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Abstract. Properties of neutrinos may be the origin of the matter–antimatter
asymmetry of the universe. In the see–saw model for neutrino masses, this leads to
important constraints on the properties of light and heavy neutrinos. In particular,
an upper bound on the light neutrino masses of 0.1 eV can be derived. We
review the present status of thermal leptogenesis with emphasis on the theoretical
uncertainties and discuss some implications for lepton and quark mass hierarchies,
CP violation and dark matter. We also comment on the ‘leptogenesis conspiracy’,
the remarkable fact that neutrino masses may lie in the range where leptogenesis
works best.
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1. Introduction

One of the great challenges of modern particle physics and cosmology is to explain the excess
of matter over anti-matter observed in the universe. This baryon asymmetry is conveniently
expressed as the ratio of baryon minus anti-baryon density to the photon density and has recently
been measured to a high degree of accuracy by observations of the cosmic microwave background
(CMB) [1] combined with measurements of large-scale structures of the universe [2]:

ηCMB
B = (6.3 ± 0.3) × 10−10. (1)

In a complete cosmological model, this baryon asymmetry has to be dynamically generated
during the evolution of the universe in the hot and dense phase shortly after the big bang. This is
possible if the particle interactions violate baryon number (B), charge conjugation (C) and the
combined charge and parity conjugation (CP), and if the expansion of the universe leads to a
deviation from thermal equilibrium [3].

All these ingredients are present in the Standard Model (SM) of particle interactions.
However, the baryon asymmetry that can be generated in the SM falls far short of observations,
i.e. an extended model of particle interactions has to be considered. The observation of neutrino
masses also requires an extension of the SM and lepton number (L) violating interactions that
are introduced in the see–saw model of neutrinos masses [4, 5] can naturally give rise to the
observed baryon asymmetry in the leptogenesis scenario [6] that is the topic of this paper.

The rather suprising fact that lepton number violating interactions can give rise to a baryon
asymmetry is due to a deep connection between baryon and lepton number in the SM, as discussed
in section 2. In section 3, we present the basic mechanism of leptogenesis and introduce some
notations that are used in the following. The quantitative solution of the Boltzmann equations
and the corresponding bounds on light and heavy neutrino masses are described in section 4.
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Here we also comment on the leptogenesis conspiracy, the remarkable fact that neutrino masses
may lie in the range where leptogenesis works best. In section 5 the connection between low and
high energy CP violation and implications of leptogenesis for the heavy neutrino mass spectrum
are briefly discussed. Section 6 deals with the implications of leptogenesis for dark matter.

2. Baryon and lepton number violation in the SM

In the SM, both baryon and lepton number are classically conserved, since they are protected
by global Abelian symmetries. However, due to the chiral nature of weak interactions, these
symmetries are anomalous and are violated at the quantum level [7]. This is related to the non-
trivial vacuum structure of non-Abelian gauge theories, like the SM. Neglecting fermion masses,
there are an infinite number of degenerate ground states whose vacuum field configurations have
different topological charges, or Chern–Simons numbers NCS [8, 9]. In the electroweak sector
of the SM, a change in the topological charge, i.e. a transition from one vacuum to another one,
corresponds to a change in baryon and lepton numbers,

�B = �L = nf�NCS, (2)

where nf is the number of generations of quarks and leptons, i.e. nf = 3 in the SM. Note that,
although both baryon and lepton number are violated, the linear combination B − L is still
conserved at the quantum level.

At low temperatures, when the electroweak symmetry is broken, the different vacua are
separated by a potential barrier, whose height is determined by the vacuum expectation value
(VEV) of the Higgs field, v = 〈φ〉, i.e. the scale of electroweak symmetry breaking. Hence,
processes changing the topological charge are tunnelling processes whose rate is unobservably
small, due to the smallness of the electroweak coupling constant. In the low-temperature regime
being probed in accelerator experiments, B and L are therefore conserved to a very good
approximation, in accordance with experimental observations (cf [10]).

When the standard model particles form a heat bath of temperature T , the situation changes.
At high temperatures, T � TEW ∼ 100 GeV, the HiggsVEV ‘evaporates’, leading to a restoration
of the electroweak symmetry and the disappearance of the potential barriers separating the
different vacua. B and L violating transitions are then no longer suppressed [11].

The rate at which these processes occur is related to the free energy of field configurations
which carry topological charge. In the electroweak part of the SM these so-called sphaleron
processes lead to an effective interaction of all left-handed fermions [7] (cf figure 1),

OB+L =
∏

i

(qLiqLiqLilLi), (3)

which indeed violates both baryon and lepton number by three units but conserves the
combination B − L, in accordance with (2).

The sphaleron transition rate in the symmetric phase of the SM has been evaluated by
combining an analytical resummation with numerical lattice techniques [12]. The result is that
sphaleron processes are in thermal equilibrium for temperatures in the range

100 GeV � T � 1012 GeV. (4)
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Sphaleron

Figure 1. One of the 12-fermion processes which are in thermal equilibrium in
the high-temperature phase of the standard model.

These processes have a profound effect on the generation of the cosmological baryon asymmetry.
Equation (2) suggests that any B + L asymmetry generated at temperatures T > TEW will be
washed out. However, since only left-handed fields couple to sphalerons, a non-zero value of
B + L can persist in the high-temperature, symmetric phase if there exists a non-vanishing B − L

asymmetry. An analysis of the chemical potentials of all particle species in the high-temperature
phase yields the following relation between the baryon asymmetry ηB and the corresponding L

and B − L asymmetries ηL and ηB−L, respectively [13],

ηB = asphηB−L = asph

asph − 1
ηL. (5)

Here asph is a number O(1). In the SM with three generations and one Higgs doublet one has
asph = 28/79.

3. Leptogenesis

3.1. A qualitative overview

The deep connection between baryon and lepton number in the early universe has led to the
realization that lepton number violating processes, whose presence is predicted by the see–saw
model for light neutrino masses [4, 5], can be responsible for the observed cosmological baryon
asymmetry.

In the see–saw model, the smallness of light neutrino masses is explained through the mixing
of left-handed neutrinos with right-handed neutrinos νR which are not present in the SM but are
predicted in certain models of grand unification. The interactions of the SM are supplemented
by the following Yukawa couplings of neutrinos,

LY = lLhνRφ + νc
RMνR + h.c., (6)

where M is the Majorana mass matrix of the right-handed neutrinos, and the Yukawa couplings
h yield the Dirac neutrino mass matrix mD = hv after spontaneous breaking of the electroweak
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symmetry. Since the Majorana mass matrix M is independent of electroweak symmetry breaking,
one can have M � mD, which leads to the mass eigenstates

ν � νL + νc
L = νc, N � νR + νc

R = Nc, (7)

with heavy neutrino masses M and the light neutrino masses

mν = −mD

1

M
mT

D. (8)

The heavy neutrinos are unstable and decay through theirYukawa couplings into SM lepton
and Higgs doublets. Due to their Majorana nature, the heavy neutrinos N can decay both into
leptons and anti-leptons, i.e. lepton number is violated in these decays. In conjunction with B + L

violating sphaleron transitions, this leads to the required non-conservation of baryon number.
Further, violation of C and CP comes about since the Yukawa couplings h are, in general,
complex, thereby making possible the generation of a non-vanishing baryon asymmetry in these
decays.

A further complication is that the heavy neutrinos also mediate lepton number violating
scattering processes which can erase any lepton asymmetry [14, 15]. However, the interaction
rates for these processes are suppressed by the large mass of the heavy neutrinos if the temperature
T is smaller than their mass. Hence, the lepton asymmetries produced in decays of the heavier
neutrinos N2,3 will be erased by lepton number violating scatterings mediated by the lightest of
the heavy neutrinos, N1. Therefore, in the simplest case of hierarchical heavy neutrino masses,
M1 � M2,3, only decays of N1 can potentially explain the observed baryon asymmetry.

The required deviation from thermal equilibrium is provided by the expansion of the
universe. When the universe has cooled down to a temperature of the order of the heavy neutrino
mass M1, the equilibrium number density becomes exponentially suppressed. If the neutrinos
are sufficiently weakly coupled, they are not able to follow the rapid change of the equilibrium
particle distribution once the temperature falls below their mass. Hence, the deviation from
thermal equilibrium consists in a too large number density of heavy neutrinos compared to the
equilibrium density [16]. Technically, this requires the total decay width of N1 to be smaller than
the expansion rate, the Hubble parameter H , at the time of decay, i.e. when T ∼ M1. This is the
case if the effective neutrino mass, defined as

m̃1 = (m
†
DmD)11

M1
, (9)

is smaller than the equilibrium neutrino mass

m∗ = 16π5/2

3
√

5
g1/2

∗
v2

Mp

� 10−3 eV, (10)

where we have usedMp = 1.2 × 1019 GeV andg∗ = 106.75 as the effective number of relativistic
degrees of freedom in the plasma. The effective neutrino mass m̃1 is a measure of the strength
of the coupling of N1 to the thermal bath.

To see whether this mechanism of leptogenesis [6] can indeed explain the observed baryon
asymmetry, a careful numerical study is needed. As we shall see, successful leptogenesis is
possible for m̃1 < m∗ as well as m̃1 > m∗. A quantitative description of this non-equilibrium
process is obtained by means of kinetic equations.
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3.2. Boltzmann equations

The evolution of particle number densities in the early universe is influenced not only by
interactions but also by the expansion of the universe. It is convenient to scale out the expansion
by considering the particle number NX in some co-moving volume element instead of the number
density nX. For definiteness, we choose the co-moving volume R∗(t)3 which contains one photon
at a time t∗ before the onset of leptogenesis,

NX(t) = nX(t)R∗(t)3. (11)

The final baryon asymmetry is expressed in terms of the baryon-to-photon ratio ηB, to be
compared with the observed value ηCMB

B (cf (1)). This is related to the B − L asymmetry in
a co-moving volume element by

ηB = asph

f
N

f

B−L, (12)

where f = 2387/86 is the dilution factor due to the production of photons from the onset of
leptogenesis until recombination, assuming the standard isentropic expansion of the universe.

Further, it is convenient to replace time t by z = M1/T , where M1 is the mass of the decaying
neutrino. This is possible, since in a radiation-dominated universe both variables are related by
the expansion rate of the universe, the Hubble parameter H ,

H = 2t =
√

4π3g∗
45

M2
1

Mp

1

z2
. (13)

In the simplest case of a hierarchical mass spectrum of right-handed neutrinos, M1 � M2,3,
a numerical description of leptogenesis is provided by a set of two coupled differential equations
[17, 18],

dNN1

dz
= −(D + S)(NN1 − N

eq

N1
), (14)

dNB−L

dz
= −ε1D(NN1 − N

eq

N1
) − WNB−L, (15)

where the terms on the right-hand side describe the effects of particle interactions. There are four
classes of processes which contribute: decays, inverse decays, �L = 1 scatterings and �L = 2
processes mediated by heavy neutrinos. The term D accounts for decays and inverse decays,
while the scattering term S represents the �L = 1 scatterings. Decays also yield the source
term for the generation of the B − L asymmetry, the first term in (15), while all other processes
contribute to the total washout term W which competes with the decay source term. Note that,
in thermal equilibrium, NN1 = N

eq

N1
, no B − L asymmetry can be generated, illustrating the need

for a deviation from thermal equilibrium. The amount of B − L asymmetry being produced by
the source term is controlled by the CP asymmetry ε1 in the decay of N1.

To understand the dependence of the solutions on the neutrino parameters, it is crucial to
note that the interaction terms D and S as well as the contribution from N1 exchange to W are
all proportional to the effective neutrino mass,

D, S, W1 ∝ Mpm̃1

v2
, (16)
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Figure 2. The expansion rate of the universe and the three interaction rates
normalized to the expansion rate at z = 1 for a typical choice of parameters,
M1 = 1010 GeV, m̃1 = 10−3 eV and m̄ = 0.05 eV.

whereas the strength of the remaining contribution to the washout term, �W , is determined by
m̄2 = m2

1 + m2
2 + m2

3, the sum over the squares of light neutrino masses,

�W ∝ MpM1m̄
2

v4
. (17)

If one assumes a vanishing initial B − L asymmetry before the onset of leptogenesis, i.e.
at z � 1, the solution for NB−L has the simple form

NB−L(z) = − 3
4ε1κ(z; m̃1, M1m̄

2), (18)

where we have introduced the efficiency factor κ [19] which does not depend on the CP asymmetry
ε1 and parametrizes the effect of scattering and decay processes. It is given by the following
integral expression:

κ(z) = 4

3

∫ z

zi

dz′ D(NN1 − N
eq

N1
)e− ∫ z

z′ dz′′W(z′′). (19)

It is normalized in such a way that its final value κf = κ(∞) approaches unity in the limit
of thermal initial abundance of heavy neutrinos, NN1(z � 1) = N

eq

N1
= 3/4 and no washout,

W = 0.
As an example, the three interaction rates, (�D, �S, �W) = Hz(D, S, W), and the Hubble

parameter are shown in figure 2 for a typical choice of parameters, M1 = 1010 GeV, m̃1 =
10−3 eV and m̄ = 0.05 eV. As can be seen from the figure, the out-of-equilibrium condition
m̃1 � 10−3 eV is fulfilled at z = 1, i.e. all interaction rates are smaller than the Hubble parameter.

The corresponding evolution of the N1 abundance and the B − L asymmetry is shown
in figure 3, starting at z = 0.1 with a vanishing initial N1 abundance. Although the neutrino
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Figure 3. The evolution of the N1 abundance and the B − L asymmetry for the
same choice of parameters as in figure 2 and ε1 = 10−6.

production rates �D and �S are not in thermal equilibrium, they are still strong enough to
produce a non-vanishing abundance of neutrinos at z � 1 and the equilibrium distribution is
reached at z ∼ 2. The required deviation from thermal equilibrium can clearly be seen as a small
over-abundance of neutrinos for z � 2. However, the decay rate �D also comes into thermal
equilibrium at z ∼ 2 leading to a rapid decay of the N1 abundance and the production of a non-
vanishing B − L asymmetry. The change in sign of the asymmetry at z ∼ 3 is due to the fact that
the source term in (15) changes sign once the N1 abundance becomes larger than the equilibrium
abundance, i.e. neutrino production processes at z � 2 lead to a ‘wrong sign’ asymmetry that
partially cancels against the asymmetry produced in the N1 decays at z � 2.

4. Constraints on neutrino masses

We are now ready to discuss the implications of thermal leptogenesis for light and heavy neutrino
masses. Combining (12) and (18) one obtains

ηB = −dε1κf (m̃1, M1m̄
2), (20)

where d = 3 asph/(4f ) � 10−2. Hence, determining the amount of baryon asymmetry produced
in leptogenesis requires the calculation of both the final efficiency factor κf and the CP asymmetry
ε1. A comparison with the observed value (cf (1)) then allows one to place stringent constraints
on the involved see–saw parameters and, remarkably, on light and heavy neutrino masses.

4.1. Final efficiency factor

Starting from (19) and assuming a high initial temperature, zi = M1/Ti � 1, the final efficiency
factor can be calculated analytically [16, 20]. For values M1 m̄2 � 1014 GeV [m̄/(0.05 eV)]2 the
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Figure 4. Final efficiency factor when the washout term �W is neglected.

washout term �W can be neglected and the final efficiency factor depends only on the effective
neutrino mass m̃1.

The results for the efficiency factor are summarized in figure 4. Two different regimes can
clearly be distinguished. In the weak washout regime, m̃1 � 10−3 eV, the results strongly depend
on the initial conditions and on theoretical assumptions, i.e. in that case predictions are strongly
model dependent and affected by large theoretical uncertainties. On the other hand, in the strong
washout regime, m̃1 � 10−3 eV, the dependence on the initial conditions is practically negligible
and the theoretical uncertainties are small such that the final asymmetry can be predicted
within ∼50%.

In both cases, very precise analytical approximations for the final efficiency factor can be
obtained. It is instructive to start with a simplified picture where the scattering term S is neglected
and only decays and inverse decays contribute. The decay parameter,

K ≡ �D(z = ∞)

H(z = 1)
= m̃1

m∗
, (21)

controls whether N1 decays are in thermal equilibirium or not. Here �D(z = ∞) is the N1 decay
width and m∗ marks the boundary between the weak and strong washout regimes, as discussed
in section 3.1.

In the strong washout regime inverse decays rapidly thermalize the heavy neutrinos N1 and
the washout due to decays and inverse decays is strong enough to destroy an initial asymmetry that
may have been present before the onset of leptogenesis [21], leading to a negligible dependence on
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initial conditions. Further, the integrand in (19) is peaked at a value zB � 1, implying that the final
asymmetry is produced around a well-defined temperature of baryogenesis TB = M1/zB � M1,
where the heavy neutrinos are fully non-relativistic. This contributes to reducing the theoretical
uncertainties in the strong washout regime, since it has been shown that the Boltzmann equations
employed here can be derived from a fully consistent quantum mechanical treatment in terms of
Kadanoff–Baym equations in the non-relativistic limit [22].

In the strong washout regime, the N1 abundance closely tracks the equilibrium abundance
and a simple expression for the final efficiency factor can be obtained,

κf (K) � 2

KzB(K)
(1 − e−(1/2)KzB(K)). (22)

Assuming thermal initial N1 abundance, i.e. Ni
N1

= 3/4, this expression also reproduces the
correct asymptotic limit in the weak washout regime, K � 1. In figure 4 this analytical result is
represented by the short-dashed line which has to be compared to the numerical results, given
by the solid lines.

In the weak washout regime, the calculation is more involved if one starts from a vanishing
initial N1 abundance. Indeed, in this case the N1 production by inverse decays leads to a negative
contribution to the efficiency factor, corresponding to a ‘wrong-sign’ asymmetry, as discussed in
section 3.2. The final efficiency factor is thus the sum of a negative contribution, κ−

f (K), and a
positive one, κ+

f (K). A very good approximation for these contributions that interpolates between
the weak and strong washout regimes is given by

κ−
f (K) = −2e−(2/3)N(K)(e(2/3)N(K) − 1), (23)

κ+
f (K) = 2

zB(K)K
(1 − e−(2/3)zB(K)KN(K)). (24)

Here N(K) � (9π/16)K is the maximal N1 number density being produced in the weak washout
regime and N(K) interpolates between N(K) and the maximal number density Neq = 3/4 in the
strong washout regime. For large K the negative contribution is suppressed, while the positive
one asymptotically approaches (22). On the other hand, in the weak washout regime, the positive
and negative contributions cancel each other to leading order in K, i.e. the total efficiency
factor is of order K2 [23], as shown in figure 4, where the short-dashed line again corresponds
to the analytical solution and the solid one to the numerical integration of the Boltzmann
equations.

This cancellation of the leading-order contributions to the final efficiency factor in the weak
washout regime no longer occurs when the scattering term S is taken into account. Indeed, these
scattering processes enhance the N1 production thereby giving rise to an additional positive
contribution to the efficiency factor. On the other hand, these scatterings are CP-conserving, i.e.
they do not contribute to the negative part of the efficiency factor, as long as the contribution of
�L = 1 scatterings to the washout term is negligible which is always the case in the weak washout
regime. In this way, scatterings can greatly enhance the final efficiency factor in the weak washout
regime [24]. The drawback is that the result is very sensitive to different approximations being
used in the computation of the scattering rates and different results, ranging from the case where
scatterings are negligible to a behaviour κf ∝ K, have been obtained. Potentially important
effects that have recently been discussed but are presently controversial include scattering
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processes involving gauge bosons [25, 26] and thermal corrections to the decay and scattering
rates [26, 27]. The range of different results is represented in figure 4 by the hatched region. An
additional uncertainty in the weak washout regime comes about due to the dependence of the
final results on the initial N1 abundance and a possible initial asymmetry created before the onset
of leptogenesis.

The situation is very different in the strong washout regime. The final efficiency factor is
not sensitive to the neutrino production since a thermal neutrino distribution is always reached at
high temperatures, z � 1. However, �L = 1 scatterings also contribute to the washout term but
their effect is small and thus the theoretical uncertainty arising from these scattering processes
is not larger than about 50%. This uncertainty for values m̃1 > m∗ � 10−3 eV is again indicated
by the hatched region in figure 4. A much more important source of uncertainties are spectator
processes [28], which can change the produced asymmetry by a factor of order one.

In the strong washout regime, the highest efficiency is reached when scatterings are
neglected and only decays and inverse decays are taken into consideration, which approximately
corresponds to the results obtained in [26]. In this parameter range, the final efficiency factor is
given, within theoretical uncertainties, by the simple power-law [20]:

κf = (2 ± 1) × 10−2

(
0.01 eV

m̃1

)1.1±0.1

. (25)

The only model-independent information we have on m̃1 is that it has to be larger than the
smallest neutrino mass m1 [29]. However, a situation where m1 < m̃1 � msol is rather artificial
within neutrino mass models and the leptogenesis predictions are then very model dependent in
the weak washout regime. In typical neutrino mass models, values of m̃1 are usually in the mass
range suggested by neutrino oscillations. It is remarkable that both the scale of solar neutrino
oscillations, msol ≡ √

�m2
sol � 8 × 10−3 eV, and the scale of atmospheric neutrino oscillations,

matm ≡ √
�m2

atm � 0.05 eV, are much larger than the equilibrium neutrino mass m∗. Hence, the
parameter range suggested by neutrino oscillations, msol � m̃1 � matm, lies entirely in the strong
washout regime where theoretical uncertainties are small and the efficiency factor is still large
enough to allow for successful leptogenesis.

4.2. CP asymmetry

The CP asymmetry ε1 is the second crucial ingredient needed to calculate the baryon asymmetry.
To leading order in the Yukawa coupling h, the CP asymmetry is determined by the interference
between tree level and vertex plus self-energy one-loop diagrams [30, 31] and can be consistently
extracted from the lφ → lφ scattering processes [32].

We will be interested in the maximal CP asymmetry for given neutrino masses. Assuming
a hierarchy of the heavy neutrinos, M2,3 � M1, εmax

1 depends on M1, m̃1, m1 and m3 [21]. It can
be expressed as

εmax
1 (M1, m̃1, m1, m3) = εmax

1 (M1)β(m̃1, m1, m3), β � 1. (26)

The maximal asymmetry, i.e. β = 1, is reached for m1 = 0 and, with m3 =
√

m2
atm + m2

1, it is
given by [33]

εmax
1 (M1) = 3

16π

M1matm

v2
� 10−6

(
M1

1010 GeV

) (
matm

0.05 eV

)
. (27)
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An improved bound is obtained in the limit m1/m̃1 → 0, where one obtains [34]

β(m1) = m3 − m1

matm

. (28)

Also important is the case of quasi-degenerate neutrinos, m3 � m1. In this region, one finds
[35, 36]

β(m̃1, m1) � m3 − m1

matm

√
1 − m2

1

m̃2
1

. (29)

For all neutrino mass models with moderately hierarchical heavy neutrinos, such that (26) applies,
the observed baryon asymmetry yields constraints on the three neutrino parameters m̃1, m1 and
M1. In the following two sections we follow mostly the discussion in [20].

4.3. Lower bounds on heavy neutrino masses and reheating temperature

The maximal baryon asymmetry ηmax
B (M1, m̃1, m1) is the asymmetry corresponding to

εmax
1 (M1, m̃1, m1). The CMB bound then amounts to the requirement

ηmax
B (M1, m̃1, m1) � ηCMB

B . (30)

This represents an interesting constraint on the space of the three parameters M1, m1 and m̃1.
We have seen that the absolute maximum of the CP asymmetry is obtained for m1 = 0. For
m1 �= 0 the function β suppresses the CP asymmetry [34]. Furthermore, the �L = 2 washout
term becomes stronger when the absolute neutrino mass scale increases (cf (17)). Therefore, the
maximal baryon asymmetry ηmax

B (M1, m̃1, m1) is maximized for m1 = 0, and in this case the
allowed region in the space of the parameters M1 and m̃1 is maximal [18].

In this way one finds an important lower bound on the value of M1 [18, 34], by inserting
the expression (27) into the CMB constraint (30) (cf (20)),

M1 � Mmin
1 = 1

d

16π

3

v2

matm

ηCMB
B

κf

� 6.4 × 108 GeV

(
ηCMB

B

6 × 10−10

) (
0.05 eV

matm

)
κ−1

f . (31)

For thermal initial abundance, and in the limit m̃1/m∗ → 0, one has by definition κf = 1, and
therefore

M1 � (6.6 ± 0.8) × 108 GeV � 4 × 108 GeV. (32)

Here the last inequality is the 3σ bound, with the experimental value of (1) for ηCMB
B , and

matm = (0.051 ± 0.004) eV. In the case of a dynamically generated N1 abundance the maximal
efficiency factor is κf � 0.18, which yields the more stringent bound

M1 � (3.6 ± 0.4) × 109 GeV � 2 × 109 GeV. (33)

The most interesting case corresponds to the range msol � m̃1 � matm, for which the power
law (25) for κf can be used. Using the central value of κf and neglecting the theoretical
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uncertainty, one obtains

M1 � (3.3 ± 0.4) × 1010 GeV

(
m̃1

10−2 eV

)1.1

, (34)

which yields the 3σ bound

M1 � (1.5–10) × 1010 GeV. (35)

The lower bound on M1 is particularly interesting since it can be translated into a lower bound
on the initial temperature Ti which, within inflationary models, corresponds to the reheating
temperature.

So far, we have assumed that the temperature Ti is larger than M1. If one relaxes this
assumption, the final efficiency factor is in general reduced. For small m̃1, however, the threshold
value for Ti, below which the reduction is appreciable, is given by M1 itself. Below this
temperature the N1 abundance is either Boltzmann suppressed, for thermal initial abundance, or
the N1 production is considerably suppressed, for zero initial abundance. Therefore, for values
m̃1 � 10−3 eV, the bounds (32) and (33) apply also to the reheating temperature Ti.

In the more interesting case of strong washout, about 90% of the final baryon asymmetry
is produced in a temperature interval zB − 2 � z � zB + 2. Hence the reheating temperature can
be about (zB − 2) times lower than M1 without any appreciable change in the predicted final
asymmetry [20]. In the interesting range msol � m̃1 � matm one has zB � 6–8, and therefore the
bound (35) gets relaxed by a factor 4–6, such that

Ti � (4 × 109–2 × 1010) GeV. (36)

Compared with the small m̃1 range, m̃1 � 10−3 eV, the lower bound on the reheating temperature
is slightly more restrictive in the favoured range msol � m̃1 � matm due to the loss in efficiency.

4.4. Upper bound on light neutrino masses

For large values of the absolute neutrino mass scale the �W washout term cannot be neglected.
The final efficiency factor can be calculated using the approximation that �W starts to be effective
for z > zB, where the asymmetry generation from decays has already terminated. This works
very well in the strong washout regime. Since m̃1 � m1, this does not introduce any restriction
if m1 � m∗ � 10−3 eV. One then has

κf (m̃1, M1m̄
2) � κf (m̃1) exp

[
− ω

zB

(
M1

1010 GeV

) (
m̄

eV

)2
]
, (37)

where ω � 0.186 and κf (m̃1) is the efficiency factor calculated in the regime of small neutrino
masses, neglecting the �W term. Because of the assumption of strong washout, one can use the
simple power law (25). At certain peak values of M1 and m̃1, the maximal baryon asymmetry
ηmax

B reaches the absolute maximum

η
peak
B (m̄)

ηCMB
B

∝ χ m∗ξ
m̄4

, (38)
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with χ � 1.6 eV3 and ξ ∝ m2
atm. This finally yields the leptogenesis bound on the neutrino masses,

mi � 0.1 eV [21]. Deviations of the quantity ξ from unity account for a change of the input
parameters as well as various corrections, such as a possible enhancement of the CP asymmetry
or supersymmetry.

A more precise calculation has to take into account the dependence of neutrino masses on
the renormalization scale. The running of the atmospheric neutrino mass scale matm from the
Fermi scale µ = mZ to the high scale µ ∼ TB makes the bound less restrictive. On the other hand,
the bound on mi obtained at high energies has to be evolved down to low energies. This second
effect is dominant and thus taking the scale dependence into account makes the neutrino mass
bound more restrictive [37]. The smallest effect is obtained for a Higgs mass Mh � 150 GeV,
which leads to a ∼20% more restrictive bound. Taking into account this effect, one then obtains
the 3σ bound [20]

mi � (0.12 eV)ξ1/4. (39)

Note that the bound mi < 0.1 eV conservatively accounts for the theoretical uncertainties
including spectator processes [28] which make the bound more restrictive by about 0.02 eV.4 The
strong suppression of the baryon asymmetry with increasing neutrino mass scale, ηB ∝ 1/m̄4,
which is reflected in the dependence ξ1/4, makes the bound rather stable. This is different from
the lower bounds on M1 and Ti which relax as 1/ξ [21].

It is important to keep in mind that the neutrino mass bound can be evaded, with some effort.
A measurement of the neutrino mass scale above the leptogenesis bound would require significant
modifications of the minimal leptogenesis scenario that we described. The possibilities include
quasi-degenerate heavy neutrinos [21, 35], non-thermal leptogenesis scenarios [38]–[40] or a
non-minimal see–saw mechanism as in theories with Higgs triplets [41]–[43].

4.5. Leptogenesis conspiracy

The upper bound on the neutrino masses (39) arises when the information on matm from neutrino-
mixing experiments is employed. The value of matm sets the scale for the transition from a
hierarchical, with m1 � matm, to a quasi-degenerate neutrino mass spectrum with m1 � matm.
The joint action of the CP asymmetry suppression for m1 � matm and m̃1 ≈ m1 (cf (29)), together
with the washout from the �W term, place a limit on the level of degeneracy of the light neutrino
masses and, using the measured value of the atmospheric neutrino mass scale, an upper bound
on the absolute neutrino mass scale.

We now want to study how this upper bound gets relaxed if the experimental measurement
of the atmospheric neutrino mass scale is ignored. Since the maximal asymmetry is obtained for
hierarchical neutrinos, i.e. β = 1, we have to use the simple bound (27). This also implies that
the upper bound on the absolute neutrino mass scale will coincide with an upper bound on the
atmospheric neutrino mass scale itself, since m̄ � matm � m3. The maximal baryon asymmetry
is then approximately given by

ηmax
B (M1, m̃1, m3) = dεmax

1 (M1)κf (m̃1, M1m
2
3). (40)

4 In [26] the upper bound 0.15 eV has been obtained, which is 0.03 eV weaker than the bound (39). About 0.02 eV
of this difference is due to the different treatment of radiative corrections which depend on the top and Higgs masses.
The remaining 0.01 eV reflects differences in the treatment of thermal corrections. This is included in the theoretical
uncertainty of the efficiency factor κf (m̃1) (cf (25)).
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Using (37), it is easy to see that the maximum of the asymmetry is realized for

M1 � 2zB1013 GeV

(
0.05 eV

m3

)2

, (41)

and is then given by

ηmax
B (m̃1, m3) � 0.7 × 10−5zB(m̃1)κf (m̃1)

(
0.05 eV

m3

)
. (42)

In the case of zero initial N1 abundance, the maximum is obtained for m̃1 � 2 × 10−3 eV,
where kf � 0.2 and zB � 2,5 implying

η
peak
B (m3) � 3 × 10−6

(
0.05 eV

m3

)
. (43)

Note that the peak lies in the strong washout regime where results do not depend on the initial
conditions.

For m3 � matm � 0.05 eV, (43) is in good agreement with the numerical results of [18].
If we do not make use of the experimental information on matm and just require that the peak
asymmetry is larger than the observed value given by (1), then we obtain the upper bound

m3 � 250 eV. (44)

Together with (41) this implies the lower bound for heavy neutrino masses,

M1 � 2 × 106 GeV. (45)

This exercise shows that without the experimental knowledge of matm, the bound on light neutrino
masses would have been much looser. However, it also demonstrates, even more remarkably,
that the neutrino oscillation data, together with the laboratory bounds on light neutrino masses,
represents a highly non-trivial test of thermal leptogenesis.

As discussed in the previous section, the leptogenesis bound of 0.1 eV appears to have a
theoretical uncertainty of about 0.03 eV. For comparison, 10 years ago it was believed, based
on the same equations, that Majorana masses m3 ∼ 10 keV and M1 ∼ 1 TeV were compatible
with thermal leptogenesis [17]. During the last few years, both theory and experiment contributed
almost equally, on a logarithmic scale, to the progress. On the theoretical side, a better
understanding of the Boltzmann equations was important whereas the measurement of the
atmospheric neutrino mass scale was the crucial experimental ingredient.

Actually, the successful matching of thermal leptogenesis predictions with experimental
data is even more intriguing. From (42) we can derive an upper bound on m̃1 by using the strong
washout behaviour κf � 2/(zB K) (cf (22)) and imposing the CMB bound, which yields, with
matm =

√
m2

3 − m2
1,

m̃1 � 20 eV

(
0.05 eV

matm

)
, (46)

5 This can be inferred from figures 4 and 5 of [20].
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again in very good agreement with the numerical results [18]. From this expression one reads
off that only for matm � 1 eV it is possible to have m̃1 ∼ matm. If the experiments had found
matm � 1 eV, thermal leptogenesis would have worked only for models with m̃1 � matm,
requiring a large amount of fine tuning, as already pointed out. Furthermore, the favoured
strong washout regime implies matm > m∗. Hence, leptogenesis favours for the atmospheric
mass scale the range 10−3–1 eV, in remarkable agreement with experimental data. Thanks to
this ‘conspiracy’, the see–saw mechanism, for the same values of the involved parameters,
explains equally well both the neutrino masses and the observed baryon asymmetry, with a
remarkable independence on the assumptions about the inflationary stage or, more generally, the
cosmological stages that precede leptogenesis.

This conspiracy would become even more impressive if the lightest neutrino mass should
turn out to be larger than m∗. This would imply, in a completely model independent way,
m̃1 � m∗, with thermal leptogenesis in the strong washout regime. Together with the upper
bound m1 < 0.1 eV, this selects the optimal leptogenesis window 10−3 eV � m1 � 0.1 eV for
the absolute neutrino mass scale.

5. Flavour aspects

Leptogenesis is closely related to other processes involving neutrinos and charged leptons. The
upper bound on the light neutrino masses and the lower bound on the heavy neutrino masses
have already been discussed in the previous section. Very interesting are also the connection with
neutrino mixing and with lepton flavour changing processes in supersymmetric theories. During
the last few years, these subjects have been studied in great detail by many groups (cf [44]–[48]).
In the following we shall discuss two important examples, the possible connection between CP

violation in neutrino oscillations and leptogenesis, i.e. at low and high energies, and the relation
between leptogenesis and the heavy neutrino mass spectrum.

In the standard model with right-handed neutrinos, the masses and mixings of leptons are
described by three complex matrices,

LM = νLmDνR + ēLmleR + νc
RMνR + h.c.. (47)

For the Majorana mass matrix M, one expects M � mD, which leads to three light and three
heavy Majorana mass eigenstates, ν � νL + νc

L = νc and N � νR + νc
R = Nc.

In the following, we will work in a basis where M is diagonal and real, with M1 < M2 < M3,
which is appropriate for leptogenesis. The light neutrino mass matrix mν and the charged lepton
mass matrix ml are then diagonalized by the unitary transformations,

V (ν)†mνV
(ν)∗ = −

m1 0 0
0 m2 0
0 0 m3

 = mdiag
ν , (48)

V (e)†meṼ
(e) =

me 0 0
0 mµ 0
0 0 mτ

 = m
diag
l . (49)
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The leptonic (MNS) mixing matrix

U = V (e)†V (ν) (50)

describes the couplings of mass eigenstates in the charged current,

L(l)
EW = − g√

2
ēLγµUνLW−

µ + · · · , (51)

which leads to neutrino oscillations.
It is well known that, in general, CP violation in neutrino oscillations and in leptogenesis

are unrelated [49]. The reason is that the CP asymmetries εi in heavy neutrino decays depend
only on m

†
DmD. Hence, changing mD to KmD, where K is a general unitary matrix, leaves εi

invariant whereas the leptonic mixing matrix U = V (e)†V (ν) is changed to U = V (e)†KV(ν), and is
therefore arbitrary. Still, the question remains whether in some physically well-motivated cases
a connection between CP violation at low and high energies exists.

CP violating observables are most conveniently described by weak basis invariants which
are inert under a unitary transformation, l → Kl, of the lepton doublet l = (νL, eL). For
neutrino oscillations, the appropriate variable is the commutator between the hermitian matrices
Hν = mνm

†
ν and Hl = mlm

†
l [50, 51],

Tr[Hν, Hl]
3 ∝ �ν21�ν32�ν31�l21�l32�l31Jl, (52)

�ν21 = m2
2 − m2

1, . . . , �l21 = m2
µ − m2

e . . . , (53)

where Jl is the leptonic Jarlskog invariant [52],

Jl = Im[U11U22U
∗
12U

∗
21] ∝ sin δ, (54)

which is proportional to the CP violating phase δ of the mixing matrix U. In a basis where the
charged lepton matrix ml is diagonal and real, one has

Tr[Hν, Hl]
3 ∝ �l21�l32�l31Im[Hν12Hν23Hν31]; (55)

correspondingly, for diagonal and real mν one has

Tr[Hν, Hl]
3 ∝ �ν21�ν32�ν31Im[Hl12Hl23Hl31]. (56)

The CP asymmetry in N1 decays can be conveniently expressed in terms of the weak basis
invariant [22]

ε1 ∝ Im[m†
Dmνm

∗
D]11. (57)

Comparing (56) and (57) the independence of CP violation at low and high energies is obvious. In
a basis where mν is diagonal and real, CP violation in neutrino oscillations is entirely determined
by the phases of ml whereas the lepton asymmetry depends only on the phases of mD.
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An interesting example is the case of only two heavy Majorana neutrinos, N1 and N2, which
corresponds to the limit where N3 decouples [53]. For a given texture of mD one then obtains
(cf (55), (57)),

ε1 ∝ Im[Hν12Hν23Hν31] ∝ sin δ. (58)

Hence, CP violation at low and at high energies are both determined by the Dirac phase δ. A
further low-energy quantity is the Majorana phase entering neutrinoless double beta decay.
In some models with maximal atmospheric neutrino mixing this phase coincides with the
leptogenesis phase [54]. All CP phases can also be related in models of spontaneous CP violation
[50, 55].

Another important question is the connection between leptogenesis and the heavy neutrino
mass spectrum. In the lepton mass eigenstate basis, the neutrino mass matrix can be reconstructed
from data, i.e. the leptonic mixing matrix and the neutrino masses,

mν = −U(ν)mdiag
ν U(ν)T. (59)

The heavy neutrino mass matrix is then determined by mν and mD,

M−1 = −m−1
D mν(m

T
D)−1. (60)

Using the SO(10) mass relation mD = mu, where mu denotes the up-type quark mass matrix,
and assuming that in the lepton mass eigenstate basis mu is also diagonal and real, mu =
diag(mu, mc, mt), one obtains the heavy neutrino masses in terms of mν, mu, mc and mt [56].
Neglecting the hierarchy among the small neutrino masses, one estimates that the hierarchy
among the heavy neutrinos is very large,

M1

M3
∼

(
mu

mt

)2

∼ 10−10. (61)

With M3 ∼ m2
t /

√
�m2

atm ∼ 1015 GeV, this implies M1 ∼ 105 GeV. A detailed study yields
masses in the range M1 ∼ 104–106 GeV.As we saw in the previous section, such small masses are
incompatible with conventional thermal leptogenesis. A possible way out are quasi-degenerate
heavy neutrino masses [56]. Alternatively, the most naive SO(10) mass relations are not
correct.

Parameters consistent with thermal leptogenesis have recently been obtained in a six-
dimensional SO(10) GUT model, compactified on an orbifold [57]. Due to mixings with a
heavy lepton doublet and a heavy right-handed down-type quark, one finds for the mass matrices
in a particular flavour basis the relations,

M ∝ mu, m′
D ∼ m′

d ∼ m′
e. (62)

Here M and mu are diagonal 3 × 3 matrices, and m′
D, m′

d and m′
e are 4 × 4 matrices, due to the

mixing with the heavy states. Integrating them out, the neutrino mass matrix can be expressed
approximately in terms of the quark mass matrices,

mν ∝ md

1

mu

mT
d . (63)
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For the light neutrino masses, this leads to the estimate

m1

m3
∼

(
md

mb

)2
mt

mu

∼ 0.1. (64)

A detailed calculation [57] confirms this result. Furthermore, one finds the mixing angle
�13 ∼ (mcmb)/(mtms) ∼ 0.1, and ε ∼ 10−6, m̃1 ∼ 10−2 eV, M1 ∼ (mu/mt)M3 ∼ 1010 GeV,
consistent with thermal leptogenesis.

6. Cosmological aspects

It is well known that the temperature required by thermal leptogenesis, TB � 109 GeV, is
potentially in conflict with the thermal production of gravitinos in the early universe [58, 59].
Late gravitino decays after nucleosynthesis significantly alter the successful BBN predictions.

The production of gravitinos is dominated by QCD processes, and the gravitino number
density increases linearly with the reheating temperature after inflation,

n3/2

nγ

∝ g2
3

M2
p

TR, (65)

where g3 is the QCD gauge coupling. Correspondingly, the BBN upper bound on the allowed
gravitino energy density, ρ3/2 = m3/2n3/2, implies an upper bound on the reheating temperature.
Detailed studies [60, 61] lead to the stringent bounds TR < 107–109 GeV for gravitino masses in
the range m3/2 = 0.1–1 TeV. Hence, unstable gravitinos are in conflict with thermal leptogenesis,
unless the gravitino mass is very large, m3/2 � 50 TeV.

Non-thermal leptogenesis models are still compatible with the above bounds on the reheating
temperature. For instance, in some supersymmetric models the scalar partner Ñ1 of the heavy
neutrino N1 might be the inflaton [62] and its decays could then generate the baryon asymmetry.
In this case, the leptogenesis temperature can be below 107 GeV [26, 63], which would be
consistent with the above gravitino bounds on TR. However, a recent analysis of the BBN
constraints6 [64] with particular attention to the hadronic decay modes of the gravitino yields
the much stronger bound TR � 106 GeV for gravitino masses m3/2 = 0.1–1 TeV. Hence, unless
the gravitino is extremely heavy, non-thermal leptogenesis also appears to be inconsistent with
unstable gravitinos.

Already in connection with thermal leptogenesis, it has therefore been suggested that the
gravitino may be the lightest superparticle (LSP) and stable [65]. In this case, gravitino production
is enhanced [66],

n3/2

nγ

∝ g2
3

M2
p

(
mg̃

m3/2

)2

TR, (66)

where mg̃ is the gluino mass. Consistency with BBN and the observed amount of dark matter then
yields an upper bound on the gravitino mass and a lower bound on the mass of the next-to-lightest
superparticle (NSP). In [65], the case of a higgsino NSP was analysed, which is now disfavoured
due to the improved BBN bounds on hadronic NSP decays [64]. Still viable is the case where

6 Note that the analysis strongly depends on the assumed primordial 6Li abundance.
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Figure 5. Relic gravitino density for different values of reheating temperature
and gravitino mass. ξ/η2 = 1. mg̃ = 1 TeV, which implies m3/2 < 0.1TeV for a
stable gravitino. For TR > T∗, �3/2h

2 is independent of TR and m3/2.

a scalar lepton is the NSP [67]. For TB = 3 × 109 GeV the upper bound on the gluino mass is
mg̃ < 1.3 TeV if a scalar tau is the NSP; for a scalar neutrino NSP one finds mg̃ < 1.8 TeV [67].

The relic density of gravitinos is determined by thermal production at the reheating
temperature TR after inflation and also by NSP decays after their freeze-out temperature. It is an
interesting possibility that the latter process dominates. This would be the case for low reheating
temperatures, incompatible with leptogenesis. One then obtains a prediction for the amount of
gravitino dark matter which is independent of the reheating temperature [68]. If gravitinos are
the only component of dark matter, the superparticles have to be rather heavy. For τ̃R as NSP
one finds m3/2 = 0.2–1TeV and mτ̃R

� 0.5 TeV [69].
Recently, it has been pointed out that the thermal production of gravitinos is significantly

changed in theories where the gauge coupling depends on the expectation value of a scalar field
φ [70]. For instance, in the case of gaugino mediation, one has

1

g2
0

+
φT

M
= 1

g2(φT )
, (67)

where g0 is the zero-temperature gauge coupling, M is a mass scale between the unification scale
and the Planck mass, and φT is the deviation of the field φ from its zero-temperature value at
temperature T . At temperatures above a critical temperature,

T∗ ∼ m3/2

(
Mp

mg̃

)1/2

, (68)

the gauge coupling decreases, and the gravitino production is frozen. Remarkably, the relic
gravitino density is essentially determined just by the gluino mass [70],

�3/2h
2 � (0.05–0.2) ×

(
mg̃

1 TeV

)3/2 (
ξ

η2

)1/4

, (69)

where the factor7 ξ/η2 depends on the mechanism of supersymmetry breaking. For gaugino and
gravity mediation one has ξ/η2 = O(1). The observed amount of dark matter is then obtained for
7 Here the parameter ξ1/2 denotes the ratio of the φ mass and the gravitino mass.
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a gluino mass mg̃ ∼ 1 TeV, which will be tested at the LHC.As figure 5 illustrates, the temperature
where thermal leptogenesis takes place is probably larger than the critical temperature T∗. For
a gluino mass mg̃ ∼ 1 TeV one then obtains automatically the observed amount of cold dark
matter.

Finally, thermal leptogenesis can also be consistent with gravitino dark matter if the gravitino
is very light, m3/2 � 0.1–10 MeV [71, 72], which is realized in gauge mediation models.
Alternatively, the gravitino can also be very heavy, m3/2 ∼ 100 TeV [73, 74], as in anomaly
mediation.

In summary, leptogenesis strongly constrains the nature of dark matter. For very heavy
unstable gravitinos, m3/2 ∼ 100 TeV, where ordinary WIMPs can be the dark matter, the
superparticle mass spectrum is strongly restricted. Alternatively, the gravitino has to be the LSP
with a mass below ∼0.1 TeV; the observed value of �CDMh2 can then be naturally explained.
Hence, the identification of the invisible dark matter, which will hopefully take place at colliders
in the coming years, will also shed light on baryogenesis and therefore on the origin of the visible
matter.
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