The choice

Mu

mt

≈

 0 ε3 0

ε3 iε2 ε

0 ε 1



Md

mb

≈

 0 ε3 0

ε3 ε2 1
2
ε

0 1
2
ε 1

 (49)

generates the correct masses and mixing angles with ε = 0.05, ε = 0.18. This requires a

coefficient 1/2 in the (2, 3) entry, necessary to give the value of Vcb = 0.04. The latter is

anomalously small due to a cancellation between the contributions of the up and the down quark

sectors. Such a cancellation may be expected as there is an approximate SU(2)R symmetry

in the magnitude of the matrix elements following from the very symmetric choice of family

charges and in the limit SU(2)R is exact Vcb vanishes.

4.2 Lepton Masses

Now that we have a theory of quark masses it is possible systematically to address the original

question whether the large mixing angle found in the neutrino sector is consistent with this

theory or whether it requires completely new structure [17, 18, 19].

4.2.1 Charged leptons

The charged lepton masses and mixings are determined in a similar way to that of the quarks.

Requiring mb = mτ at unification, sets α3 = b3 and then the charged lepton mass matrix is

M`

mτ
≈

 ε̄|2+6a−2b| ε̄|3a| ε̄|1+3a−b|

ε̄|3a| ε̄|2(1−b)| ε̄|1−b|

ε̄|1+3a−b| ε̄|1−b| 1

 (50)

where b = (α2 − b2)/(α2 − α3). A solution with b = 0 leads to lepton hierarchies similar to

those for the quarks. However in this case the expectation is that ms ' mµ and md ' me at
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the unification scale, in conflict with experiment. In this case we must rely on large coefficients

to generate an acceptable mass matrix structure. If instead we require that the explanation of

the mass structure of the light generations results from the choice of lepton family charges, i.e.

through the choice of b, one is led to take β ≡ 1− b = ±1/27.

Let us first comment on the case with β = −1/2. This gives the lepton texture [15]

M`

mτ

=

 ε̄5 ε̄3 ε̄5/2

ε̄3 ε̄ ε̄1/2

ε̄5/2 ε̄1/2 1

 (51)

On the other hand β = 1/2, leads to [17, 18]

M`

mτ

=

 ε̄7 ε̄3 ε̄7/2

ε̄3 ε̄ ε̄1/2

ε̄7/2 ε̄1/2 1

 (52)

As we see, both types of textures can give correct predictions for lepton masses (note that when

estimating the lightest eigenvalue we have not allowed for cancellations in eq.(51) between the

contributions from the (1,1), (2,2) and (1,2), (2,1) elements. Due to the Yukawa couplings of

O(1) we do not expect such a cancellation to occur.).

4.2.2 Neutrinos

We may now determine the predictions of the flavour symmetry for neutrino masses. Due to

the see-saw mechanism we generate quite naturally light neutrino masses. In this framework,

the light Majorana neutrino masses are given by the generalisation of eq.(11)

meff = MD
ν · (MM

νR
)−1 · (MD

ν )T (53)

where MD
ν and MM

νR
are the 3× 3 Dirac and Majorana mass matrices respectively.

How do we determine these mass matrices? The Dirac mass matrix is actually fixed by the

symmetries of the model. Indeed, SU(2)L fixes the U(1)FD charge of the left-handed neutrino

states to be the same as the charged leptons, and then the left-right symmetry fixes the charges

of the right-handed neutrinos as given in Table 4.1. Thus the neutrino Dirac mass is given by

MD
ν ∝

 ε|2+6a−2b| ε|3a| ε|1+3a−b|

ε|3a| ε|2(1−b)| ε|1−b|

ε|1+3a−b| ε|1−b| 1

 (54)

7In some cases, the textures with half-integer b have been simplified, by imposing a residual Z2

discrete gauge symmetry after the U(1) breaking, by which the electron and muon fields transform by
(−1). Then, entries raised in a half-integer power vanish. However this is not a necessary condition: in
general, half-integer entries remain present at low energies and may have interesting phenomenological
implications.
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In unified or partially unified models the large mass scale associated with Froggatt-Nielsen

mixing is the same as the one for the up-quarks and so in eq.(54) we have used the up quark

expansion parameter.

We turn now to the Majorana masses for the right-handed neutrinos. Such masses arise from

terms of the form νRνRΣ where Σ is a SU(3)⊗ SU(2)⊗ U(1) invariant Higgs scalar field with

IW = 0 and νR is a right-handed neutrino. Since we do not know the charge of Σ, we have

to consider all possible choices. This allows us to “rotate” the larger coupling to any of the

entries of the heavy Majorana mass matrix, generating a discrete spectrum of possible forms

[17, 18]. For example, if the Σ charge is the same as that of the H1,2 doublet Higgs charges,

the larger element of Mν will be in the (3,3) entry. The rest of the terms will be generated as

before through the U(1)FD breaking by < θ > and < θ̄ >.

Among the cases that naturally generate the correct lepton hierarchies those that are also of

interest for Super-Kamiokande are mainly β ≡ 1 − b = ±1/2 which lead to large (2-3) lepton

mixing 8. Restricting the discussion to these cases the general forms for the heavy Majorana

mass textures (allowing for the various choices of the Σ charge), appear in Table 3. The form

of meff , its eigenvalues and the mixing matrices for β = 1/2, are presented in Table 4 and for

β = −1/2 in Table 5. Here, m̃eff = mD
ν,diag ·RT

D · (MR
ν )−1 ·RD ·mD

ν,diag, where RD is the neutrino

Dirac mixing matrix. This combination has been chosen because it contains all the information

necessary to determine the mass eigenvalues and also exhibits the contribution to the mixing

angles that is sensitive to the mixing in the Majorana mass matrix. The full effective Majorana

mass matrix is then given by meff = RD.m̃eff .R
T
D. A word of caution is in order here. The

mass hierarchies are quite sensitive to the order unity coefficients that are not be predicted by

the U(1) symmetry due to the fact that the inverse of the Majorana mass matrix must be taken

and the product of several mass matrices are involved. Indeed a small difference in a coefficient

in the neutrino Dirac mass matrix, may lead to a large difference in the eigenvalues of meff .

Thus the estimate given in Tables 4 and 5 for meff should be viewed as only a rough estimate.

On the other hand the sensitivity of the mixing angles to the O(1) coefficients is much less

because, as discussed above, it largely comes from the Dirac mass matrix alone. Even with

this cautionary word we see from Tables 4 and 5 we see that in all cases large mass hierarchies

between the neutrino masses are expected to arise. The lightest neutrino eigenvalue is very

suppressed compared to the other two.

4.2.3 Neutrino Masses

Given the results of Tables 4 and 5 we may now determine the expectation for the magnitude

of the neutrino masses. As discussed in Section 1, the double see-saw gives the largest mass

8We discussed the first case in [18].
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 ε̄2|3α+β| ε̄3|α| ε̄|3α+β|

ε̄|3α| ε̄2|β| ε̄|β|

ε̄|3α+β| ε̄|β| 1


 ε̄3|2α+β| ε̄|3α+β| ε̄|3α+2β|

ε̄|3α+β| ε̄|β| 1
ε̄|3α+2β| 1 ε̄|β|


 ε̄2|3α+2β| ε̄|3α+2β| ε̄3|α+β|

ε̄|3α+2β| 1 ε̄|β|

ε̄3|α+β| ε̄|β| ε̄2|β|


 ε̄|3α+β| ε̄|β| 1

ε̄|β| ε̄3|α+β| ε̄3|α+2β|

1 ε̄3|α+2β| ε̄|3α+β|


 1 ε̄|3α+2β| ε̄|3α+β|

ε̄|3α+2β| ε̄2|3α+2β| ε̄3|2α+β|

ε̄|3α+β| ε̄3|2α+β| ε̄2|3α+β|


 ε̄|3α+2β| 1 ε̄|β|

1 ε̄|3α+2β| ε̄|3α+β|

ε̄|β| ε̄|3α+β| ε̄|3α|


Table 3: General forms of heavy Majorana mass matrix textures. Interesting textures arise for

α = 1, β ± 1/2.

m̃eff
ν meff,Diag

ν meff
ν Reff

ν

1

 e30 e18 e15

e18 e10 e5

e15 e5 1


 e26

e10

1


 e26 e15 e13

e15 e4 e2

e13 e2 1


 1 e11 −e13

−e11 1 e2

e13 −e2 1


2

 e25 e17 e12

e17 e9 e4

e12 e4 e−1


 e25

e9

e−1


 e25 e14 e12

e14 e3 e

e12 e e−1


 1 e11 −e13

−e11 1 e2

e13 −e2 1


3

 e24 e16 e11

e16 e8 e3

e11 e3 e−2


 e24

e8

e−2


 e24 e13 e11

e13 e2 1
e11 1 e−2


 1 e11 −e13

−e11 1 e2

e13 −e2 1


4

 e47 e23 e20

e23 e−1 e−4

e20 e−4 e−7


 e33

e13

e−7


 e15 e6 e4

e6 e−3 e−5

e4 e−5 e−7


 1 e9 −e11

−e9 1 e2

e11 −e2 1


5

 e40 e16 e13

e16 e−8 e−11

e13 e−11 e−14


 e40

e−8

e−14


 e8 e−1 e−3

e−1 e−10 e−12

e−3 e−12 e−14


 1 e9 −e7

−e9 1 e2

e7 −e2 1


6

 e48 e24 e21

e24 e4 e−1

e21 e−1 e−6


 e32

e16

e−6


 e20 e9 e7

e9 e−2 e−4

e7 e−4 e−6


 1 e11 −e13

−e11 1 e2

e13 −e2 1


Table 4: Masses and mixing angles for the light neutrino components, and for b = 1/2.
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m̃eff
ν meff,Diag

ν meff
ν Reff

ν

1

 e30 e18 e15

e18 e6 e3

e15 e3 1


 e30

e6

1


 e20 e12 e10

e12 e4 e2

e10 e2 1


 1 e8 −e10

−e8 1 e2

e10 −e2 1


2

 e31 e19 e16

e19 e7 e4

e16 e4 e


 e31

e7

e


 e21 e13 e11

e13 e5 e3

e11 e3 e


 1 e8 −e10

−e8 1 e2

e10 −e2 1


3

 e36 e22 e17

e22 e8 e5

e17 e5 e2


 e32

e8

e2


 e22 e14 e12

e14 e6 e4

e12 e4 e2


 1 e8 −e10

−e8 1 e2

e10 −e2 1


4

 e39 e23 e20

e23 e7 e4

e20 e4 e


 e35

e11

e


 e21 e13 e11

e13 e5 e3

e11 e3 e


 1 e8 −e10

−e8 1 e2

e10 −e2 1


5

 e40 e20 e15

e20 1 e−5

e15 e−5 e−10


 e40

1
e−10


 e10 e2 1

e2 e−6 e−8

1 e−8 e−10


 1 e8 −e10

−e8 1 e2

e10 −e2 1


6

 e44 e24 e19

e24 e4 e−1

e19 e−1 e−6


 e36

e12

e−6


 e14 e6 e4

e6 e−2 e−4

e4 e−4 e−6


 1 e8 −e10

−e8 1 e2

e10 −e2 1


Table 5: Masses and mixing angles for the light neutrino components, and for b = −1/2.
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in the range required to explain the atmospheric neutrino oscillation. Given that the Abelian

family symmetry fixes the ratio of masses can we simultaneously accommodate atmospheric and

solar neutrino oscillations? Remarkably this proves to be easy for 4 of the 12 cases of Tables

4 and 5 lead to the second heaviest neutrino in the range needed to explain solar neutrino

oscillations. In case 5 of Table 4 and cases 1, 2 and 3 of Table 5 we see that the ratio of the two

heaviest eigenvalue is O(e6) ' 10−2. Thus if the heaviest neutrino has mass 0.1eV , consistent

with atmospheric neutrino oscillation, the next neutrino will have mass O(10−3 eV). Given the

uncertainties due to the coefficients of O(1), this is certainly in the range needed to generate

solar neutrino oscillations via the small angle MSW solution, eq.(3).

4.2.4 Lepton Mixing Angles

What about the mixing angles associated with atmospheric and solar oscillations? The former

is governed by the (2 − 3) mixing angle. From Tables 4 and 5 we see the contribution to this

mixing angle from the neutrino sector is always of O(e2 = ε). Further the contribution to this

from m̃eff is only of O(e5) and so the dominant contribution is from the rotation RD needed

to diagonalise the Dirac neutrino mass matrix. This is determined entirely by the left-handed

neutrino charge (which is the same as the associated charged lepton). The contribution to the

(2, 3) mixing angle from the charged lepton sector may be read from eq.(51) and eq.(52). It

is of O(e =
√

ε) and thus is larger than the contribution from the neutrino matrix. Whether

these two contributions are of the same sign depends on the phases of the mass matrix elements

which is not determined by the Abelian family symmetry. In the case that the two sources of

mixing act constructively, a (2−3) mixing with sinθ up to
√

ε+ ε ≈ 0.7 is obtained. Given the

uncertainties of the coefficients of O(1) one must conclude this is cconsistent with the present

range observed in atmospheric neutrino oscillation, eq.(2)! The conclusion is that the mixing

angles in the lepton sector are much larger than in the quark sector results from the need to

choose different family charges to account for the relative enhancement observed for the ratio

mµ/ms compared to mτ/mb. It is this fact that allows the large mixing observed in atmospheric

neutrino oscillation to be accommodated with the quark masses and mixings within the context

of a very simple Abelian family symmetry.

Remarkably the family symmetry also leads to an excellent prediction for the mixing angle in

the solar neutrino sector. We observed in the previous section that four of the twelve possible

structures of Tables 4 and 5 give the second heaviest neutrino in the mass range required to

explain the solar neutrino deficit. We may see from eq.(50) and Tables 4 and 5 that the (1− 2)

mixing relevant to the solar neutrino oscillations is dominated by the mixing in the charged

lepton sector and is of O(ε2 ' 0.03). This is in excellent agreement with the range for the small

angle MSW solution, eq.(3), which is the one selected by the neutrino mass estimates given

above.
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4.2.5 Renormalisation group stability

Let us finally make some comments on the stability of our solutions with respect to radiative

corrections. Note that for large tanβ, renormalisation group effects tend to amplify the (2-3)

mixing angle in meff . The running of the mixing angle is given by [35]

16π2 d

dt
sin2 2θ23 = −2 sin2 2θ23(1− sin2 2θ23)(Y

2
E3 − Y 2

E2)
m33

eff + m22
eff

m33
eff −m22

eff

(55)

Due to the effect of the τ Yukawa coupling, m33
eff decreases more rapidly than m22

eff , so if at the

GUT scale m22
eff < m33

eff , the mixing becomes larger. This can be easily shown by semi-analytic

equations [31]. In fact, in solutions with m22
eff close to m33

eff , we can end up either amplifying

or destroying the mixing at the GUT scale (the later would occur if m22
eff becomes equal to

m33
eff at an intermediate scale). However, in the case discussed here, we get large hierarchies

between m22
eff and m33

eff due to the splitting in the Dirac mass matrices. This means that our

solutions are stable under the RGE runs, even for large tanβ (for small tanβ the running of hτ

is so slow, that unless m22
eff and m33

eff are very close to start with, they never become equal).

5 Summary and Conclusions

The measurement of neutrino oscillations interpreted as evidence for non-zero neutrino mass

has the dramatic implication that the Standard Model in its original form is dead. However

the simplest modification needed to allow for neutrino masses, the introduction of right-handed

neutrinos, is relatively modest and has the aesthetic advantage of restoring the symmetry be-

tween the left-handed and right-handed multiplet structure. Moreover, the see-saw mechanism

offers a very plausible explanation for the smallness of the neutrino masses, with the heaviest

neutrino quite naturally in the range needed to explain the atmospheric neutrino oscillation in

the case a double see-saw is operative.

The Standard Model thus extended with three right-handed neutrinos is able to generate both

atmospheric and solar neutrino oscillations. Remarkably, the neutrino masses and mixing angles

needed fit quite comfortably with a theory of quark and lepton masses based on an Abelian

family symmetry with left- right- symmetric charges, spontaneously broken at a very high mass

scale close to the gauge unification scale. In this model the reason the mixing angles are very

large in the (2−3) lepton sector and less so in the (2−3) quark sector may be traced to the fact

that the ratio mµ/ms is much larger than that of mτ/mb. To fit this, requires a choice of the

lepton family charges which in turn gives rise to the expectation of large mixing angles. The

size of the lepton mixing in the (2− 3) sector relative to that in the quark sector (generating

Vcb) may be further enhanced if in the quark sector there is a cancellation between the rotations

needed in the up and the down quark matrices, while in the lepton sector the up and down
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mixings add. This is certainly possible within the framework of an Abelian family symmetry,

but is not guaranteed because the Abelian family symmetry does not determine the relative

phases of these terms. The family symmetry does determine the order of magnitude of the

neutrino mass differences, and readily generates a mass consistent with the small angle MSW

solution to solar neutrino oscillations. Again it is remarkable that the associated expectation

for the mixing angle is in the correct range to accommodate the small angle solution.

While the left- right- symmetric models are of particular interest because the U(1) family

charges are so strongly constrained, there are further possibilities of interest involving a com-

bination of the family symmetry with an extension of the Standard model gauge group. We

explored various possibilities to see if the large mixing angle observed in atmospheric neutrino

oscillation was compatible with the quark and charged lepton masses and mixings without

requiring large coefficients or cancellation between terms unrelated by the Abelian symmetry.

The most interesting possibility we identified involved the gauge group SU(3)3. This has the

merit that the (small) value of Vcb is not related to the large neutrino mixing angle. In this

the freedom to choose different left- and right- handed charges for the down quarks allows the

construction of a model with Vcb ≈ ms/mb. However the left- and right-handed leptons belong

to the same representation of SU(3)3 and this leads to the same symmetric lepton mass matri-

ces as in the solutions found in the fully left-right symmetric case, thus maintaining the good

prediction for large atmospheric and small solar neutrino mixing.

We find it quite encouraging that the simplest possible family symmetry is able to correlate so

many different features of quark, charged lepton and now neutrino masses and mixings. Due

to the unknown Yukawa couplings of O(1) it is difficult to make precise predictions (apart from

those arising from texture zeros) and this makes the scheme difficult to establish definitively.

However there are general characteristic features in the neutrino sector that will be tested

in the future. For example, although the mixing is expected to be large in the (2, 3) sector,

it is quite unlikely to be maximal. Also, if the indication for neutrino masses coming from

the LSND collaboration proves correct, it will be necessary to add at least a further sterile

neutrino component. The information on neutrino masses and mixing is very important in

testing theories of fermion mass and we look forward to the extensive new data in this area

that will be forthcoming with the new generation of detectors.
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