Abstract
| LIBO is a 3 GHz modular side-coupled proton linac booster designed to deliver beam energies up to 200 MeV, as required for the therapy of deep seated tumours. The injected beam of 50 to 70 MeV is produced by a cyclotron like those in several hospitals and research institutes. A full-scale prototype of the first module with an input/output energy of 62/74 MeV, respectively, was designed and built in 1999 and 2000. Full power RF tests were carried out successfully at CERN using a test facility at LIL at the end of the year 2000. In order to prove the feasibility of the acceleration process, an experimental setup with this module was installed at the INFN Laboratorio Nazionale del Sud (LNS) in Catania during 2001. The superconducting cyclotron provided the 62 MeV test beam. A compact solid-state RF modulator with a 4 MW klystron, made available by IBA-Scanditronix, was put into operation to power the linac. In this paper the main features of the accelerator are reviewed and the experimental results obtained during the first beam acceleration tests are presented. (3 refs). |