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Abstract

We search, in the context of extra-dimension scenarios, for the possible existence
of brane fluctuations, called branons. Events with a single photon or a single Z-
boson and missing energy and momentum collected with the L3 detector in e+e−

collisions at centre-of-mass energies
√

s = 189 − 209 GeV are analysed. No excess
over the Standard Model expectations is found and a lower limit at 95% confidence
level of 103 GeV is derived for the mass of branons, for a scenario with small brane
tensions. Alternatively, under the assumption of a light branon, brane tensions
below 180 GeV are excluded.
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1 Introduction

The possible existence of additional space dimensions was suggested by Kaluza and Klein [1]
more than eighty years ago. In the original theory, the fundamental scale of gravitation, MF ,
coincides with the Planck scale, MP ≈ 1019 GeV. Since then, several theories have used this idea
as an alternative way to solve some fundamental problems of physics, particularly those related
with gravitation and the unification of all forces. One of the most attractive models is proposed
in Reference 2. This model assumes the restriction of the dynamics of the Standard Model to a
three-dimensional spatial brane, leaving the gravitation and perhaps some other exotic particles
the freedom to propagate in the extra dimensions. If these extra dimensions have a large size,
MF is of the order of the electroweak scale and the existence of extra dimensions could manifest
at present and future colliders with detection of gravitons, as described by an effective theory
with couplings of order MF .

A different scenario is considered in this Letter. In this approach, the presence of a three-
dimensional brane as an additional physical body in the theory, with its own dynamics, leads
to the appearance of additional degrees of freedom. These manifest as new scalar particles,
π̃, called branons. Branons are associated to brane fluctuations along the extra-dimensions [3]
and are also natural dark-matter candidates [4]. Their dynamics is determined by an effective
theory with couplings of the same order as the brane tension, f .

Searches for gravitons and branons are in a sense complementary [5]. If the brane tension
is above the gravity scale, f ≫ MF , the first evidence for extra dimensions would be the
discovery of gravitons, giving information about the fundamental scale of gravitation and the
characteristics of the extra dimensions. If the brane tension is below the gravity scale, f ≪
MF , then the first signal of extra dimensions would be the discovery of branons, allowing a
measurement of the brane tension scale, the number of branons and their masses [6].

Many experimental results were reported on direct searches for gravitons at LEP [7–9] and
at the TEVATRON [10]. This Letter describes a search for branons in data collected at LEP.
Branons couple to Standard Model particles by pairs, suggesting the study of two production
mechanisms in e+e− collisions: e+e− → π̃π̃γ and e+e− → π̃π̃Z. They proceed via the diagrams
shown in Figure 1. The experimental signature for branon production at LEP is the presence
of either a photon or a Z boson together with missing energy and momentum. This is due to
the two branons which do not interact in the detector and are hence invisible. In the following,
only decays of the Z boson into hadrons are considered. For a given centre-of-mass energy, only
the lighter branons give a significant contribution to the cross sections of the e+e− → π̃π̃γ and
e+e− → π̃π̃Z processes. For simplicity, we will assume a scenario with only one light branon
species of mass M .

2 Data and Monte Carlo Samples

Data collected by the L3 detector [11] at LEP in the years from 1998 through 2000 are consid-
ered. They correspond to an integrated luminosity of about 0.6 fb−1 at centre-of-mass energies,√

s, from 188.6 to 209.2 GeV.
The following Monte Carlo generators are used to simulate Standard Model processes:

KK2f [12] for e+e− → νν̄γ(γ) and e+e− → qq(γ), GGG [13] for e+e− → γγ(γ), BHWIDE [14]
and TEEGG [15] for large- and small-angle Bhabha scattering, respectively, PHOJET [16] and
DIAG36 [17] for hadron and lepton production in two-photon interactions, KORALW [18] for W-
boson pair-production and EXCALIBUR [19] for Z-boson pair-production and other four-fermion
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final states. The predictions of KK2f for the e+e− → νν̄γ(γ) process are checked with the
NUNUGPV [20] generator.

The efficiencies for branon production through the processes e+e− → π̃π̃γ and e+e− →
π̃π̃Z → π̃π̃qq are determined by reweighting Monte Carlo events of the processes e+e− →
νν̄γ(γ) and e+e− → νν̄Z → νν̄qq, respectively, with the differential cross sections of Reference
6. Events from the first process are generated with KK2f and events from the second process
with EXCALIBUR, through W-boson fusion.

The L3 detector response is simulated using the GEANT program [21], which describes effects
of energy loss, multiple scattering and showering in the detector. Time-dependent detector
inefficiencies, as monitored during the data-taking period, are included in the simulation.

3 Search in the e+e−
→ π̃π̃Z → π̃π̃qq channel

The single-Z signature for branon production at LEP is similar to the signature of the associated
production of a Z boson and a graviton which was previously studied in data collected by L3
at

√
s = 188.6 GeV [8]. The events selected for that search are re-analysed in this Letter

to search for branons, and the same analysis procedure is used to select candidate events at√
s = 191.6−209.2 GeV. The integrated luminosities considered for each value of

√
s are listed

in Table 1.
Unbalanced hadronic events with a visible mass compatible with that of the Z boson are

selected. The large background from e+e− → qqγ events with a low-angle high-energy pho-
ton is reduced by requiring the missing momentum vector to point in the detector. Cuts
on event-shape and jet-shape variables are applied to suppress other backgrounds: Z-boson
pair-production with one of the Z bosons decaying into neutrinos and the other into hadrons,
W-boson pair-production with one of the W bosons decaying into hadrons and the other into
a low-angle undetected charged lepton and a neutrino, and single-W production through the
e+e− → Weν process, followed by a hadronic decay of the W boson.

Table 1 summarises the yield of the selection at the different centre-of-mass energies. In
total, 455 events are observed while 470 events are expected from several Standard Model
processes. The dominant background is W-boson pair-production (47%). Other sources of
background are single-W production (25%), Z-boson pair-production (13%) and the e+e− →
qqγ process (12%).

Expectations for a branon signal with M = 0 and f = 40 GeV are also listed in Table 1.
The efficiency to detect such a signal is 55%. Two variables are most sensitive to discriminate
a possible signal from the Standard Model background: the reduced energy of the Z boson,
xZ = EZ/

√
s, and the cosine of its polar angle, cos θZ. The distribution of these variables for

data and Standard Model backgrounds are shown in Figures 2a and 2b. These Figures also
show the predictions in the presence of a branon signal. No excess with respect to the Standard
Model expectations is observed.

4 Search in the e+e−
→ π̃π̃γ channel

Events with a single photon and large missing energy and momentum, selected by L3 at
√

s =
188.6 − 209.2 GeV [7], are re-analysed for the presence of a signal due to the e+e− → π̃π̃γ
process in addition to the Standard Model contributions from the e+e− → νν̄γ(γ) and e+e− →
e+e−γ(γ) processes. A breakdown of the integrated luminosities as a function of

√
s is given in
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Table 2. Two different energy regimes are considered, depending on the value of the transverse
momentum of the photon, pt, relative to the beam energy, Ebeam, and its polar angle, θγ . High-
pt events, 0.04Ebeam < pt < 0.60Ebeam, are selected in both the barrel, | cos θγ | < 0.73, and
endcap, 0.8 < | cos θγ| < 0.97, regions of the electromagnetic calorimeter. The selection of
low-pt events, 0.016Ebeam < pt < 0.04Ebeam, relies on a single-photon energy trigger with a
threshold around 900 MeV which is active only in the barrel region [22].

Table 2 lists the number of observed data events together with the Standard Model ex-
pectations for different values of

√
s. The high-pt analysis selects e+e− → νν̄γ(γ) events with

purity above 99% and efficiency above 80%. In total, 838 events are observed in data while
811 are expected from Standard Model processes. Figures 3a and 3b show the measured dif-
ferential cross sections for the e+e− → νν̄γ(γ) processes as a function of xγ = Eγ/Ebeam, the
fraction of the beam energy carried by the photon and of | cos θγ |. Data obtained by the high-
pt selection are corrected for detector acceptance and integrated over the polar-angle fiducial
region | cos θγ | < 0.97. The measured differential cross sections are in good agreement with the
Standard Model expectations.

The criteria of the low-pt selections are much more stringent in order to be sensitive to
very low photon energies while minimizing the huge e+e− → e+e−γ(γ) component. In total,
543 events are observed in data and 554 are expected from Standard Model processes. The
main contribution is from e+e− → e+e−γ(γ) events and the e+e− → νν̄γ(γ) purity is around
24%. The event selection is described in detail in Reference 7. Figures 4a and 4b compare the
distributions of xγ and | cos θγ| observed in data with the expectations of the Standard Model
processes. A good agreement is observed.

The presence of a branon leads to an increase in the differential cross sections which is a
function of the branon mass M and the brane tension f [6]:

d2σ(e+e− → π̃π̃γ)

dxγd cos θγ

= α
s(s(1 − xγ) − 4M2)2

61440f 8π2

√

1 − 4M2

s(1 − x)

[xγ(3 − 3xγ + 2x2

γ) − x3

γ sin2 θγ +
2(1 − xγ)(1 + (1 − xγ)

2)

xγ sin2 θγ

], (1)

where α is the electromagnetic coupling constant.
Figures 3 and 4 show the typical distortion in the differential cross sections expected in the

presence of a branon signal.

5 Results

Evidence for branon production was found neither in the e+e− → π̃π̃Z → π̃π̃qq nor in the
e+e− → π̃π̃γ channels and the data are interpreted in terms of bounds on the possible produc-
tion of branons. For each centre-of-mass energy, the data and the expectations are compared in
bins of the two-dimensional distributions of xZ vs. cos θZ for the e+e− → π̃π̃Z → π̃π̃qq channel
and of xγ vs. cos θγ for the e+e− → π̃π̃γ channel. Assuming a Poisson probability distribu-
tion for each bin, 95% confidence level exclusion limits are derived according to the method
described in Reference 23. Systematic uncertainties are taken into account in the calculation of
the limit. For the e+e− → π̃π̃Z → π̃π̃qq channel, they are similar to those encountered in the
study of Z-boson pair-production when one of the bosons decays into hadrons and the other
into neutrinos [24] and are dominated by uncertainties on the background normalisation, on
the detector energy scale and modelling and from limited Monte Carlo statistics. The main
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systematic uncertainties for the e+e− → π̃π̃γ channel [7] are the modelling of Standard Model
process, the determination of the trigger efficiency and the treatment of photons which convert
in electron-positron pairs in the detector material in front of the electromagnetic calorimeter.

The bounds from the e+e− → π̃π̃Z analysis are shown in Figure 5. For massless branons,
the brane tension f must be greater than 47 GeV. There is no sensitivity for branon masses
near and beyond the kinematic limit (M & (

√
s − mZ)/2) and no bounds on f can be derived

for M > 54 GeV. The sensitivity in the e+e− → π̃π̃γ channel is larger than that of the
e+e− → π̃π̃Z → π̃π̃qq channel. This is due to two factors: the different coupling of the Z boson
and the photon to electrons and a larger phase space available in the presence of a photon in
the final state, as opposed to a massive Z boson. The limits obtained from the e+e− → π̃π̃γ
analysis are also shown in Figure 5. For M = 0, the brane tension f must be greater than 180
GeV. For very elastic branes (f → 0) a lower branon mass bound of M > 103 GeV is obtained.

These bounds are the most stringent to date on the possible existence of branons. The
bounds for M > 0 GeV complement and improve those deduced from astrophysical observa-
tions [4].

References

[1] T. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) (1921) 966;
O. Klein, Z. Phys. 37 (1926) 895.

[2] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B 429 (1998) 263;
N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Rev. D59, (1999) 086004;
I. Antoniadis et al., Phys. Lett. B436 (1998) 257.

[3] R. Sundrum, Phys. Rev. D59 (1999) 085009;
A. Dobado and A.L. Maroto, Nucl. Phys. B 592 (2001) 203.

[4] J.A.R. Cembranos, A. Dobado and A.L. Maroto, Phys. Rev. Lett. 90 (2003) 241301;
J.A.R. Cembranos, A. Dobado and A.L. Maroto, Phys. Rev. D68 (2003) 103505.

[5] M. Bando et al., Phys. Rev. Lett. 83 (1999) 3601.

[6] J. Alcaraz et al., Phys. Rev. D67 (2003) 075010.

[7] L3 Collab., P. Achard et al., Phys. Lett. B 587 (2004) 16.

[8] L3 Collab., M. Acciarri et al., Phys. Lett. B 470 (1999) 281.

[9] ALEPH Collab., A. Heister et al., Eur. Phys. J. C 28 (2003) 1;
DELPHI Collab., P. Abreu et al., Eur. Phys. J. C 17 (2000) 53;
OPAL Collab., K. Ackerstaff et al., Eur. Phys. J. C 8 (1999) 23.

[10] D0 Collab., V.M. Abazov et al., Phys. Rev. Lett. 90 (2003) 251802;
CDF Collab., D. Acosta et al., preprint hep-ex/0309051 (2003);
CDF Collab., D. Acosta et al., Phys. Rev. Lett. 89 (2002) 281801.

[11] L3 Collab., O. Adriani et al., Phys. Rep. 236 (1993) 1;
L3 Collab., B. Adeva et al., Nucl. Instr. and Meth. A 289 (1990) 335;
M. Chemarin et al., Nucl. Instr. and Meth. A 349 (1994) 345;

5



M. Acciarri et al., Nucl. Instr. and Meth. A 351 (1994) 300;
G. Basti et al., Nucl. Instr. and Meth. A 374 (1996) 293;
I.C. Brock et al., Nucl. Instr. and Meth. A 381 (1996) 236;
A. Adam et al., Nucl. Instr. and Meth. A 383 (1996) 342.

[12] KK2f versions 4.12 and 4.19 are used for hadrons and neutrinos in the final state, respec-
tively:
S. Jadach, B.F.L. Ward and Z. Was, Comput. Phys. Commun. 130 (2000) 260;
S. Jadach, B.F.L. Ward and Z. Was, Phys. Rev. D 63 (2001) 113009;
D. Bardin et al., Eur. Phys. J. C 24 (2002) 373.

[13] GGG Monte Carlo:
F.A. Berends and R. Kleiss, Nucl. Phys. B 186 (1981) 22.

[14] BHWIDE version 1.03 is used:
S. Jadach, W. Placzek and B.F.L. Ward, Phys. Lett. B 390 (1997) 298.

[15] TEEGG version 7.1 is used:
D. Karlen, Nucl. Phys. B 289 (1987) 23.

[16] PHOJET version 1.05c is used:
R. Engel, Z. Phys. C 66 (1995) 203;
R. Engel and J. Ranft, Phys. Rev. D 54 (1996) 4244.

[17] DIAG36 Monte Carlo:
F.A. Berends, P.H. Daverfeldt and R. Kleiss, Nucl. Phys. B 253 (1985) 441.

[18] KORALW version 1.33 is used:
M. Skrzypek et al., Comp. Phys. Comm. 94 (1996) 216;
M. Skrzypek et al., Phys. Lett. B 372 (1996) 289.

[19] EXCALIBUR version 1.11 is used:
F.A. Berends, R. Pittau and R. Kleiss, Comp. Phys. Comm. 85 (1995) 437.

[20] NUNUGPV Monte Carlo:
G. Montagna et al., Nucl. Phys. B 541 (1999) 31.

[21] GEANT Version 3.15 is used:
R. Brun et al., preprint CERN DD/EE/84-1 (1984); revised 1987.
The GHEISHA program (H. Fesefeldt, RWTH Aachen Report PITHA 85/02 (1985)) is used
to simulate hadronic interactions.

[22] L3 Collab., R. Bizzarri et al., Nucl. Instr. and Meth. A 317 (1992) 463.

[23] G. D’Agostini, Proceedings of the Workshop on Confidence Limits, Geneva, 2000, hep-
ex/0002055.

[24] L3 Collab., P. Achard et al., Phys. Lett. B 572 (2003) 133.

6



The L3 Collaboration:

P.Achard,20 O.Adriani,17 M.Aguilar-Benitez,25 J.Alcaraz,25 G.Alemanni,23 J.Allaby,18 A.Aloisio,30 M.G.Alviggi,30

H.Anderhub,50 V.P.Andreev,6,35 F.Anselmo,8 A.Arefiev,29 T.Azemoon,3 T.Aziz,9 P.Bagnaia,40 A.Bajo,25 G.Baksay,27

L.Baksay,27 S.V.Baldew,2 S.Banerjee,9 Sw.Banerjee,4 A.Barczyk,50,48 R.Barillère,18 P.Bartalini,23 M.Basile,8

N.Batalova,47 R.Battiston,34 A.Bay,23 F.Becattini,17 U.Becker,13 F.Behner,50 L.Bellucci,17 R.Berbeco,3 J.Berdugo,25

P.Berges,13 B.Bertucci,34 B.L.Betev,50 M.Biasini,34 M.Biglietti,30 A.Biland,50 J.J.Blaising,4 S.C.Blyth,36 G.J.Bobbink,2
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√
s (GeV) L (pb−1) ND NB NS

188.6 176.8 129 126.3 20.9
191.6 29.8 22 23.1 4.1
195.5 84.1 63 65.7 12.8
199.5 83.3 59 63.7 18.0
201.7 37.2 30 28.9 8.8

202.5−205.5 79.0 51 59.9 20.5
205.5−209.2 139.0 101 102.2 37.9

Total 629.2 455 469.8 123.0

Table 1: Luminosity, number of selected data events, ND, and expected Standard
Model background events, NB, as a function of

√
s in the search for the e+e− →

π̃π̃Z → π̃π̃qq process. The expected number of signal events, NS, is also given for
M = 0 and f = 40 GeV.

High pt Low pt√
s (GeV) L (pb−1) ND NB NS ND NB NS

188.6 176.0 249 254.7 71.0 156 152.9 16.6
191.6 29.5 37 40.2 13.0 32 28.2 3.5
195.5 83.9 123 110.1 42.9 73 80.1 11.5
199.5 81.3 114 102.6 47.2 74 77.0 13.0
201.7 34.8 53 43.9 21.8 35 32.7 6.0

202.5−205.5 74.8 103 90.4 52.3 71 70.6 15.1
205.5−207.2 130.2 151 158.9 96.5 93 105.9 27.7
207.2−209.2 8.6 8 10.4 6.7 9 7.0 1.9

Total 619.1 838 811.2 351.4 543 554.4 95.3

Table 2: Luminosity, number of selected data events, ND, and expected Standard
Model background events, NB, as a function of

√
s for the high-pt and the low-

pt single-photon selections. Expectations, NS, for branon production through the
e+e− → π̃π̃γ process are also given for M = 0 and f = 150 GeV.
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Figure 1: Feynman diagrams contributing to the branon production process:
e+e− → π̃π̃V0, where V0 denotes a photon or a Z boson.

10



SM + branon signal (f=40 GeV)
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Figure 2: Distributions for events selected in the e+e− → π̃π̃Z → π̃π̃qq search: a)
the reduced energy of the Z boson, xZ = EZ/

√
s, and b) the absolute value of the

cosine of its polar angle, θZ. The points represent the data, the solid histogram
is the expectation from Standard Model processes and the dashed histogram is an
example of the expectations in the presence of an additional signal due to branon
production with M = 0 and f = 40 GeV.
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SM + branon signal (f=150 GeV)
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Figure 3: Measured differential cross sections for the e+e− → νν̄γ(γ) process as a
function of a) xγ = Eγ/Ebeam, the fraction of the beam energy carried by the photon
and b) the absolute value of the cosine of its polar angle, θγ . Data selected by the
high-pt selection at 0.04Ebeam < pt < 0.6Ebeam are shown. They are integrated over
the fiducial region | cos θγ | < 0.97. The points represent the data, the solid curves
are the Standard Model predictions and the dashed curves show the expectations
in the presence of an additional signal due to branon production with M = 0 and
f = 150 GeV.
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SM + branon signal (f=150 GeV)
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Figure 4: Distributions for events selected by the low-pt selection at 0.016Ebeam <
pt < 0.04Ebeam in the e+e− → π̃π̃γ search: a) the fraction of the beam energy carried
by the photon, xγ = Eγ/Ebeam and b) the absolute value of the cosine of its polar
angle, θγ . The points represent the data, the solid histogram is the expectation
from Standard Model processes and the dashed histogram is an example of the
expectations in the presence of an additional signal due to branon production with
M = 0 and f = 150 GeV.
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Figure 5: Two-dimensional regions in the (f, M) plane excluded by the searches for
branons produced in the e+e− → π̃π̃Z and e+e− → π̃π̃γ processes. For very elastic
branes, f → 0, branon masses below 103 GeV are excluded at 95% confidence level.
For massless branons, brane tensions below 180 GeV are excluded.
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