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1. Introduction

The theoretical efforts to establish a deeper understanding of Nature has led to very inter-

esting frameworks such as String theories and Non-commutative Geometry both of which

aim to describe physics at the Planck scale. Looking for the origin of the idea that co-

ordinates might not commute we might have to go back to the days of Heisenberg. In

the recent years the birth of such speculations can be found in refs. [1, 2]. In the spirit

of Non-commutative Geometry also particle models with non-commutative gauge theory

were explored [3] (see also [4]), [5, 6]. On the other hand the present intensive research has

been triggered by the natural realization of non-commutativity of space in the string theory

context of D-branes in the presence of a constant background antisymmetric field [7]. Af-

ter the work of Seiberg and Witten [8], where a map (SW map) between non-commutative

and commutative gauge theories has been described, there has been a lot of activity also in

the construction of non-commutative phenomenological lagrangians, for example various

non-commutative standard model like lagrangians have been proposed [10, 11].1 In partic-

ular in ref. [11], following the SW map methods developed in refs. [9], a non-commutative

standard model with SU(3) × SU(2) × U(1) gauge group has been presented. These non-

commutative models represent interesting generalizations of the SM and hint at possible

new physics. However they do not address the usual problem of the SM, the presence of

a plethora of free parameters mostly related to the ad hoc introduction of the Higgs and

1These SM actions are mainly considered as effective actions because they are not renormalizable. The

effective action interpretation is consistent with the SM in [11] being anomaly free [12]. Non-commutative

phenomenology has been discussed in [13].
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Yukawa sectors in the theory. At this stage it is worth recalling that various schemes, with

the Coset Space Dimensional Reduction (CSDR) [14]–[17] being pioneer, were suggesting

that a unification of the gauge and Higgs sectors can be achieved in higher dimensions.

Moreover the addition of fermions in the higher-dimensional gauge theory leads naturally

after CSDR to Yukawa couplings in four dimensions. In the successes of the CSDR scheme

certainly should be added the possibility to obtain chiral theories in four dimensions [18]–

[21] as well as softly broken supersymmetric or non-supersymmetric theories starting from

a supersymmetric gauge theory defined in higher dimensions [22].

In this paper we combine and exploit ideas from CSDR and Non-commutative Geom-

etry. We consider the dimensional reduction of gauge theories defined in high dimensions

where the internal space is a fuzzy space (matrix manifold). In the CSDR one assumes that

the form of space-time isMD =M4×S/R with S/R a homogeneous space (obtained as the

quotient of the Lie group S via the Lie subgroup R). Then a gauge theory with gauge group

G defined on MD can be dimensionally reduced to M 4 in an elegant way using the symme-

tries of S/R, in particular the resulting four dimensional gauge group is a subgroup of G.

In the present work we will apply the method of CSDR in the case where the internal part

of the space-time is a finite approximation of the homogeneous space S/R, i.e. a fuzzy coset

(fuzzy cosets are studied in [24]–[27]). In particular we study the fuzzy sphere case [23].

Fuzzy spaces are obtained by deforming the algebra of functions on their commutative par-

ent spaces. The algebra of functions (from the fuzzy space to complex numbers) becomes

finite dimensional and non-commutative, indeed it becomes a matrix algebra. Therefore,

instead of considering the algebra of functions Fun(MD) ∼ Fun(M 4)×Fun(S/R) we con-
sider the algebra A = Fun(M 4) ×Mn where Fun(M 4) is the usual commutative algebra

of functions on Minkowski space M 4 and Mn is the finite dimensional non-commutative

algebra of matrices that approximates the coset; on this finite dimensional algebra we still

have the action of the symmetry group S. This very property will allow us to apply the

CSDR scheme to fuzzy cosets. In the parent theory on MD = M4 × (S/R)F the non-

commutativity will lead us to consider the gauge groups G = U(1) and more generally

G = U(P ).2 Notice that there is no a priori relation between the gauge group G = U(P )

and the groups S and R.

In summary, gauge theories have been studied on non-commutative Minkowski space

as well as on the product space commutative Minkowski times internal non-commutative

space [3]–[6], see also ref. [28] and ref. [29], where the internal space is the lattice of a

finite group (and non-commutative geometry techniques allow to describe this lattice as a

manifold [30]). CSDR is a unification scheme for obtaining realistic particle models, and

the study of CSDR in the non-commutative context provides new particle models that

might be phenomenologically relevant. One could study CSDR with the whole parent

space MD being non-commutative or with just non-commutative Minkowski space or non-

2Alternatively one could also formulate the non-commutativity of (S/R)F in terms of a star product.

Then, using SW map, it is possible as in [9] to consider arbitrary gauge groups G. This approach relies

on a perturbative expansion in the non-commutativity parameter θâb̂(X̂) = [X̂ â, X̂ b̂] and therefore, see

e.g. (2.3), is particularly promising when the fuzzy manifold is described by n × n matrices in the limit

n→∞.
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commutative internal space. We specialize here to this last situation and thus in the end

obtain Lorentz covariant theories on commutative Minkowski space. We further specialize

to fuzzy non-commutativity, i.e. to matrix kind non-commutativity. We thus consider non-

commutative spaces like those studied in refs. [5, 6] and implementing the CSDR principle

on these spaces we obtain new particle models.

The paper is organized as follows. We first recall the geometry of fuzzy coset spaces,

with the leading example of the fuzzy sphere. In particular we study the Lie derivative on

spinors. Non-commutative gauge fields and non-commutative gauge transformations are

then also recalled. In section 3 we briefly review the CSDR scheme in the commutative case

and then implement the CSDR principle on fuzzy cosets, we thus obtain a set of contraints

–namely the CSDR constraints– that the gauge and matter fields must satisfy. Next we

first reinterpret an action onM 4×(S/R)F with G = U(P ) gauge group as an action onM 4

with U(nP ) gauge group. We then impose and solve the CSDR constraints and obtain the

gauge group and the particle content of the reduced four-dimensional action. Discussions

and conclusions are in section 4.

2. Fuzzy sphere and fuzzy coset spaces geometry

In this section first we describe the fuzzy sphere and study spinor fields on the fuzzy sphere,

then we briefly present more general fuzzy coset spaces. For the definition of the fuzzy

sphere and the gauge theory over the fuzzy sphere we follow ref. [23] (see also ref. [31]).

A fuzzy manifold is a discrete matrix approximation to a continuous manifold. The ap-

proximation is such that the discretized space preserves its continuum symmetries [27], a

fact that will allow us to apply the CSDR. A method in order to discretize a manifold is

to single out a (finite) subspace of the space of functions on the manifold. One would also

like this subspace to be invariant under multiplication. As a simple example consider the

Fourier analysis of a function on a circle,

f(θ) =

∞
∑

n=−∞
fne

inθ . (2.1)

A discretized version of the circle can be achieved replacing the algebra of functions on the

circle with the space of functions that do not exceed a given frequency N . We then write

fN (θ) =
N
∑

n=−N
fne

inθ . (2.2)

for a generic function, fN (θ) being an approximation of f(θ). However the product of two

such functions will in general extend to frequencies up to 2N and so the space of truncated

functions does not close under multiplication, we cannot speak of an algebra of truncated

functions. The same is true for the harmonic analysis on the sphere or any other coset

S/R. The solution is in the definition of a non-commutative product (a matrix product)

such that the space of truncated functions closes under this new product.
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The algebra of functions on the ordinary sphere can be generated by the coordinates

of R3 modulo the relation
∑3

â=1 xâxâ = r2. The fuzzy sphere S2F at fuzziness level N is

the non-commutative manifold whose coordinate functions X̂â = X̂ â are (N +1)× (N +1)

hermitian matrices proportional to the generators of the (N+1)-dimensional representation

of SU(2), X̂â = κJ â. They satisfy the condition
∑3

â=1 X̂âX̂â = r2 and the following

commutation relations

[X̂â, X̂b̂
] = iκC

âb̂ĉ
X̂ĉ , (2.3)

where κ = λNr with λN = 1/
√

N
2
(N

2
+1) [we use J2 = N

2 (
N
2 + 1) for the N + 1 dimensional

irrep. of SU(2)]. If we define

Xâ =
1

iκr
X̂â =

1

ir
Jâ (2.4)

we have

[Xâ, Xb̂
] = C

âb̂ĉ
Xĉ (2.5)

with C
âb̂ĉ

= ε
âb̂ĉ
/r and

3
∑

â=1

XâXâ = −
λ−2N
r2

.

In order to describe the algebra of the fuzzy sphere S2F we can equivalently use the X̂â or

the Xâ generators; in the following we will work in the latter basis.

A function on the fuzzy sphere is a symmetric polynomial in the X â coordinates. Since

these coordinates are proportional to the N + 1 dimensional irrep. of SU(2) we have that

any polynomial in the X â can be rewritten as a symmetric polynomial of degree ≤ N , and

any (N + 1) × (N + 1) matrix can be expanded as a symmetric polynomial in the X â.

Thus the space of functions on the fuzzy sphere S2F at level N has dimension (N + 1)2. A

convenient basis for this space is provided by the constant function 1 (the identity matrix)

plus the non-commutative spherical harmonics up to level N

Ŷlm = r−l
∑

â

f
(lm)
â1,â2,...,âl

X â1 · · ·X âl , l ≤ N (2.6)

with f lmâ1,â2,...,âl the traceless and symmetric tensor of the ordinary spherical harmonics.

Finally a generic function on the fuzzy sphere takes the form

f =

N
∑

l=0

l
∑

m=−l
flmŶlm , (2.7)

i.e. corresponds to an ordinary function on the commutative sphere with a cutoff on the

angular momentum. Obviously this space of truncated functions is closed under the non-

commutative (N + 1)× (N + 1) matrix product.

On the fuzzy sphere there is a natural SU(2) covariant differential calculus. This

calculus is three dimensional; the fact that the tangent space to the fuzzy sphere is three and

not two dimensional is a typical aspect of non-commutative spaces. The three derivations

eâ along Xâ of a function f are given by

eâ(f) = [Xâ, f ] . (2.8)
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Accordingly the action of the Lie derivatives on functions is given by

Lâf = [Xâ, f ] , (2.9)

they satisfy the Leibniz rule and the SU(2) Lie algebra relation

[Lâ,Lb̂] = C
âb̂ĉ
Lĉ . (2.10)

In the N →∞ limit the derivations eâ become

eâ = C
âb̂ĉ
xb̂∂ ĉ (2.11)

and only in this commutative limit the tangent space becomes two dimensional. The

exterior derivative is given by

df = [Xâ, f ]θ
â (2.12)

with θâ the one-forms dual to the vector fields eâ, 〈eâ, θb̂〉 = δb̂â. The space of one-forms is

generated by the θâ’s in the sense that for any one-form ω =
∑

i fi(dhi) ti we can always

write ω =
∑3

â=1 ωâθ
â with given functions ωâ depending on the functions fi, hi and ti.

From 0 = Lâ〈eb̂, θĉ〉 = 〈Lâeb̂, θĉ〉+ 〈eb̂,Lâθĉ〉 and Lâ(eb̂) = C
âb̂ĉ
eĉ [cf. (2.10)] we obtain the

action of the Lie derivatives on one-forms,

Lâ(θb̂) = C
âb̂ĉ
θĉ . (2.13)

It is then easy to check that the Lie derivative commutes with the exterior differential d,

i.e. SU(2) invariance of the exterior differential. On a general one-form ω = ω âθ
â we have

L
b̂
ω = L

b̂
(ωâθ

â) = (L
b̂
ωâ)θ

â − ωâC âb̂ĉθ
ĉ

=
[

X
b̂
, ωâ

]

θâ − ωâC âb̂ĉθ
ĉ (2.14)

and therefore

(L
b̂
ω)â =

[

X
b̂
, ωâ

]

− ωĉC ĉb̂â ; (2.15)

this formula will be fundamental for formulating the CSDR principle on fuzzy cosets.

Similarly, from L
b̂
(v) = L

b̂
(vâeâ) = [X

b̂
, vâ] + L

b̂
(eâ) we have

(L
b̂
v)â =

[

X
b̂
, vâ
]

− vĉCĉb̂â . (2.16)

The differential geometry on the product space Minkowski times fuzzy sphere, M 4×S2F , is
easily obtained from that onM 4 and on S2F . For example a one-form A defined onM 4×S2F
is written as

A = Aµdx
µ +Aâθ

â (2.17)

with Aµ = Aµ(x
µ, Xâ) and Aâ = Aâ(x

µ, Xâ).
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There are different approaches to the study of spinor fields on the fuzzy sphere [33, 34].

Here we follow ref. [2] (section 8.2).3 In the case of the product of Minkowski space and the

fuzzy sphere, M 4×S2F , we have seen that the geometry resembles in some aspects ordinary

commutative geometry in seven dimensions. As N → ∞ it returns to the ordinary six-

dimensional geometry. Let gAB be the Minkowski metric in seven dimensions and ΓA the

associated Dirac matrices which can be in the form

ΓA = (Γµ,Γâ) = (1⊗ γµ, σâ ⊗ γ5) . (2.18)

The space of spinors must be a left module with respect to the Clifford algebra. It is

therefore a space of functions with values in a vector space H′ of the form

H′ = H⊗ C2 ⊗ C4 ,

where H is an MN+1 module. The geometry resembles but is not really seven-dimensional,

e.g. chirality can be defined and the fuzzy sphere admits chiral spinors. Therefore the space

H ′ can be decomposed into two subspaces H′± = 1±Γ
2 H′, where Γ is the chirality operator

of the fuzzy sphere [2, 36]. The same holds for other fuzzy cosets such as (SU(3)/U(1) ×
U(1))F [25].

In order to define the action of the Lie derivative Lâ on a spinor field Ψ, we write

Ψ = ζαψα , (2.19)

where ψα are the components of Ψ in the ζα basis. Under a spinor rotation ψα → Sαβψβ

the bilinear ψ̄Γâψ transforms as a vector vâ → Λ
âb̂
vb̂. The Lie derivative on the basis ζα

is given by

Lâζα = ζβτ
â
βα , (2.20)

where

τ â =
1

2
C
âb̂ĉ

Γb̂ĉ , Γb̂ĉ = −1

4
(Γb̂Γĉ − ΓĉΓb̂) . (2.21)

Using that Γb̂ĉ are a rep. of the orthogonal algebra and then using the Jacoby identities

for C
âb̂ĉ

one has [τ â, τ b̂] = C
âb̂ĉ
τ ĉ from which it follows that the Lie derivative on spinors

gives a representation of the Lie algebra,

[Lâ,Lb̂]ζα = C
âb̂ĉ
Lĉ ζα . (2.22)

On a generic spinor Ψ, applying the Leibniz rule we have

LâΨ = ζα[Xâ, ψα] + ζβτ
â
βγψγ (2.23)

and of course [Lâ,Lb̂]Ψ = C
âb̂ĉ
LĉΨ; we also write

δâψα = (LâΨ)α = [Xâ, ψα] + τ âαγψγ . (2.24)

3For a discussion of chiral fermions and index theorems on matrix approximations of manifolds see

ref. [35].
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The action of the Lie derivative Lâ on the adjoint spinor is obtained considering the adjoint

of the above expression, since (Xâ)
† = −Xâ, (τ

â)† = −τ â, [τ â,Γ0] = 0 we have

δâψ̄α = [Xâ, ψ̄α]− ψ̄γτ âγα . (2.25)

One can then check that the variations (2.24) and (2.25) are consistent with ψ†Γ0ψ being

a scalar. Finally we have compatibility among the Lie derivatives (2.24), (2.25) and (2.15):

δâ(ψ̄Γ
d̂ψ) = (δâψ̄)Γ

d̂ψ + ψ̄Γd̂δâψ = [Xâ, ψ̄Γ
d̂ψ] + ψ̄[Γd̂, τ â]ψ = [Xâ, ψ̄Γ

d̂ψ]−C
âd̂ĉ
ψ̄Γĉψ

(and δâ(ψ̄Γ
µψ) = [Xâ, ψ̄Γ

µψ]). This immediately generalizes to higher tensors

ψ̄ Γ
d̂1
, . . . ,Γ

d̂i
ψ.

The sphere S2 is the complex projective space CP 1 . The generalization of the fuzzy

sphere construction to CP 2 and its spinc structure was given in ref. [24], whereas the

generalization to CPM−1 = SU(M)/U(M − 1) and to Grassmannian cosets was given in

ref. [27]. While a set of coordinates on the sphere is given by the R3 coordinates xâ modulo

the relation
∑

â x
âxâ = r2, a set of coordinates on CPM−1 is given by xâ, â = 1, . . . ,M 2−1

modulo the relations

xâxâ =
2(M − 1)

M
r2 , d ĉ

âb̂
xâxb̂ =

2(M − 2)

M
rxĉ , (2.26)

where d ĉ

âb̂
are the components of the symmetric invariant tensor of SU(M). Then

CPM−1 is approximated, at fuzziness level N , by n × n dimensional matrices Xâ,

â = 1, . . . ,M 2 − 1. These are proportional to the generators Jâ of SU(M) considered

in the n = (M − 1 +N)!/(M − 1)!N ! dimensional irrep., obtained from the N -fold sym-

metric tensor product of the fundamental M -dimensional representation of SU(M). As

in (2.4) we set Xâ = 1
ir
Jâ so that

3
∑

â=1

XâXâ = −
Cn
r2

, [Xâ, Xb̂
] = C

âb̂ĉ
Xĉ (2.27)

where Cn is the quadratic casimir of the given n-dimensional irrep., and rC
âb̂ĉ

are now the

SU(M) structure constants. More generally [25] we consider fuzzy coset spaces (S/R)F
described by non-commuting coordinates Xâ that are proportional to the generators of a

given n-dimensional irrep. of the compact Lie group S and thus in particular satisfy the

conditions (2.27) where now rC
âb̂ĉ

are the S structure constants (the extra constraints

associated with the given n-dimensional irrep. determine the subgroup R of S in S/R).

The differential calculus on these fuzzy spaces can be constructed as in the case for the

fuzzy sphere. For example there are dimS Lie derivatives, they are given by eq. (2.9)

and satisfy the relation (2.10). On these fuzzy spaces we consider the space of spinors to

be a left module with respect to the Clifford algebra given by (2.18), where now the σ â’s

are replaced by the γ â’s, the gamma matrices on RdimS; in particular all the formulae

concerning Lie derivatives on spinors remain unchanged.

– 7 –



J
H
E
P
0
4
(
2
0
0
4
)
0
3
4

2.1 Non-commutative gauge fields and transformations

Gauge fields arise in non-commutative geometry and in particular on fuzzy spaces very

naturally; they are linked to the notion of covariant coordinate [32]. Consider a field ϕ(X â)

on a fuzzy space described by the non-commuting coordinates X â. An infinitesimal gauge

transformation δϕ of the field ϕ with gauge transformation parameter λ(X â) is defined by

δϕ(X) = λ(X)ϕ(X) . (2.28)

This is an infinitesimal abelian U(1) gauge transformation if λ(X) is just an antihermitian

function of the coordinates X â, it is an infinitesimal nonabelian U(P ) gauge transformation

if λ(X) is valued in Lie(U(P )), the Lie algebra of hermitian P×P matrices; in the following

we will always assume Lie(U(P )) elements to commute with the coordinates X â. The

coordinates X are invariant under a gauge transformation

δXâ = 0 ; (2.29)

multiplication of a field on the left by a coordinate is then not a covariant operation in the

non-commutative case. That is

δ(Xâϕ) = Xâλ(X)ϕ , (2.30)

and in general the right hand side is not equal to λ(X)Xaϕ. Following the ideas of ordinary

gauge theory one then introduces covariant coordinates ϕâ such that

δ(ϕâϕ) = λϕâϕ , (2.31)

this happens if

δ(ϕâ) = [λ, ϕâ] . (2.32)

We also set

ϕâ ≡ Xâ +Aâ (2.33)

and interpret Aâ as the gauge potential of the non-commutative theory; then ϕâ is the

non-commutative analogue of a covariant derivative. The transformation properties of A â

support the interpretation of Aâ as gauge field; they arise from requirement (2.32),

δAâ = −[Xâ, λ] + [λ,Aâ] . (2.34)

Correspondingly we can define a tensor F
âb̂
, the analogue of the field strength, as

F
âb̂

= [Xâ, Ab̂]− [X
b̂
, Aâ] + [Aâ, Ab̂]− C ĉ

âb̂
Aĉ (2.35)

= [ϕâ, ϕb̂]− C ĉ

âb̂
ϕĉ . (2.36)

This tensor transforms covariantly

δF
âb̂

= [λ, F
âb̂
] . (2.37)

Similarly, for a spinor ψ in the adjoint representation, the infinitesimal gauge transforma-

tion is given by

δψ = [λ, ψ] , (2.38)

while for a spinor in the fundamental the infinitesimal gauge transformation is given by

δψ = λψ . (2.39)
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3. Coset space dimensional reduction (CSDR)

First we briefly recall the CSDR scheme in the commutative case. It is indeed instructive to

compare the commutative and the fuzzy case. The latter is described in the next subsection

which is self contained.

One way to dimensionally reduce a gauge theory on M 4 × S/R with gauge group G

to a gauge theory on M 4, is to consider field configurations that are invariant under S/R

transformations. Since the action of the group S on the coset space S/R is transitive (i.e.,

connects all points), we can equivalently require the fields in the theory to be invariant

under the action of S on S/R. Infinitesimally, if we denote by ζâ the Killing vectors on S/R

associated to the generators T â of S, we require the fields to have zero Lie derivative along

ζâ. For scalar fields this is equivalent to requiring independence under the S/R coordinates.

The CSDR scheme dimensionally reduces a gauge theory on M 4 × S/R with gauge group

G to a gauge theory on M 4 imposing a milder constraint, namely the fields are required

to be invariant under the S action up to a G gauge transformation [14, 15, 16]. Thus we

have, respectively for scalar fields ϕ and the one-form gauge field A

Lζâϕ = δWâϕ =Wâϕ ,

LζâA = δWâA = −DWâ , (3.1)

where δWâ is the infinitesimal gauge transformation relative to the gauge parameter W â

that depends on the coset coordinates (in our notations A and Wâ are antihermitian and

the covariant derivative reads D = d + A). The gauge parameters Wâ obey a consistency

condition which follows from the relation

[Lξâ ,Lξb̂ ] = L[ξâ,ξb̂] (3.2)

and transform under a gauge transformation ϕ→ gϕ as

Wâ → gWâg
−1 + (Lξâg)g−1 . (3.3)

Since two points of the coset are connected by an S-transformation which is equivalent to a

gauge transformation, and since the lagrangian is gauge invariant, we can study the above

equations just at one point of the coset, let’s say ya = 0, where we denote by (xµ, ya) the

coordinates of M 4 × S/R, and we use â, a, i to denote S, S/R and R indices. In general,

using (3.3), not all the Wâ can be gauged transformed to zero at ya = 0, however one

can choose Wa = 0 denoting by Wi the remaining ones. Then the consistency condition

which follows from eq. (3.2) implies that Wi are constant and equal to the generators of

the embedding of R in G (thus in particular R must be embeddable in G; we write RG for

the image of R in G).

The detailed analysis of the constraints given in refs. [14, 15] provides us with the

four-dimensional unconstrained fields as well as with the gauge invariance that remains

in the theory after dimensional reduction. Here we give the results. The components

Aµ(x, y) of the initial gauge field AM (x, y) become, after dimensional reduction, the four-

dimensional gauge fields and furthermore they are independent of y. In addition one can
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find that they have to commute with the elements of the RG subgroup of G. Thus the

four-dimensional gauge group H is the centralizer of R in G, H = CG(RG). Similarly, the

Aa(x, y) components of AM (x, y) denoted by ϕa(x, y) from now on, become scalars in four

dimensions. These fields transform under R as a vector v, i.e.

S ⊃ R

adjS = adjR+ v . (3.4)

Moreover ϕa(x, y) acts as an intertwining operator connecting induced representations of

R acting on G and S/R. This implies, exploiting Schur’s lemma, that the transformation

properties of the fields ϕa(x, y) under H can be found if we express the adjoint represen-

tation of G in terms of RG ×H:

G ⊃ RG ×H
adjG = (adjR, 1) + (1, adjH) +

∑

(ri, hi) . (3.5)

Then if v =
∑

si, where each si is an irreducible representation of R, there survives an

hi multiplet for every pair (ri, si), where ri and si are identical irreps. of R. If we start

from a pure gauge theory on M 4× S/R, the four-dimensional potential (at ya = 0) can be

shown to be given by

V =
1

4
FabF

ab =
1

4
(C ĉabϕĉ − [ϕa, ϕb])

2 , (3.6)

where we have defined ϕi ≡ Wi. However, the fields ϕa are not independent because

the conditions (3.1) at ya = 0 constrain them. The solution of the constraints provides

the physical dimensionally reduced fields in four dimensions; in terms of these physical

fields the potential is still a quartic polynomial. Then, the minimum of this potential will

determine the spontaneous symmetry breaking pattern.

Turning next to the fermion fields, similarly to scalars, they act as an intertwining op-

erator connecting induced representations of R in G and in SO(d), where d is the dimension

of the tangent space of S/R. Proceeding along similar lines as in the case of scalars, and

considering the more interesting case of even dimensions, we impose first the Weyl condi-

tion. Then to obtain the representation of H under which the four-dimensional fermions

transform, we have to decompose the fermion representation ρF of the initial gauge group

G under RG ×H, i.e.

ρF =
∑

(ti, hi) , (3.7)

and the spinor of SO(d) under R

σd =
∑

σj . (3.8)

Then for each pair ti and σi, where ti and σi are identical irreps. there is an hi multiplet

of spinor fields in the four-dimensional theory. In order however to obtain chiral fermions

in the effective theory we may have to impose further requirements [15, 19].
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3.1 CSDR over fuzzy coset spaces

In the present case space-time has the form M 4 × (S/R)F , where (S/R)F is the approxi-

mation of S/R by finite n× n matrices. On M 4× (S/R)F we consider a non-commutative

gauge theory with gauge group G = U(P ). We implement the CSDR scheme in the fuzzy

case in three steps:

1. We state the CSDR principle on fuzzy cosets and reduce it to a set of contraints

— the CSDR constraints (3.15), (3.17), (3.20), (3.23), (3.24) — that the gauge and

matter fields must satisfy.

2. We reinterpret actions on M 4 × (S/R)F with G = U(P ) gauge group as actions on

M4 with U(nP ) gauge group. More explicitely, we expand the fields on M 4×(S/R)F
in Kaluza-Klein modes on (S/R)F . Since the algebra of functions on (S/R)F is finite

dimensional we obtain a finite tower of modes; since (S/R)F is described by n × n

matrices a basis for this mode expansion is given by the generators of Lie(U(n)). In

this way we show that the different modes can be conveniently grouped togheter so

that an initial Lie(G)-valued field on M 4× (S/R)F (with G = U(P )) is reinterpreted

as a Lie(U(nP )) valued field on M 4. Of course also the CSDR constraints can now

be interpreted on M 4 instead of on M 4 × (S/R)F . This leads to their solution in

step 3).

3. We solve the CSDR constraints and obtain the gauge group and the particle content

of the reduced four-dimensional actions. This last step is first studied in the fuzzy

sphere case, and then for more general fuzzy cosets.

3.1.1 CSDR principle

Since the Lie algebra of S acts on the fuzzy space (S/R)F , we can state the CSDR principle

in the same way as in the continuum case, i.e. the fields in the theory must be invariant

under the infinitesimal S action up to an infinitesimal gauge transformation

L
b̂
ϕ = δWb̂ϕ =W

b̂
ϕ , L

b̂
A = δWb̂A = −DW

b̂
, (3.9)

where A is the one-form gauge potential A = Aµdx
µ +Aâθ

â, and W
b̂
depends only on the

coset coordinates X â and (like Aµ, Aa) is antihermitian. We thus write W
b̂
=Wα

b̂
T α, α =

1, 2 . . . P 2, where T i are hermitian generators of U(P ) and (W i
b )
† = −W i

b , here
† is hermitian

coniugation on the X â’s. The principle gives for the space-time part Aµ

L
b̂
Aµ = [Xâ, Aµ] = −[Aµ,Wb̂

] , (3.10)

while for the internal part Aâ

[X
b̂
, A

d̂
] +AâC

â

b̂ d̂
= −[A

d̂
,W

b̂
]−L

d̂
W
b̂
. (3.11)

From the first of eqs. (3.9) we have LâLb̂ϕ = (LâWb̂
)ϕ +W

b̂
Wâϕ, then using the relation

[La,Lb̂] = C ĉ

âb̂
Lĉ we obtain the consistency condition

[Xâ,Wb̂
]− [X

b̂
,Wâ]− [Wâ,Wb̂

] = C ĉ

âb̂
Wĉ . (3.12)
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Under the gauge transformation ϕ → ϕ′ = gϕ with g ∈ G = U(P ), we have Lâϕ′ = W ′âϕ
′

and also Lâϕ′ = (Lâg)ϕ+ g(Lâϕ), and therefore

Wâ →W ′â = gWâg
−1 + [Xâ, g]g

−1 . (3.13)

Now in order to solve the constraints (3.10), (3.11), (3.12) we cannot follow the strategy

adopted in the commutative case where the constraints were studied just at one point of

the coset (say ya = 0). This is due to the intrinsic nonlocality of the constraints. On the

other hand the specific properties of the fuzzy case (e.g. the fact that partial derivatives

are realized via commutators, the concept of covariant derivative) allow to symplify and

eventually solve the constraints. If we define

ωâ ≡ Xâ −Wâ , (3.14)

we obtain the following form of the consistency condition (3.12)

[ωâ, ωb̂] = C ĉ

âb̂
ωc , (3.15)

where ωâ transforms as

ωâ → ω′â = gωâg
−1 . (3.16)

Now eq. (3.10) reads

[ω
b̂
, Aµ] = 0 . (3.17)

Furthermore by considering the covariant coordinate,

ϕ
d̂
≡ X

d̂
+A

d̂
(3.18)

we have

ϕ→ ϕ′ = gϕg−1 (3.19)

and eq. (3.11) simplifies to

C
b̂d̂ê
ϕê = [ω

b̂
, ϕ

d̂
] . (3.20)

Therefore eqs. (3.15) (3.17) (3.20) are the constraints to be solved. Note that eqs. (3.19)

and (3.20) have the symmetry

ϕâ → ϕâ + ωâ , (3.21)

suggesting that ωâ is a ground state around which we calculate the fluctuations ϕâ, and

indeed, as formula (3.31) for the potential shows, ϕâ = ωâ minimize the potential; in fact

the potential vanishes for this value of ϕâ.

One proceeds in a similar way for the spinor fields. The CSDR principle relates the Lie

derivative on a spinor ψ, that we consider in the adjoint representation of G, to a gauge

transformation; recalling eqs. (2.21) and (2.24) we have

[Xâ, ψ] +
1

2
C
âb̂ĉ

Γb̂ĉψ = [Wâ, ψ] , (3.22)

where ψ denotes the column vector with entries ψα. Setting again ωâ = Xâ−Wâ we obtain

the constraint

− 1

2
C
âb̂ĉ

Γb̂ĉψ = [ωâ, ψ] . (3.23)
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We can also consider spinors that transform in the fundamental rep. of the gauge group

G, we then have [Xâ, ψ] +
1
2Câb̂ĉΓ

b̂ĉψ =Wâψ, and setting again ωâ = Xâ −Wâ we obtain

− 1

2
C
âb̂ĉ

Γb̂ĉψ = ωâψ − ψXâ . (3.24)

3.1.2 Actions and Kaluza-Klein modes

Let us consider a pure YM action on M 4× (S/R)F and examine how it is reinterpreted in

four dimensions. The action is

AYM =
1

4

∫

d4xTr trG FMNF
MN , (3.25)

where Tr is the usual trace over n× n matrices and is actually the integral over the fuzzy

coset (S/R)F ,4 while trG is the gauge group G trace. The higher-dimensional field strength

FMN decomposed in four-dimensional space-time and extra-dimensional components reads

as follows

(Fµν , Fµb̂, Fâb̂) ; (3.26)

explicitly the various components of the field strength are given by

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] , (3.27)

Fµâ = ∂µAâ − [Xâ, Aµ] + [Aµ, Aâ]

= ∂µϕâ + [Aµ, ϕâ] = Dµϕâ , (3.28)

F
âb̂

= [ϕâ, ϕb̂]− C ĉ

âb̂
ϕĉ ; (3.29)

they are covariant under local G transformations: FMN → gFMNg
−1, with g = g(xµ, X â).

In terms of the decomposition (3.26) the action reads

AYM =

∫

d4xTr trG

(

1

4
F 2
µν +

1

2
(Dµϕâ)

2

)

− V (ϕ) , (3.30)

where the potential term V (ϕ) is the F
âb̂

kinetic term (recall F
âb̂

is antihermitian so that

V (ϕ) is hermitian and non-negative)

V (ϕ) = −1

4
Tr trG

∑

âb̂

F
âb̂
F
âb̂

= −1

4
Tr trG

∑

âb̂

(

[ϕâ, ϕb̂]− C ĉ

âb̂
ϕĉ

)(

[ϕâ, ϕb̂]− C ĉ

âb̂
ϕĉ

)

. (3.31)

For sake of clarity we here recall that: Tr is the trace over the n×n matrices that describe

the fuzzy coset (S/R)F , trG is the trace over G = U(P ) matrices in the fundamental

representation, ϕ is the covariant coordinate [cf. (3.18)] whereX â is normalized as in (2.27),

rC â
b̂ĉ

are the S structure constants.

4Tr is a good integral because it has the cyclic property Tr(f1 . . . fp−1fp) = Tr(fpf1 . . . fp−1). It is also

invariant under the action of the group S, that we recall to be infinitesimally given by Lâf = [Xâ, f ].
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The action (3.30) is naturally interpreted as an action in four dimensions. The infinites-

imal G gauge transformation with gauge parameter λ(xµ, X â) can indeed be interpreted

just as an M 4 gauge transformation. We write

λ(xµ, X â) = λα(xµ, X â)T α = λh,α(xµ)T hT α , (3.32)

where T α are hermitian generators of U(P ), λα(xµ, X â) are n× n antihermitian matrices

and thus are expressible as λ(xµ)α,hT h, where T h are antihermitian generators of U(n).

The fields λ(xµ)α,h, with h = 1, . . . , n2, are the Kaluza-Klein modes of λ(xµ, X â)α. We

now consider on equal footing the indices h and α and interpret the fields on the r.h.s.

of (3.32) as one field valued in the tensor product Lie algebra Lie(U(n))⊗Lie(U(P )). This

Lie algebra is indeed Lie(U(nP )).5 Similarly we rewrite the gauge field Aν as

Aν(x
µ, X â) = Aαν (x

µ, X â)T α = Ah,αν (xµ)T hT α , (3.33)

and interpret it as a Lie(U(nP )) valued gauge field on M 4, and similarly for ϕâ. Finally

Tr trG is the trace over U(nP ) matrices in the fundamental representation.

The above analysis applies also to more general actions, and to the field ω â and there-

fore to the CSDR constraints (3.15), (3.17), (3.20), (3.23), (3.24) that can now be reinter-

preted as constraints onM 4 instead of onM 4×(S/R)F . The action (3.30) and the minima

of the potential (3.31), in the case P = 1, have been studied, without CSDR constraints, in

refs. [5, 6]. It is imposing the CSDR constraints that we reduce the number of independent

gauge and matter fields in the action (3.30), and that we therefore obtain new and richer

particle models. We now solve these constraints. We first consider the fuzzy sphere case

and then extend the results to more general fuzzy cosets.

3.1.3 CSDR constraints for the fuzzy sphere

We consider (S/R)F = S2F , i.e. the fuzzy sphere, that we consider at fuzziness level N

( (N + 1)× (N + 1) matrices). We first study the basic example where the gauge group G

is just U(1). There we begin by considering a specific solution — determined by a specific

embedding of SU(2) into U(N +1) — of constraint (3.15); we then solve also (3.17), (3.20)

and (3.23), the latter concerns fermions in the adjoint of G = U(1). We further write

down the fermion action on M 4 × S2F , reinterpret it as an action on M 4 (as we did for

the pure YM action (3.30)), and then rewrite the complete YM plus fermion action in

terms of the fields that satisfy the CSDR constraints. We then describe in full generality

how to solve the CSDR constraints (3.15), (3.17), (3.20) and (3.23). Finally we study the

case of fermions that transform in the fundamental of the gauge group G = U(1). The

generalization of the above outlined analysis to the case of the gauge group G = U(P ) then

follows.

5Proof. The (nP )2 generators T hT α are nP × nP antihermitian matrices. We just have to show that

they are linearly independent. This is easy since it is equivalent to prove the linear independence of the

(nP )2 matrices eijερσ where i = 1, . . . n, ρ = 1, . . . P and eij is the n × n matrix having 1 in the position

(i, j) and zero elswere, and similarly for the P × P matrix ερσ.
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The G = U(1) case. In this case the ωâ = ωâ(X
b̂) that appear in the consistency

condition (3.15), [ωâ, ωb̂] = C ĉ

âb̂
ωĉ, are (N + 1) × (N + 1) antihermitian matrices, i.e.

we can interpret them as elements of Lie(U(N + 1)). On the other hand rωâ satisfy

the commutation relations (3.15) of Lie(SU(2)) (in fact rC a
bc are the SU(2) structure

constants). Therefore in order to satisfy the consistency condition (3.15) we have to embed

Lie(SU(2)) in Lie(U(N+1)). Let T h with h = 1, . . . , (N+1)2 be the generators of Lie(U(N+

1)) in the fundamental representation and with normalization Tr(T hT k) = − 1
2δ
hk. We can

always use the convention h = (â, u) with â = 1, 2, 3 and u = 4, 5, . . . , (N + 1)2 where the

T â satisfy the SU(2) Lie algebra,

[T â, T b̂] = rC âb̂
ĉT

ĉ . (3.34)

Then we define an embedding by identifying

rωâ = Tâ . (3.35)

Constraint (3.17), [ω
b̂
, Aµ] = 0, then implies that the four-dimensional gauge group K is

the centralizer of the image of SU(2) in U(N + 1), i.e.

K = CU(N+1)(SU((2))) = SU(N − 1)×U(1)×U(1) ,

here the last U(1) is the U(1) of U(N + 1) ' SU(N + 1) × U(1). The functions Aµ(x,X)

are arbitrary functions of x but the X dependence is such that Aµ(x,X) is Lie(K) valued

instead of Lie(U(N +1)), i.e. eventually we have a four-dimensional gauge potential Aµ(x)

with values in Lie(K). Concerning constraint (3.20), [ω
b̂
, ϕâ] = C ê

b̂â
ϕê, we note that it is

satisfied by choosing

ϕâ = ϕ(x)rωâ , (3.36)

i.e. the unconstrained degrees of freedom correspond to the scalar field ϕ(x) that is a

singlet under the four-dimensional gauge group K. This solution is unique since, given the

embedding (3.35), the adjoint of SU(2) is contained just once in the adjoint of U(N + 1)

(see for example [37]).

The physical spinor fields are obtained by solving the constraint (3.23), − 1
2Câb̂ĉΓ

b̂ĉψ =

[ωâ, ψ]. In the l.h.s. of this formula we can say that we have an embedding of Lie(SU(2))

in the spin representation of Lie(SO(3)). This embedding is given by the matrices τ â =
1
2Câb̂ĉΓ

b̂ĉ; since Lie(SU(2)) = Lie(SO(3)) this embedding is rather trivial and indeed τ â =
−i
2r σ

â. Thus the constraint (3.23) states that the spinor ψ = ψhT h =
(

ψ1

ψ2

)

, where T h ∈
Lie(U(N + 1)) and ψ1(2) = ψh1(2)T

h are four-dimensional spinors, relate (intertwine) the

fundamental rep. of SU(2) to the representations of SU(2) induced by the embedding (3.35)

of SU(2) in U(N + 1), i.e. of SU(2) in SU(N + 1). In formulae

SU(N + 1) ⊃ SU(2)× SU(N − 1)×U(1) (3.37)

(N + 1)2 − 1 = (1, 1)0 ⊕ (3, 1)0 ⊕ (1, (N − 1)2)0 ⊕ (2, (N − 1))−(N+1) ⊕ (2, (N − 1))N+1 .

Then we deduce that the fermions that satisfy constraint (3.23) transform as (N−1)−(N+1),0
and (N − 1)N+1,0 under K = SU(N − 1) × U(1) × U(1). In the case of the fuzzy sphere
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the embedding Lie(SU(2)) ⊂ Lie(SO(3)) is somehow trivial. If we had chosen instead the

fuzzy (SU(3)/U(1)×U(1))F , then Lie(SU(3)) should be embedded in Lie(SO(8)).

In order to write the action for fermions we have to consider the Dirac operator D on

M4 × S2F . This operator can be constructed following the derivation presented in ref. [33]

for the Dirac operator on the fuzzy sphere, see also ref. [36]. For fermions in the adjoint

we obtain

Dψ = iΓµ(∂µ +Aµ)ψ + iσâ[Xâ +Aâ, ψ] −
1

r
ψ , (3.38)

where Γµ is defined in (2.18), and with slight abuse of notation we have written σ â instead

of σâ ⊗ 1. Using eq. (3.18) the fermion action,

AF =

∫

d4xTr ψ̄Dψ (3.39)

becomes

AF =

∫

d4xTr ψ̄

(

iΓµ(∂µ +Aµ)−
1

r

)

ψ + iTr ψ̄σâ[ϕâ, ψ] , (3.40)

where we recognize the fermion masses 1/r and the Yukawa interactions.

Using eqs. (3.36), (3.23) the YM action (3.30) plus the fermion action reads

AYM +AF =

∫

d4x
1

4
Tr(FµνF

µν)− 3

4
DµϕD

µϕ− 3

8
(ϕ2 − r−1ϕ)2 +

+

∫

d4xTr ψ̄

(

iΓµ(∂µ +Aµ)−
1

r

)

ψ − 3

2
Tr ψ̄ϕψ . (3.41)

The choice (3.35) defines one of the possible embeddings of Lie(SU(2)) in Lie(U(N+1))

[Lie(SU(2)) is embedded in Lie(U(N + 1)) as a regular subalgebra], while on the other

extreme we can embed Lie(SU(2)) in Lie(U(N+1)) using the irreducible N+1 dimensional

rep. of SU(2), i.e. we identify ωâ = Xâ. Constraint (3.17) in this case implies that the

four-dimensional gauge group is U(1) so that Aµ(x) is U(1) valued. Constraint (3.20) leads

again to the scalar singlet ϕ(x).

In general, we start with a U(1) gauge theory on M 4 × S2F . We solve the CSDR con-

straint (3.15) by embedding SU(2) in U(N+1). There are p(N+1) embeddings where p(n)

is the number of ways one can partition the integer n into a set of non-increasing positive

integers [23] (for example the solution ω â = 0 corresponds to the partition (1, 1, . . . , 1),

and the embedding using the n irrep. of SU(2) corresponds to the partition (n) ). Then

constraint (3.17) gives the surviving four-dimensional gauge group. Constraint (3.20) gives

the surviving four-dimensional scalars and eq. (3.36) is always a solution but in general not

the only one. Setting ϕâ = ωâ we always minimize the potential. This minimum is given

by the chosen embedding of SU(2) in U(N +1). Constraint (3.23) gives the surviving four

dimensional spinors.

Finally let us consider spinors that transform in the fundamental of the gauge group

G. Then in the fermion action (3.39) we have the covariant Dirac operator Dψ = iΓµ(∂µ+

Aµ)ψ + iσâ[Xâ, ψ] + iσâAâψ − 1
r
ψ , and instead of constraint (3.23) we have to use con-

straint (3.24). We thus obtain

AF =

∫

d4xTr ψ̄

(

iΓµ(∂µ +Aµ)−
(

5

2r
+ iσâωâ

))

ψ + iTr ψ̄σâϕâψ . (3.42)
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In the following we study constraint (3.24) in the example where constraint (3.15) is solved

by considering the embedding

SU(N + 1) ⊃ SU(2) ×U(1) , (3.43)

obtained by identifying ωâ with the generators of SU(2) in the N dimensional irrep.. This

embedding induces the embedding and the branching rule6

U(N + 1) ' SU(N + 1)×U(1) ⊃ SU(2)×U(1) ×U(1) ,

(N + 1)√
N

= N1,
√
N
⊕ 1−N,

√
N
. (3.44)

It follows that SU(2) acts on ψ via the representation (N ⊕ 1) × (N + 1) given by δψ =

ωâψ − ψXâ, cf. (3.24). We have

(N1,
√
N
⊕ 1−N,

√
N
)× (N + 1) = (N1,

√
N
⊕ 1−N,

√
N
)× (N + 1)

= 2N1,
√
N
⊕ (2N − 2)1,

√
N
⊕ (2N − 4)1,

√
N
. . .⊕ 21,

√
N
⊕

⊕(N + 1)−N,
√
N
, (3.45)

where the indices denote the eigenvalues of the U(1) generators appearing in the r.h.s.

of (3.44). We can now solve constraint (3.24) that states that the spinor ψ intertwines the

fundamental rep. of SU(2) appearing in the l.h.s. of (3.24) with the rep. of SU(2) appearing

in the r.h.s. of (3.24). Since this latter in the present example contains the 2 of SU(2) just

once, we conclude that there exists one surviving four-dimensional spinor; this spinor has

charges (1,
√
N) with respect to the four-dimensional gauge group K = U(1) × U(1). In

general for fermions in the fundamental we consider the product of the (N + 1) of SU(2)

times the representations of SU(2) on ψ induced by the embedding of SU(2) in U(N+1) [in

the above example the embedding defined by (3.44)]. There are as many four-dimensional

spinors as many times the fundamental of SU(2) appears in this product.

The G = U(P ) case. In this case ωâ = ωâ(X
b̂) = ωh,αâ T hT α is an (N + 1)P × (N + 1)P

hermitian matrix and in order to solve the constraint (3.15) we have to embed Lie(SU(2))

in Lie(U((N + 1)P )). All the results of the G = U(1) case holds also here, we just have

to replace N + 1 with (N + 1)P . This is true for the fermion sector too, provided that

in the higher dimensional theory the fermions are considered in the adjoint of U(P ) (in

the action (3.39) we then need to replace Tr with Tr trU(P ) i.e. trU((N+1)P )). We can also

consider fermions in the fundamental of U(P ). Then an infinitesimal gauge transforma-

tion reads δψ = λψ and the four-dimensional spinors ψ1(2), where ψ =
(

ψ1

ψ2

)

, transforms

according to the fundamental of U(P ) and the n×n of U(n), i.e. they transform according

to the fundamental of U(nP ) and the antifundamental of U(n) (where n = N +1). In this

case, in order to solve constraint (3.24) and find the surviving four-dimensional spinors,

we have to consider the product of the SU(2) representation (N + 1) = (N + 1) times the

6The generator λ = diag(1, 1, . . . 1,−N) of the first U(1) appearing in the r.h.s. of (3.44) is normalized

so that Tr(λ2) = N(N + 1). This implies the normalization λ′ =
√
Ndiag(1, 1, . . . 1, 1) for the generator of

the second U(1) appearing in the r.h.s. of (3.44), i.e. the U(1) coming from U(N + 1) ' SU(N +1)×U(1).
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representations of SU(2) on ψ induced by the embedding of SU(2) in U((N + 1)P ). The

SU(2) representation (N + 1) arises from the SU(2) action δψ = −ψXâ observing that Xâ

is an SU(2) generator in the irrep. N + 1. There are as many four-dimensional spinors as

many times the fundamental of SU(2) appears in this product of representations.

3.1.4 CSDR constraints for fuzzy cosets

Consider a fuzzy coset (S/R)F (e.g. fuzzy CPM ) described by n× n matrices, and let the

higher dimensional theory have gauge group U(P ). Then we see that constraint (3.15)

implies that we have to embed S in U(nP ). Constraint (3.17) then implies that the

four dimensional gauge group K is the centralizer of the image SU(nP ) of S in U(nP ),

K = CU(nP )(SU(nP )).

Concerning fermions in the adjoint, in order to solve constraint (3.23) we consider the

embedding

S ⊂ SO(dimS) ,

which is given by τâ = 1
2Câb̂ĉΓ

b̂ĉ that satisfies [τ â, τ b] = C
âb̂ĉ
τ ĉ. Therefore ψ is an inter-

twining operator between induced representations of S in U(nP ) and in SO(dimS). To

find the surviving fermions, as in the commutative case [15], we decompose the adjoint rep.

of U(nP ) under SU(nP ) ×K,

U(nP ) ⊃ SU(nP ) ×K
adjU(nP ) =

∑

i

(si, ki) . (3.46)

We also decompose the spinor rep. σ of SO(dimS) under S

SO(dimS) ⊃ S

σ =
∑

e

σe . (3.47)

Then, when we have two identical irreps. si = σe, there is a ki multiplet of fermions surviv-

ing in four dimensions, i.e. four-dimensional spinors ψ(x) belonging to the ki representation

of K.

Concerning fermions in the fundamental of the gauge group U(P ), we recall that

they can be interpreted as transforming according to the fundamental of U(nP ) and the

antifundamental n of U(n). Moreover the coordinatesXâ are generators of S in the irrep. n,

so that the S action δψ = −ψXâ is given by the irrep. n. In order to solve constraint (3.24)

we therefore decompose the fundamental of U(nP ) under SU(nP ) ×K ,

nP =
∑

i

(ti, hi) , (3.48)

and then consider the product representation
∑

i

(ti × n, hi) =
∑

`

(u`, h`) , (3.49)

where now u` are irreps. of S. When we have two identical irreps. u` = σe, there is an

h` multiplet of fermions surviving in four dimensions, i.e. four-dimensional spinors ψ(x)

belonging to the h` representation of K.
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4. Discussion and conclusions

Non-commutative Geometry has been regarded as a promising framework for obtaining

finite quantum field theories and for regularizing quantum field theories. In general quanti-

zation of field theories on non-commutative spaces has turned out to be much more difficult

and with less attractive ultraviolet features than expected [38, 39], see however ref. [40],

and ref. [41], where pure Yang-Mills theory on the fuzzy sphere is quantized. Recall also

that non-commutativity is not the only suggested tool for constructing finite field theories.

Indeed four-dimensional finite gauge theories have been constructed in ordinary space-time

and not only those which are N = 4 and N = 2 supersymmetric, and most probably phe-

nomenologically uninteresting, but also chiral N = 1 gauge theories [42] which already have

been successful in predicting the top quark mass and have rich phenomenology that could

be tested in future colliders [42, 43]. In the present work we have not adressed the finite-

ness of non-commutative quantum field theories, rather we have used non-commutativity

to produce, via Fuzzy-CSDR, new particle models from particle models on M 4 × (S/R)F .

The Fuzzy-CSDR has different features from the ordinary CSDR leading therefore to

new four-dimensional particle models. In this paper we have established the rules for the

construction of these models; it may well be that Fuzzy-CSDR provides more realistic

four-dimensional theories. Having in mind the construction of realistic models one can also

combine the fuzzy and the ordinary CSDR scheme, for example considering M 4×S′/R′×
(S/R)F .

A major difference between fuzzy and ordinary SCDR is that in the fuzzy case one

always embeds S in the gauge group G instead of embedding just R in G. This is due to the

fact that the differential calculus used in the Fuzzy-CSDR is based on dimS derivations

instead of the restricted dimS-dimR used in the ordinary one. As a result the four-

dimensional gauge groupH = CG(R) appearing in the ordinary CSDR after the geometrical

breaking and before the spontaneous symmetry breaking due to the four-dimensional Higgs

fields does not appear in the Fuzzy-CSDR. In Fuzzy-CSDR the spontaneous symmetry

breaking mechanism takes already place by solving the Fuzzy-CSDR constraints. The

four dimensional potential has the typical “maxican hat” shape, but it appears already

spontaneously broken. Therefore in four dimensions appears only the physical Higgs field

that survives after a spontaneous symmetry breaking. Correspondingly in the Yukawa

sector of the theory we have the results of the spontaneous symmetry breaking, i.e. massive

fermions and Yukawa interactions among fermions and the physical Higgs field. Having

massive fermions in the final theory is a generic feature of CSDR when S is embedded in G

(see last ref. in [20]). We see that if one would like to describe the spontaneous symmetry

breaking of the SM in the present framework, then one would be naturally led to large

extra dimensions.

A fundamental difference between the ordinary CSDR and its fuzzy version is the fact

that a non-abelian gauge group G is not really required in high dimensions. Indeed the

presence of a U(1) in the higher-dimensional theory is enough to obtain non-abelian gauge

theories in four dimensions. We plan to elaborate further on this point, as well as on the

possibility to construct realistic theories.
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