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son channel. In the pseudo-scalar channel and for valence quark masses around the strange

quark, the disconnected contribution induces a considerable increase of the meson mass.

This contribution quickly decreases as the quark mass increases. For charmonium the effect

is very small although a decrease of the pseudoscalar mass induced by the disconnected

contribution cannot be ruled out.
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1. Introduction

Lattice QCD has been able to provide a wealth of results for the hadron spectrum, both in

the quenched approximation and with dynamical quarks [1]. Most of the low-lying hadron

masses are reproduced under extrapolation to the continuum limit and to the physical u

and d quark masses. Even in the quenched approximation there is a remarkable agreement

with experimental data for the light hadron spectrum, deviations typically amounting

to 10 per cent. The charmonium hyperfine splitting is, however, an exception to such

success. Recent systematic computations in the quenched approximation have pointed out

a significant discrepancy between the lattice results and experimental data: the former is

30–40% smaller than the latter, ∆M =MJ/ψ −Mηc = 117MeV.

It is difficult to address the calculation of charmonium spectrum with current com-

putational resources. Since the charm quark mass is not well below the accessible lattice

cutoffs, lattice formulations that reduce the O(amc) lattice artifacts seem mandatory. The

most promising, while brute force approach, is to use a relativistic formulation with suffi-

ciently small lattice spacing and O(a)-improved quark actions. This is the approach taken

in ref. [2] by the QCD-TARO Collaboration, using the nonperturbatively O(a)-improved

Wilson quark action on quenched isotropic lattices [2]. Numerical simulations with lattice

cutoffs ranging from 2 to 5GeV found ∆M = 77(2)(6)MeV in the continuum limit.

Other approaches involve the use of effective heavy quark actions. Among them, non-

relativistic QCD (NRQCD) has been investigated most extensively. The latest NRQCD

quenched result is ∆M = 55(5)MeV (with the scale set by the P -S splitting) [3]. In this

case, lattice artifacts are difficult to control since brute force elimination by taking the
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Figure 1: Connected (Left) and OZI-suppressed (Right) diagrams contributing to the pseudoscalar

(Γ = γ5) and vector (Γ = γµ) channels.

continuum limit is impossible. Relativistic formulations, such as the Fermilab approach [4,

5] and anisotropic lattices [6]–[9], have an advantage in this sense. However, they give

results for the, continuum extrapolated, hyperfine splitting which also definitely deviate

from experiment. Here it should be noted that for a quark mass not sufficiently smaller

than the spatial lattice cutoff, the dynamics inside heavy quarkonia may not be precisely

described by these actions whose spatial derivative terms are defined only with nearest

neighbouring sites. This is because of the O((aσp)
2) errors, where aσ is the spatial lattice

spacing and p the typical quark momentum. This error might become important for heavy

quarkonium, for which p ∼ αmq [9, 10]. This is in contrast with the situation for light

and heavy-light hadrons, where p ∼ ΛQCD. Therefore advantages of these relativistic

formulations applied to heavy quarkonia are rather limited.

From all the previous studies, disagreement between the quenched lattice calculation

and experiment has been established for the charmonium hyperfine splitting.

There are two candidates to explain this discrepancy. The first one is dynamical quark

effects. Although a systematic study of these effects, involving a continuum extrapolation,

has not been performed yet, several groups have tried to estimate them [11, 12, 13]. A recent

lattice computation with 2+1 flavours of improved staggered quarks at a−1 ' 1.6GeV has

reported a hyperfine splitting ∆M = 97(2) GeV [13]. This value is still 20% smaller than

the experimental one. Since they applied the Fermilab action with tadpole-improved tree-

level value for the clover coefficient, the remaining discrepancy may be attributed to the

O(αa) and O((ap)2) systematic errors. Systematic studies with higher lattice cutoffs and

involving continuum limit extrapolations are strongly desired.

Another possible contribution, which has not been incorporated in any of the lattice

computations (quenched or unquenched) performed up to now, comes from OZI-suppressed

(disconnected) diagrams as those in figure 1 [2]. Such diagrams must be included in the

evaluation of correlators of unflavoured mesons, such as ηc and J/ψ. Although, according

to the perturbative picture, this contribution is expected to be small in heavy quarkonium,

it might be non-negligible compared to the, also small, hyperfine splitting. Moreover, its

effect might be enhanced. This happens, indeed, in the light quark mass region, where the

contribution of the disconnected diagram to the pseudoscalar channel is strongly enhanced

by the UA(1) anomaly.1 It is therefore important to quantify the size of such contribution

to the charmonium correlator.

1Note, however, that the contribution of the UA(1) anomaly raises the mass of the pseudoscalar while

not affecting that of the vector. This effect would induce a decrease of the hyperfine splitting, instead of

the increase required to match the experimental value for charmonium.
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The goal of this paper is to examine the second possibility. A similar analysis has

recently been performed by McNeile and Michael (UKQCD Collaboration) in ref. [20]. We

aim here at an exploratory study to estimate whether the disconnected diagram can give a

significant contribution to the charmonium hyperfine splitting. This issue is not completely

disentangled from the one of dynamical quark effects. Indeed, these effects can be particu-

larly large for disconnected diagrams. In the quenched approximation closed quark loops,

as those in the right panel of figure 1, can only be connected through gluonic contributions.

For unquenched simulations, however, they can also be connected by insertion of virtual

quark loops. This induces a very different asymptotic behaviour between quenched and

unquenched disconnected correlators, as discussed at length for the case of the lattice deter-

mination of the η′ mass [14]. In addition, through the disconnected diagram charmonium

states mix with glueballs and lighter quarkonium. Mixing with the latter is completely

neglected in the quenched calculation, while mixing with the former is only partially taken

into account.

We do not intend here to analyze the failure of the quenched approximation in the

calculation of the hyperfine splitting but to address the more general question of whether

disconnected correlators can give a sizable contribution to this splitting. Since it is ex-

pected that such contribution will be quickly obscured by statistical noise, large statistics

is essential for the present study and this has dictated our choice of lattice parameters

and lattice action. The number of configurations collected for the quenched calculation of

the hyperfine splitting in [2] is not sufficient for this study and increasing the statistics for

these large lattices is beyond our computational resources. For this reason we use, instead,

a large set (3200) of available configurations with a rather coarse 123 × 24 lattice, with

fixed lattice cutoff a−1 ' 1.2GeV and with two dynamical flavours of staggered quarks

with amsea = 0.10 (no attempt at a continuum extrapolation will be presented in this

paper). Given the rather large sea quark masses adopted, we expect the effect of dynam-

ical quarks to be relatively small, hence our results give also an insight for the quenched

situation. It would be important to study the sea quark mass dependence to examine

how such contribution shifts the charmonium masses for physical sea quark masses and

Nf = 3.

In order to treat charm quarks on our rather coarse lattice, we adopt the Fermilab

quark action. Since the disconnected diagram contribution to the charmonium hyperfine

splitting is hard to detect because of large statistical noise, we also compute this contri-

bution for lighter valence quarks, and estimate how it varies as the valence quark mass

is increased towards that of the charm quark. This helps us determine its value at the

charm quark mass. This is the only purpose of our varying the valence quark mass. For

lighter valence quarks, the inconsistency between our sea and valence quark actions would

generate systematic errors, which would cause additional problems for the determination

of the meson spectrum and of the hyperfine splitting. We do not consider this regime

here.

The paper is organised as follows. In the next section we describe the set up for our

calculation. Section 3 presents our results. The last section is devoted to conclusions and

discussion.
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2. Formulation

2.1 Quarkonium correlation function

We define the quarkonia correlation function with a quarkonium operator O(~x, t),

O(~x, t) =
∑

~y

q̄(~x+ ~y, t)Γq(~x, t)ϕ(~y) , (2.1)

where ϕ(~y) is a smearing function and Γ is 4 × 4 matrix which specifies the quantum

numbers of the quarkonium state.

We take Γ = γ5 and γi for the pseudoscalar and vector channels, respectively. Since

the operator O(~x, t) contains quark fields of the same flavour, by contracting the quark

lines the correlator decomposes into a connected Ccon(t) and a disconnected part Cdis(t),

Cfull(t) =
∑

~x

〈O†(~x, t)O(~0, 0)〉 ≡ Ccon(t) + Cdis(t) . (2.2)

Using the quark propagator D−1(~x, t; ~x′, t′), where D is the Dirac operator, we can write

Ccon(t) and Cdis(t) as follows,

Ccon(t) = −
∑

~x,~y,~z

〈

Tr[ϕ(~y)D−1
†
(~x+ ~y, t;~0, 0)γ5Γϕ(~z)D

−1(~x, t; ~z, 0)Γγ5]
〉

, (2.3)

Cdis(t) =
1

V3
〈L(t)∗L(0)〉 , (2.4)

where Tr is the trace over the colour and spinor indices, V3 the spatial volume. The quark

loop diagram L(t) is defined as

L(t) =
∑

~x,~y

Tr
[

ϕ(~y)D−1(~x, t; ~x+ ~y, t)Γ
]

. (2.5)

As the valence quark mass increases, the disconnected correlator is expected to decrease

compared to the connected part and the extraction of a signal for the disconnected part may

become increasingly difficult. It is therefore crucial to improve the quarkonium operator

so as to increase the overlap with the ground state. For this purpose, we use spatially

extended operators with smearing function ϕ(~x) in the Coulomb gauge. For ϕ(~x) we adopt

gaussian functions with width around the expected charmonium radius and select the best

one among them.

In order to evaluate the trace in eq. (2.5), we employ the complex Z2 noise method [16].

This method is a popular technique to evaluate quark loop contributions to correlators.

An application to the smeared operator, eq. (2.5), is straightforward. We note that one

needs to solve the quark propagator only once for each noise vector for all the smearing

functions applied.

2.2 Valence quark action

The coarse lattice we employ does not allow for an isotropic formulation of heavy valence

quarks whose mass is not sufficiently smaller than the lattice cutoff. For this reason we
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adopt the Fermilab action [4],

Sq =
∑

x,y

q̄(x)

{

δxy − κσγF

[

(1− γ4)U4(x)δx+4̂,y + (1 + γ4)U4(x− 4̂)δx−4̂,y

]

−

− κσ
∑

i

[

(r − γi)Ui(x)δx+î,y + (r + γi)Ui(x− î)δx−î,y

]

−

− κσcE
∑

i

σ4iF4i(x, y)δx,y − κσcB
∑

i>j

σijFij(x, y)δx,y

}

q(y) , (2.6)

where the spatial Wilson parameter is set to r = 1. The parameter γF is to be tuned so

that the rest mass, M1 ≡ E(~p = 0), equals the kinetic mass,

1

M2
≡
∂2E(~p)

∂p2i

∣

∣

∣

∣

~p=0

, (2.7)

for, for example, a meson dispersion relation. We define κ by incorporating tadpole im-

provement [17] as
1

κ
≡

1

u0κσ
− 2(γF + 3r − 4) (= 2(m0 + 4)) , (2.8)

where m0 is the bare quark mass [18]. As the mean-field value of link variable, u0, we

adopt the average value in the Landau gauge, u0 = 〈TrUµ(x)〉/3. The value of γF is tuned

for each value of κ. Then the chiral extrapolation is to be performed in 1/κ, a step that

is not taken in this paper. The clover coefficients, cE and cB , control the O(a) systematic

uncertainty. In this work, we adopt the tadpole improved values [17],

cE = cB =
1

u30
. (2.9)

This action allows, in principle, for a relativistic treatment of heavy quarks but, as

pointed out in section 1, even with nonperturbatively tuned γF , the results suffer from

O((ap)2) errors, where p ∼ αmq in the case of heavy quarkonium, in addition to the O(αa)

error from the clover terms. We expect this effect not to be essential for a qualitative

estimate of the size of the contribution from the disconnected diagram. Better control over

these errors is required, however, for a quantitative evaluation and continuum extrapolation

of the contribution.

3. Numerical simulations

3.1 Lattice setup

The numerical simulation is performed on lattices of size 123 × 24, with two flavours of

staggered dynamical quarks. The gauge action is the standard Wilson plaquette action

with β = 5.50. The dynamical staggered quark mass is mseaa = 0.10. The configuration

is generated with the hybrid R-algorithm with δt = 0.02 and unit length of trajectory. We

prepare 32 independent initial configurations and generate configurations in parallel. Each

configuration is separated by 5 trajectories, after 900 trajectories for thermalization.

– 5 –



J
H
E
P
0
8
(
2
0
0
4
)
0
0
4

8 8.5 9 9.5 10 10.5 11
1/κ

0.6

0.7

0.8

0.9

1

1.1

1.2

γ F
*

Figure 2: Tuned parameter γ∗F using the meson dispersion relation.

The lattice cutoff scale is set by Sommer’s hadronic radius, r0, which is defined through

r20F (r0) = 1.65, where F (r) is the force between static quark and antiquark [19]. Setting

r0 = 0.5 fm yields a−1 = 1.2012(60) GeV. For tadpole improvement [17], the mean-field

value is determined in the Landau gauge as u0 = 〈TrUµ(x)〉/3, giving u0 = 0.824285(89)

and clover coefficient cSW = 1.785 for our lattice. In the following analysis, the statistical

error is estimated by the jackknife method.

3.2 Tuning of valence heavy quark action

In this subsection, we describe the tuning of the parameter γF in the valence quark action.

The tuning procedure is the same as for anisotropic lattices [18]. At each hopping parameter

κ, the coefficient γF in the quark action (2.6) is determined nonperturbatively using the

meson dispersion relation. For the meson dispersion relation, we assume the relativistic

form

E(~p)2 =M2
1 +

M1

M2
~p 2 +O(~p 4) , (3.1)

where M1 and M2 are the rest and kinetic masses of the meson. The value of γF is tuned

so that M1 =M2 holds.

The tuning of γF is performed with connected correlators of point operators, namely

ϕ(~x) = δ(~x), on 400 configurations. The meson energies are fitted to a quadratic form

for the pseudoscalar and vector channels. The obtained ξF =
√

M2/M1, the fermionic

anisotropy, are spin averaged and fitted to a linear function of γF . Interpolating to

(M1/M2) = 1, the tuned value of γF , γ
∗
F , is determined.

The result for γ∗F is displayed in figure 2. Since in the light quark mass region the

Fermilab action smoothly tends to the standard clover quark action, the value of γ ∗F should

approach unity as the quark mass decreases. From a tree level analysis, it should be a

decreasing function of 1/κ, and in the light quark mass region, a linear dependence in m2
q

– 6 –
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κ γ∗F Nconf NNV mPSa mV a

0.11294 1.039 1920 50 0.60714(92) 0.8479(17)

0.11013 0.957 1920 100 0.90071(81) 1.0753(13)

0.10732 0.894 1920 100 1.17518(74) 1.3135(11)

0.10476 0.854 1920 150 1.41022(70) 1.5257(10)

0.10220 0.805 3200 300 1.65156(51) 1.75154(73)

0.093417 0.6485 3200 300 2.50132(48) 2.56858(61)

Table 1: Parameters of the valence quarks. Nconf is the number of gauge configurations used;

they are generated from 32 independent initial configurations. The pseudoscalar and vector meson

masses are extracted from connected correlators with smeared operators.

is expected (mq = (1/κ−1/κc)/2, where κc is the critical hopping parameter (which is not

determined on the present lattice). In figure 2, although the decreasing tendency as 1/κ

increases is indeed observed, the quark mass dependence in the small mass region seems not

in agreement with the expected behaviour. This is presumably due to large lattice spacing

artifacts, one of which apparently comes from the assumed form of the meson dispersion

relation. This uncertainty may also cause γ∗F to approach a value slightly different from

unity [18]. Although we will not try to correct these systematic errors for the present

qualitative estimate of the hyperfine splitting, it is essential to have them under control in

order to extract reliable quantitative determinations.

The value of κ corresponding to the charm quark mass is determined by interpolating

the results for the vector meson mass so as to reproduce the physical J/ψ meson mass.

The value of γ∗F is also interpolated to that κ value. The resulting κ and γ∗F are listed in

the last line of table 1, and displayed as the rightmost point in figure 2 together with the

other five cases listed in table 1.

3.3 Connected correlators

Charmonium correlators are computed for the quark parameters listed in table 1. Let us

start with the connected correlator, eq. (2.3). In the following analysis, the error due to

the uncertainty in γ∗F is not evaluated.

We first observe the efficiency of the smearing technique on the connected correla-

tors. Figure 3 displays the effective mass plot for the connected correlators with local and

smeared operators in pseudoscalar and vector channels. Here the effective mass is defined

with
C(t)

C(t+ 1)
≡

cosh [(T/2 − t)meff(t)]

cosh [(T/2 − t− 1)meff (t)]
. (3.2)

We use smearing functions with gaussian form and several width values, and select the one

that gives better plateaus in the effective mass plot. Figure 3 clearly shows that the smeared

operator considerably enhances the overlap with the ground state, which dominates the

connected correlator beyond t = 4.
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Figure 3: Effective masses of connected correlators with local and smeared operators.
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Figure 4: Typical samples of the dependence on the number of noise vector of pseudoscalar

disconnected correlators at t = 3. Since the results are averaged over configurations, the error

includes both that of the noise method and that of the ensemble average.

In table 1 we list the meson masses extracted from the connected correlators. At the

charm quark mass, the obtained hyperfine splitting, ∆M ' 81MeV, is consistent with

previous results [13], and again far below the experimental value.

3.4 Evaluation of disconnected diagram

For an evaluation of the disconnected correlators, eq. (2.4), we apply the Z2 noise method.

Figure 4 shows typical samples of the pseudoscalar disconnected correlator at a time slice

t = 3 as a function of the number of noise vectors. The top and bottom panels display

– 8 –
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the results for κ = 0.11013 and 0.10476. Since the results are ensemble averages over

configurations, the displayed error includes both the quantum fluctuations and the error

due to a finite number of noise vectors.

In order to estimate the contribution of disconnected diagrams we have to control

both errors. A reasonable approach is to choose the number of noise vectors, NNV , so as

to keep both errors at similar levels. Although we can find an “optimal NNV ” at each t

by observing NNV dependence of the error displayed in figure 4, it is sufficient to roughly

estimate such NNV , since increasing the number of configurations, Nconf , also reduces the

error of noise method and we choose rather large values of Nconf . The number of noise

vectors, NNV , and gauge configurations, Nconf selected for each valence quark mass are

displayed in table 1. As the quark mass increases, the signal to noise ratio becomes worse

rapidly. Thus a larger number of configurations as well as of noise vectors are prepared in

this calculation.

3.5 Quarkonium correlators

In this section we evaluate the relevance of the disconnected part of the meson correlator

for the meson spectrum. Figures 5 and 6 show the ratio R(t) = Cdis(t)/Ccon(t). R(t) is

often used to evaluate the contribution of the disconnected diagram [15]. If the ground

state dominates both the connected and full correlators, their asymptotic time dependence

can be described by single exponentials:

Ccon(t) = Acon exp (−mcont) , (3.3)

Cfull(t) = Ccon(t) + Cdis(t) = Afull exp (−mfullt) . (3.4)

Then the ratio behaves as

R(t) =
Cdis(t)

Ccon(t)
=
Afull

Acon
exp {−(mfull −mcon)t} − 1 . (3.5)

This ratio is useful for exploring the sign and magnitude of the mass difference (mfull−mcon)

when the signal is noisy. In figures 5 and 6, we plot both point and smeared correlator

ratios R(t). For the latter, effective masses for full and connected correlators are also

displayed in the right panels of figures 5 and 6.

For the vector channel, we find no sizable contribution from the disconnected diagram

in the whole quark mass region explored. Similar results have been also reported in [15].

This is consistent with the OZI suppression. In contrast, in the pseudoscalar channel, a

clear signal is observed in the light quark mass region giving rise to an increase of the

pseudoscalar mass. This is consistent with previous works on the flavour singlet η (η ′)

meson and with theoretical expectations. It is important to note that this effect is opposite

to what would be needed to match the experimental result for charmonium. Given that the

vector mass receives no sizable contribution, a decrease of the ηc mass by about 30–40MeV

is required to bring the lattice measurement of the hyperfine splitting up to the value of

117MeV measured in experiment. Indeed, the mass difference between full and connected

correlators rapidly decreases as the quark mass increases, leaving in principle room for a

– 9 –
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Figure 5: Ratio of disconnected to connected correlators (left panels) and effective mass of full and

connected correlators (right panels) for κ = 0.11294 (top), 0.11013 (middle), and 0.10732 (bottom).

change in the sign of the mass difference. In the left bottom panel of figure 6, the dashed

curves represent R(t) from eq. 3.5 for mfull −mcon = ±20MeV, assuming Afull/Acon = 1.

In the scale of the plot, a small deviation of Afull/Acon from one would induce a shift of

the curves, keeping the slopes almost constant. Due to the large statistical errors for t > 2
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Figure 6: The same quantities as figure 5 for κ = 0.10476 (top), 0.10220 (middle) and 0.093417(bot-

tom). The latter value of κ corresponds to the charm quark. In the left bottom panel, the dashed

curves represents the cases where mfull −mcon = ±20MeV with Afull/Acon = 1.

we cannot make any definite statement about the slope of the data: it is compatible with

zero within errors but small slopes of order ±20MeV cannot be ruled out.

To better settle this point, we plot in figure 7 the mass difference between the full

and connected correlators for the pseudoscalar channel as a function of the vector meson
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Figure 7: The mass difference between the full and connected correlators, in the pseudoscalar

channel, defined with the effective masses at t = 1 and t = 2 as a function of vector meson mass.

We call the effective mass at ”t = 1” that derived from comparing t = 2 and t = 1.

mass. Here the mass difference is defined by the difference between effective masses of full

and connected correlators at t = 1 and t = 2. At these time slices, the effective mass

plots in figures 5 and 6 do not exhibit clear plateau behaviour. However, the contribution

of the excited states partially cancel in the difference. In fact, the results for t = 1 and

2 differ from each other only slightly. We do not plot the result for t = 2 at the charm

quark mass because the result is too noisy. Figure 7 again shows that the mass difference

between full and connected correlator is positive for light quark masses. It rapidly decreases

as the quark mass increases, becoming almost zero at about half the charm quark mass.

Our results at the charm quark mass are not conclusive. At the one sigma level they are

compatible both with zero mass difference or with a negative mass difference of about

−20MeV. This is consistent with the results found by McNeile and Michael (UKQCD

Collaboration) in [20].

4. Conclusions and discussion

We have investigated the contribution of disconnected diagrams to the hyperfine splitting

of quarkonium in a quark mass region ranging from strange to charm quark masses. As

displayed in figures 5, 6, we found almost no contribution of disconnected diagrams to the

correlators in the vector channel in the whole quark mass region explored in this work. For

the pseudoscalar channel, however, there is a sizable contribution around the strange quark

mass region which quickly decreases as the quark mass increases and almost vanishes around

half the charm quark mass. At the charm quark mass, the contribution of the disconnected

correlator is very small, in agreement with the expected OZI suppression. Given our large

statistical errors we cannot, however, rule out that the mass difference between full and
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connected correlators becomes negative, although small. In this respect we agree with the

results previously found by McNeile and Michael [20] who found room for a mass difference

of the order of −20MeV .

To determine how large is the contribution of disconnected diagrams for more physical

situations, one needs to perform the chiral extrapolation in the sea quarks and the con-

tinuum limit. As argued in the introduction, going to lighter sea quarks may considerably

modify the contribution from disconnected diagrams. In particular, an effect that could

induce a further decrease in the ηc mass would be mixing with a pseudoscalar glueball were

this to be lighter than the ηc. This is a possibility that has been discussed also in [20],

although it has been considered not very likely given the fact that lattice determinations

of the pseudoscalar glueball gives masses below that of the ηc meson.
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