
ar
X

iv
:h

ep
-p

h/
04

03
10

1 
v1

   
9 

M
ar

 2
00

4
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We study, analytically and with lattice simulations, the decay of coherent field oscillations and the
subsequent thermalization of the resulting stochastic classical wave-field. The problem of reheating
of the Universe after inflation constitutes our prime motivation and application of the results. We
identify three different stages of these processes. During the initial stage of “parametric resonance”,
only a small fraction of the initial inflaton energy is transferred to fluctuations in the physically
relevant case of sufficiently large couplings. A major fraction is transfered in the prompt regime
of driven turbulence. The subsequent long stage of thermalization classifies as free turbulence.
During the turbulent stages, the evolution of particle distribution functions is self-similar. We
show that wave kinetic theory successfully describes the late stages of our lattice calculation. Our
analytical results are general and give estimates of reheating time and temperature in terms of
coupling constants and initial inflaton amplitude.
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I. INTRODUCTION

Field theoretical systems which are a long way from
thermal equilibrium have been studied intensely in re-
cent years. The particular problem of how and when
such systems approach equilibrium stretches beyond ob-
vious fundamental interest and finds many practical ap-
plications. In high-energy physics understanding of these
processes is crucial for applications to heavy ion collisions
and to cosmology of the early universe. The first topic
gains further importance in light of the current and future
experimental search for a quark-gluon-plasma at RHIC
and at the forthcoming LHC. The second application, our
main interest in this paper, is related to the problem of
reheating of the universe after cosmological inflation.

Inflation provides a solution to the flatness and the
horizon problems of standard cosmology [1, 2, 3] and
explains the generation of initial density perturbations
- the seeds of galaxies and large-scale structure in our
universe. During inflation the universe is in a vacuum-
like state. At the end of inflation all energy density is
stored in a Bose condensate, the coherently oscillating
”inflaton” field. This state is highly unstable: paramet-
ric, tachyonic or strong non-adiabatic particle creation
triggers a fast and explosive decay of the inflaton. This
process, dubbed preheating [4, 5], is currently well un-
derstood [6, 7, 8, 9, 10, 11, 12, 13]. A generic feature is a
strong and fast amplification of fluctuation fields at low
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momenta, which may lead to various interesting phys-
ical effects during and after preheating. These include
non-thermal phase transitions [14, 15, 16, 17] with pos-
sible formation of topological defects [18, 19, 20, 21, 22],
creation of super-heavy particles [13, 23], generation of
high-frequency gravitational waves [24], etc.

The explosive stage of inflaton decay ends when the
rate of interactions of created fluctuations among them-
selves and with the inflaton becomes comparable to the
inflaton decay rate [6, 7, 8, 9]. The understanding of
the subsequent stages of relaxation towards equilibrium,
of the thermalization processes and the calculation of
the final equilibrium temperature is important for var-
ious applications as it links the inflationary phase with
that of standard cosmology. Among those one can list
baryogenesis [13, 25, 26, 27, 28] and the problem of over-
abundant gravitino production in supergravity models
[29, 30, 31, 32, 33, 34]. It determines the abundances of
other relics, like super-heavy dark matter [35, 36, 37, 38],
or axino dark matter [39].

Knowledge of the reheating temperature is also im-
portant for fixing constraints on the inflationary model
from Cosmic Microwave Background (CMBR) anisotropy
[40, 41, 42, 43]. In some models cosmologically important
curvature perturbations may be even generated during
the process of thermalization [44, 45, 46, 47, 48]. Last
but not least: the reheating temperature should be larger
than about one GeV to ensure that the standard Big
Bang Nucleosynthesis [2, 49] is not hampered.

There have been many efforts and successes in the un-
derstanding of the non-equilibrium dynamics and relax-
ation of field theories, see e.g. Refs. [50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65]. However,
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the leading asymptotic dynamics towards equilibrium re-
mained rather less understood and developed.

The main problem for the theoretical understanding
of reheating is that initially the occupation numbers are
very large, of order of the inverse coupling constant. In
addition, in many inflationary models the zero mode does
not decay completely during preheating. Therefore, a
simple perturbative approach is not justified. On the
other hand, in this regime, a description in terms of clas-
sical field theory is valid [6], and the whole process (in-
cluding preheating), can be studied by classical lattice
simulations.

Recently, we employed this method to show [66, 67]
that the classical reheating of a massless Φ4-theory in
3+1 dimensions is characterized by a turbulent and self-
similar evolution of distribution functions towards equi-
librium. The shape of the spectra, as well as the self-
similar dynamics, could be understood within the frame-
work of wave kinetic theory. This made it possible to
estimate reheating time and temperature, which turned
out to coincide parametrically with the results of the sim-
ple perturbative approach.

Turbulence appears in a large variety of non-
equilibrium-phenomena in nature (see Refs. [68, 69, 70]
for a general introduction). It was first discussed for flu-
ids, in the regime of large Reynolds numbers (velocities),
where viscosity is subdominant. Kolmogorov identified
turbulence in this regime [71, 72] as a statistically scale
invariant flow of spectral energy mediated by vortex in-
teractions. The same dynamical structure may appear
in systems of coupled waves, e.g. on fluid surfaces or for
coupled fields in a plasma [68, 69, 73]. In this case the
cascade is mediated by wave interactions and the phe-
nomenon has been called wave turbulence.

If there exists an active (stationary) source of energy
in momentum space, the turbulence is called driven (sta-
tionary). When the source is switched off after the stage
of activity, the freely propagating energy cascade is often
referred to as free turbulence. If the kinetic description is
applicable, the energy cascade is called weak turbulence.
Otherwise one is facing a strong turbulence.

One may expect that the concept of turbulence should
be relevant for the problem of reheating [6, 50] already on
general grounds. Indeed, the source of energy, localized
in the ”infra-red” is present initially. It is represented
by the inflaton field in the problem at hands. To com-
plete the argument, we note that as the final outcome
of the evolution one should expect cascading of energy
towards a significantly separated region of “ultra-violet”,
high momentum modes.

The goal of the current paper is twofold. First, we
want to apply the wave kinetic theory of turbulence to
the problem of Universe reheating after inflation. We
derive general formulas for the spectra of turbulent dis-
tributions and for the self-similar evolution towards equi-
librium. This enables us to give asymptotic estimates of
reheating time and temperature in Minkowski space as
well as in Friedmann universe.

Second, we want to test and confront these ideas to
numerical lattice calculations. For our numerical integra-
tions we have chosen the simplest “chaotic” inflationary
model [74]. While the initial “preheating” stage in other
inflationary models, e.g. in hybrid inflation [75] may ex-
hibit important differences [11, 12, 76] with this model,
we expect the subsequent turbulent stages to be more
universal.

We start lattice integration from “vacuum” initial con-
ditions for fluctuations in a background of classical oscil-
lating inflaton field. We observe the initial parametric
resonance stage when the energy in fluctuations is grow-
ing exponentially with time. This stage terminates when
re-scattering of waves out of the resonance band becomes
important [6, 8]. In the physically relevant case of suf-
ficiently large couplings this happens rather early, when
only a small fraction of initial inflaton energy is trans-
ferred to fluctuations [8, 9, 10]. At this point a state of
stationary turbulence should be established that is driven
by the zero-mode. On general grounds, it can be deduced
that during this stage the energy in fluctuations should
grow linearly with time. This behavior is confirmed by
the results of our numerical simulations. The stage of
stationary turbulence should terminate when the energy
left out in the zero-mode becomes smaller than the en-
ergy stored in created ”particles”. From this moment of
time, the transport of energy from the source is negligible
and we observe free turbulence with self-similar evolution
of particle distributions towards thermal equilibrium.

The first stage of driven turbulence is prompt and gives
the main mechanism by which energy is drawn out of the
zero-mode, e.g. out of the inflaton field. The identifi-
cation of this constitutes one of the new results of the
present paper, as opposed to the common opinion that
the main mechanism is a ”parametric resonance”. The
second stage of free turbulence is very long and can be
analytically described as self-similar evolution. This is
another new result and diffuses some existing claims and
hopes that ”parametric resonance” may bring a system
to thermal equilibrium on a very short time scale.

Overall, the kinetic description and the results of lat-
tice simulations are in rather good agreement with each
other. This indicates that the regime of weak wave tur-
bulence may be already achieved on the lattice.

The paper is organized as follows. In Section II we re-
view the results of our numerical simulation of reheating
in the simplest λΦ4 model to get familiar with concepts,
problems and the typical dynamical behavior of the sys-
tems of interest. In Sections III, IV we apply the theory
of wave turbulence to the problem of reheating in gen-
eral. In Section V we present our numerical simulations.
In Section VI we compare lattice results with the kinetic
approach and discuss the applicability of the latter. In
Section VII we discuss some physical applications of our
results, in particular the thermalization in the self-similar
regime. In Appendix A we give the details of our numer-
ical procedure. In Appendix B we review the derivation
of the kinetic equation for a system of weakly interacting



3

classical waves.

II. THE SIMPLEST MODEL OF REHEATING.
NUMERICAL RESULTS.

We start with a presentation of our numerical results
for the inflaton decay and the subsequent equilibration of
the decay products in a simple λΦ4 model. The results
were already briefly reported in Ref. [66]. The numerical
procedure itself is described in Appendix A. At the end
of the Section we will discuss some expected differences
with more complicated models. This order of presenta-
tion allows us to introduce the typical behavior in the
systems under consideration and to formulate concepts
and problems. This will be useful in the discussion of
the general theory of turbulent thermalization, which we
carry out in the following Section. Further numerical
results, obtained for the simplest λΦ4 model, and nu-
merical results obtained for more complicated multi-field
systems, will be presented in Sections V and VI.

A. Results for the Φ4-Model

In this simple model, the field Φ is the only dynamical
variable. Its initial homogeneous mode drives inflation,
while development and growth of fluctuations on sub-
horizon scales at the end of inflation can be viewed as a
simple model of reheating. Inflation ends when the mo-
tion of the homogeneous mode of the field changes from
the regime of “slow-roll” to the regime of oscillations. It
is convenient to work in conformal coordinates where the
metric takes the form

ds2 = a(η)2 (dη2 − dx2). (1)

We choose the case of a massless field where the equation
of motion for the rescaled field ϕ ≡ Φa after inflation is
the same as in flat space-time

�ϕ+ λϕ3 = 0 . (2)

Therefore, all results obtained in this model are equally
applicable to the reheating of the Universe after inflation
and to modeling of other processes of thermalization in
relativistic systems, say, after heavy ion collisions.

The homogeneous component of the field, which corre-
sponds to the zero momentum in the Fourier decomposi-
tion, ϕ0(η) ≡ 〈ϕ〉, is usually referred to as the “zero-
mode.” It is convenient to make a rescaling of the
field, φ ≡ ϕ/ϕ0(η0), and of the space-time coordinates,

xµ →
√
λϕ0(η0)x

µ. Here, η0 corresponds to the initial
moment of time (end of inflation). In what follows di-
mensionless time is still denoted as η. With this rescal-
ing, the initial condition for the zero-mode oscillations is
φ0(η0) = 1, and the equation of motion takes the simple
parameter free form

�φ+ φ3 = 0 . (3)
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FIG. 1: Squared amplitude of the zero-mode oscillations, φ
2

0,
and variance of the field fluctuations as functions of time η.

All model dependence on the coupling constant λ and
on the initial amplitude of the field oscillations is en-
coded now in the initial conditions for the small (vac-
uum) fluctuations of the field with non-zero momenta
(see [6] and appendix A). The physical normalization
of the inflationary model corresponds to a dimensionful
initial amplitude of ϕ0(η0) ≈ 0.3MPl and a coupling con-
stant λ ∼ 10−13 [1]. The re-parameterization property
of the system allows to choose a larger value of λ for
numerical simulations. We have used λ = 10−8.

Various quantities can be measured in a lattice cal-
culation and monitored as functions of time. Here we
will discuss the zero mode, φ0 ≡ 〈φ〉, the variance,
var(φ) ≡ 〈φ2〉 − φ2

0 and ”particle occupation” numbers.
For definitions see Appendix A.

We begin the discussion of our numerical results with
the evolution of the zero-mode and the variance of the
field, which are shown in Fig. 1. The zero mode is a
rapidly oscillating function on the time scale of our lat-
tice calculation. In Fig. 1 we show the amplitude of
oscillations, φ0, as a function of time.

The initial fast transfer of the zero-mode energy into
fluctuations during preheating (up to η ∼ 300) is fol-
lowed by a long and slow relaxation phase. In this late
time regime the amplitude of the zero mode oscillations
decreases according to ∼ η−z with z ≈ 1/3, the variance
of the field (averaged over high-frequency oscillations)
drops according to ∼ η−v with v ≈ 2/5. In addition, we
find that in this regime the zero-mode is in a non-trivial
dynamical equilibrium with the bath of highly occupied
modes: when the zero-mode is artificially removed, it is
recreated on a short time-scale (Bose condensation).

A detailed analytical discussion of the initial linear
stage of the parametric resonance in this model can be
found e.g. in Refs. [77, 78, 79]. During this stage the
occupation numbers grow exponentially with time in a
narrow band of resonance momenta. Figure 2 shows the
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FIG. 2: Occupation numbers as function of k/φ0 at
η = 100, 400, 2500, 5000, 10000.

occupation numbers at different moments of time. The
displayed spectrum at time η = 100 corresponds to the
stage of parametric resonance. The resonance peak is lo-
cated at the theoretically predicted value of kres. ∼ 1.27
[78]. At later time, the growth of the resonance peak is
stopped by re-scattering of particles out of the resonance
band, which leads to a broadening of the occupied region
and to the appearance of multiple peaks [6] of compara-
ble width, see spectrum at η = 400. This structure fits
estimates for the development of turbulence in the pres-
ence of a narrow width source located at a finite k, see
Ref. [68]. At even later times the spectra have become
smooth because of re-scattering, and only the first peak
is still visible as a small bump. With time, its position
moves towards smaller momenta, reflecting the change in
the effective frequency of inflaton oscillations. However,
if the particle momenta are rescaled by the current am-
plitude φ̄0 of the zero mode oscillations, as in Fig. 2, the
position of the resonance is approximately unchanged.
Particles with small momenta are distributed according
to a power law, which at larger momenta is bounded by
a cut-off. The position of this cut-off moves with time
to the ”ultra-violet”. This reflects a general tendency of
the system to thermal equilibrium. Indeed, in a state of
thermal equilibrium the energy of the system should be
concentrated at much higher wave-numbers compared to
the resonance momenta. On the other hand, energy is
inputted into the system of particles in the region of k
near the resonance peak. Therefore, we have a continu-
ous flux of energy across momentum space, from low to
high momenta.

This stage of evolution (η > 1500) has the following
characteristic features :

1. The system overall is statistically close to a Gaus-
sian distribution of field amplitudes and conjugated
momenta [57, 66].

k
2 4 6 8 10 12 14
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3000
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5000
5x10

=3600τ- 
=5100τ- 
=7000τ- 
=10000τ- 

kn4k
η = 10000
η = 7000
η = 5100
η = 3600

FIG. 3: On the right hand side we plot the wave en-
ergy per decade found in lattice integration at η =
3600, 5100, 7000, 10000. On the left hand side are the same
graphs transformed according to the relation inverse to
Eq. (4).

2. The spectra in the dynamically important region
can be described by a power law, k−s with s ≈ 3/2.
We see that the system is not in a thermal equilib-
rium which would correspond to s = 1. Rather, the
exponent of particle distributions in the power law
region corresponds to Kolmogorov turbulence [66].

3. The power law is followed by a cut-off at higher k.
Energy accumulated in particles is concentrated in
the region were the cut-off starts. Its position is
monotonously growing toward the ultra-violet, re-
flecting the evolution towards thermal equilibrium.

4. This motion can be described as a self-similar evo-
lution [66]

n(k, τ) = τ−qn0(kτ
−p) , (4)

where τ ≡ η/ηc and ηc is some (arbitrary) late-time
moment. The best numerical fit corresponds to q ≈
3.5p and p ≈ 1/5, and is presented in Fig. 3. The
value of the exponent p is of prime interest since it
determines the rate with which system approaches
equilibrium.

The first and the second point in this list facilitate the
use of wave kinetic theory, see e.g. [68, 80]. However, a
straightforward application is difficult and may be even
inappropriate, at least at the early re-scattering stages,
because of the following:

1. The zero mode does not decay completely. It may
induce “anomalous” terms in the collision integral,
which are absent in the usual kinetic description.

2. The occupation numbers are large initially, of or-
der of the inverse coupling constant, nk ∼ 1/λ, see
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Fig. 2. Therefore, in addition to lowest order colli-
sions (e.g. scattering of two particles into two par-
ticles with different momenta), multi-particle colli-
sions may be dynamically important as well.

Therefore, precise lattice calculations are needed. On
the other hand, they have a limited dynamical range in
momenta and in time, and one has to switch to a kinetic
approach at some later stage. To determine when (and
if) this is possible, the results obtained with the use of
a simple kinetic approach should be confronted with the
lattice results.

In the following Sections we will develop and apply
the theory of weak wave turbulence to the models of the
type integrated on the lattice. In particular, we will cal-
culate all universal scaling exponents and show that they
are in agreement with lattice results. At “early” times
the dynamics of the model described above is driven by
m-particle interactions with m = 3. Wave turbulence
theory gives for scaling exponents in d = 3 spatial di-
mensions:

p = 1/(2m− 1) ,

s = d−m/(m− 1) ,

v = 2/(2m− 1) ,

z = 1/(d(m− 1) −m) .

B. Expected differences in more complicated
models

The flux of energy over momentum space, which is nec-
essarily present in problems like reheating and thermal-
ization after inflation, signifies that we should observe a
turbulent state during the thermalization stage and that
the theory of turbulence applies. In a simple λφ4 model
the stage of preheating (i.e. parametric resonance) ends
when roughly half of the inflaton energy is transferred
to particles. Indeed, Fig. 1 shows that the amplitude of
the zero mode, which is a source of energy for the tur-
bulence problem, starts to decrease already at the end of
the parametric resonance stage. In such system we ex-
pect the free turbulence regime to follow the preheating
stage.

In more complicated systems, which involve other
fields coupled to the inflaton, say, some field χ, paramet-
ric resonance may end when the fraction of energy trans-
ferred to the χ excitations is still negligible compared
to the energy stored in the inflaton zero mode. Indeed,
parametric resonance ends when the rate of re-scattering
of particles out of the resonance band became compa-
rable to the resonant production rate and the maximal
value of the variance of χ excitations achieved at the end
of the resonance stage is ∼ 1/g2, where g2 is either the
coupling of χ to the inflaton, or self-coupling of χ (viz.,
the largest of these two). We expect that in this case
turbulent transport will develop when the amplitude of
the inflaton zero mode is still unchanging. This means,

that the transfer of zero mode energy into χ-filed should
occur in the regime of stationary turbulence. Only when
the amount of energy in the zero-mode becomes subdom-
inant we should expect a transition to the regime of free
turbulence. This is an important difference to the sim-
ple φ4-model. In particular, the distribution functions
move much faster into the ultra-violet in this regime,
p = (m−1)/(2m−1). We will see that the regime of sta-
tionary turbulence is indeed present in two field models,
see Section V.

III. THERMALIZATION IN THE WAVE
KINETIC REGIME. GENERAL THEORY.

A. Turbulent reheating: a motivation

Kolmogorov’s turbulence is characterized by a station-
ary transport of some conserved quantity between differ-
ent scales in momentum (Fourier) space [71, 72]. In the
following, we will restrict ourselves to systems with spa-
tially isotropic and homogeneous correlation functions,
which applies to the cosmological conditions after infla-
tion. Turbulence usually appears when a source of energy
or particles is present and is localized in some momen-
tum region kin. In addition to the source exists a ”sink”
localized at kout. When both, source and sink are station-
ary, it is natural to expect the eventual development of a
stationary state with scale independent transport of the
conserved quantity through momentum space. Indeed,
energy or particle number cannot accumulate between
kin and kout and should flow from one scale to the other.

This is a system-independent formulation of Kol-
mogorov’s concept of turbulence, which he formulated
in the context of hydrodynamical systems [71, 72]. Za-
kharov applied it to systems of coupled waves [73] in the
regime of kinetic wave interactions. His approach is based
on his derivation of the wave kinetic equations (see e.g.
[68, 73, 80]) and is well suited to studies of turbulence in
classical field theories. We will adopt it here.

The physical scenario of reheating after inflation shares
basic ingredients with that of turbulence: there exists a
localized source of energy- the coherently oscillating in-
flaton zero-mode - pumping energy into the system of
particles at Fourier wave-numbers kin ∼ kres. The mech-
anism behind this pumping can be parametric resonance,
tachyonic amplification, etc. Like in the turbulent sce-
nario there do not exist other intermediate scales (wave-
numbers), where energy is infused, accumulated, or dissi-
pated. Thus, it seems likely that the eventual dynamics
of reheating - after the explosive regime of preheating has
ended - is close to that of Kolmogorov’s turbulence.

However, in the description of reheating appear some
differences to stationary turbulence, since:

1. A sink does not exists.

2. The source (i.e. the amplitude of inflaton zero-
mode oscillations and therefore interaction rates)
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can be essentially time-dependent on relevant time
scales.

3. Neither source nor sink exist when the inflaton has
completely decayed.

In the first case, we expect that the stationary turbu-
lent flux of energy still will be established in some “iner-
tial” range kin < k < kout. Particle distributions in this
range of momenta should not be significantly different
compared to the case with a stationary sink. Indeed, in
the typical turbulent problem the energy dissipates (e.g.
into heat) after entering the region k ≫ kout. For prob-
lems relevant to thermalization after inflation, instead of
dissipation the transported energy is used to populate
high momentum modes at k ≫ kout. If the transport is
reasonably “local” in momentum space, the flux of energy
through the inertial range should not be influenced much
by processes which involve k > kout. Energy may dissi-
pate at kout or continue the flow to even higher momenta,
but regardless of this, we should expect the same distri-
bution of particles in the inertial range. However, in the
latter case we can expect that the value of kout increases,
and since the flux of energy is constant throughout in-
ertial range, the total energy of a system without a sink
has to grow linearly with time,

E(t) ∝ t . (5)

This is a simple consequence of the stationarity of tur-
bulence in the inertial range, and can be used as its sig-
nature.

A time dependent source (second point above) changes
the picture somewhat, since stationary states are not
likely to develop even in a finite range of k. However,
a weak time-dependence should still allow for a close-to-
stationary and close-to-turbulent evolution. Moreover,
even if the source eventually does not exists, particle dis-
tributions in the inertial range as functions of momenta
can still be close to turbulent power laws. Indeed, sta-
tionary turbulent distributions can be found as zeros of
the collision integral [68]. In the non-stationary case the
collision integral is non-zero, but should approach a min-
imal value in the inertial range which may result in the
same shape of particle distributions there.

B. Wave turbulence by scaling analysis

The dynamics of coupled waves close to a stationary
state can be described by a wave kinetic equation (see
e.g. refs. [68, 73, 81]):

ṅk = Ik[n] . (6)

Here the function nk, usually called occupation number

or wave action, describes the average volume of phase
space occupied by the oscillations of a single mode with
a wave-number k. Its evolution is a result of resonant
wave interactions, the effect of which is described by the

collision integral Ik[n]. The collision integral is a function
of the “external” momentum k and a functional of the
distribution function n, which is reflected in the notations
we use. When we do not need to stress the functional
dependence, we will also write Ik as I(k). The collision
integral for the case of interest, Eq. (2), is explicitly
derived in Appendix B.

Before we proceed, let us remind the general structure
of the collision integrals using as illustration the scat-
tering of two particles into two particles, which will be
referred to as 4-particle process. This will also allow us
to introduce the necessary notations. In all cases we will
write the collision integral as

Ik[n] =

∫

dΩ(k, qi)F (k, qi) . (7)

This form separates the contributions which are due to
the (fixed) particle model, dΩ(k, qi), from those which
are due to the (evolving) particle distribution functions,
F (k, qi). Here k is the external momentum and qi refer to
momenta over which the integration is carried out. If m
particles participate in the collision, i takes values from
1 to m−1. E.g. when 2 particles scatter into 2 particles,
m = 4 and there are 3 internal momenta over which we
integrate, q1, q2 and q3. Namely

dΩ(k, qi) =
(2π)4|M |2

2ωk
δ4(kµ, qiµ)

3
∏

i=1

d3qi
2ωi(2π)3

. (8)

dΩ contains the usual energy-momentum conservation δ-
functions, which we have denoted as δ4(kµ, qiµ), the “ma-
trix element” squared, |M |2, of the corresponding process
(which is a function of k and qi) and the integration mea-
sure over momentum space. Here, k0 = ωk = ω(k) and
ωi = ω(qi) refers to the particle energy.

When quantum effects are accounted for, the function
F in our example is given by

F (k, qi) = (1 + nk) (1 + nq1)nq2nq3
− nknq1(1 + nq2) (1 + nq3) . (9)

In the limit n ≫ 1 terms O(n2) can be neglected and F
is a sum of terms O(n3)

F (k, qi) = (nk + nq1)nq2nq3 − nknq1(nq2 + nq3) . (10)

The limit n ≫ 1 corresponds to interaction of classical
waves and expression Eq. (10) is also explicitly derived in
Appendix B. This illustrates a general rule: in the classi-
cal limit and for interaction of m waves the function F is
a sum of terms O(nm−1) with appropriate permutations
of signs and indices. In other words, in this limit F is a
homogeneous function with respect to multiplication of
each occupation number by ζ

F (ζn) = ζm−1F (ζn) . (11)

This property is extremely important in our subsequent
analysis. When quantum effects become important (i.e.
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when one should properly write [1 + n] in F), the clas-
sical turbulence and/or self-similar evolution stops. At
that moment particle distributions relax to usual Bose-
Einstein functions. We will not be concerned here with
the (presumably relatively short) relaxation period from
the classical to the quantum regime, but will study in
detail the turbulent evolution in the regime of classical
waves.

This gives us sufficient notational details to proceed
with the discussion of turbulence. We restrict it to sys-
tems which are isotropic and homogeneous in configu-
ration space, when occupation numbers (as well as all
other parameters which enter the collision integral) de-
pend on the modulus of momenta only. We consider the
classical limit in the function F with general m-particle
interaction, in case of which Eq. (11) holds. To keep
the discussion general, in the rest of this section we will
consider the case of (d+1) dimensional space time.

Often a collision integral conserves one or several quan-
tities. We restrict ourselves to energy density

ρ =

∫

ddk

(2π)d
ωk nk , (12)

which is conserved when the expansion of the Universe
can be neglected or “rotated” away, and particle density

n =

∫

ddk

(2π)d
nk , (13)

which corresponds to conserved charges, e.g. baryon
number.

Conservation of n or ρ can be expressed as a continuity
equation in Fourier space, e.g.

∂t(ωk nk) + ∇k · jk = 0. (14)

Here and in what follows we will write the explicit re-
lation for energy conservation, the case of conserved
charges can be easily obtained by a formal substitution
ωk = 1. In the isotropic case only the radial component
of the flux density, jk, is non-vanishing and we get for
the energy flux, Sρ(p), trough the sphere of radius p

(2π)d · Sρ(p) = −
∫ p

ddkωk ṅk

= − πd/2

Γ(1 + d
2 )

∫ p

dkkd−1ωk Ik[n] ,

(15)

In (15) the factor in front of the integral is the area of the
d-dimensional unit sphere. In case of stationary turbu-
lence this flux should be scale-independent, i.e. integral
Eq. (15) should not depend upon its integration limit p.
This is possible if the collision integral equals zero. One
can explicitly look for solutions Ik[n] = 0, see e.g. [68].
Such solutions correspond to stationary turbulence and
exist with non-trivial boundary conditions (source and
sink), in addition to the Rayleigh-Jeans-law of classical

equilibrium. Here we adopt an alternative and somewhat
simpler approach of Ref. [82] to determine the turbulent
solutions.

Following [82] we consider states for which the collision
integral has certain scaling properties under ξ-rescaling
of the external momentum k

Iξk[n] = ξ−νIk[n] . (16)

To simplify notations we assume that all momenta were
made dimensionless by rescaling with some typical mo-
mentum scale, without explicitly writing this. The spe-
cial choice ξ = k−1 allows us to find the k-dependence
of the collision integral, Ik[n] = k−νI1[n]. Let us addi-
tionally assume that the dispersion law is a homogeneous
function as well,

ω(ξk) = ξαω(k) . (17)

Relations (16)and (17) should hold in some region of mo-
menta where we expect turbulent behavior. Integrating
Eq. (15) we find

S(p) ∝ − pd+α−ν
I1(ν)

d+ α− ν
(18)

Here we indicated explicitly that the collision integral
in the turbulent state with scaling behavior Eq. (16)
depends on the exponent ν. We find that the flux is
scale invariant, if

ν = d+ α . (19)

This condition defines the turbulent exponents which we
will specify in detail below. Note that this implies the
existence of the limit

lim
ν→d+α

I1(ν)

d+ α− ν
= const 6= 0 , (20)

as a sufficient condition for the existence of a stationary
turbulent solution: if the collision integral has a zero of
first degree at ν = d + α , the turbulent flux is scale-
invariant and finite.

In what follows, we consider particle models for which
dΩ is a homogeneous function of all momenta

dΩ(ξk, ξqi) = ξµ dΩ(k, qi) . (21)

Rescaling of the external momentum k by ξ gives

Iξk = ξµ
∫

dΩ(k, qi)F (ξk, ξqi) , (22)

since integration over every qi is from 0 to ∞. We will
exploit this relation in two ways:

1. Often the evolution of distribution functions in-
volves rescaling of their momenta, see Sec. III C.
If this is the case, the collision integral as a func-
tion of time can be found with the help of

∫

dΩ(k, qi)F (ξk, ξqi) = ξ−µ Iξk . (23)
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2. Let us assume that the particle distribution func-
tions are power laws in the momenta,

n(q) ∝ q−s . (24)

This leads to the following scaling of F

F (ξk, ξqi) = ξ−s (m−1) F (k, qi) , (25)

Combining this with Eq. (22) we find Iξk = ξµ−s (m−1) Ik.
A comparison with Eqs. (16) and (19) leads us to the ex-
ponent s which defines the scaling of particle distribution
functions in a turbulent state with constant energy trans-
port (we will call this energy cascade for brevity)

s =
d+ α+ µ

m− 1
. (26)

Turbulence with constant transport of particle number
(similarly, we will call this state particle cascade) can be
found at this point by the formal substitution ω = 1, i.e.
α = 0 and

s =
d+ µ

m− 1
. (27)

Note that doing this substitution at later stages would be
confusing since the explicit expression for µ also contains
α. Note also that on turbulent states I[n] = 0, therefore,
transport of all quantities except energy is zero for en-
ergy cascade. For particle cascade, which describes Bose-
condensation [83, 84], the transport of energy is zero.

The reader should bear in mind that only those solu-
tions that describe the transport of energy towards the
ultra-violet, Sρ > 0, are relevant for the problem of ther-
malization after inflation. The sign of fluxes for station-
ary turbulence of three- and four-wave collision integrals
was found in Ref. [82],

signSρ = sign [αs(s− α)] . (28)

In thermal equilibrium n ∝ ω−1, i.e. s = α. Therefore,
energy turbulence is directed towards the ultraviolet if
the distribution function with increasing momenta falls
off faster than in equilibrium, s > α. As we will see,
in the λφ4 model this condition holds in d = 3, but is
violated at d ≤ 2. Therefore, we believe that simulations
of the thermalization in this model at d < 3, see e.g.
Refs. [52, 56, 58, 63], may not reflect all aspects of the
physical problem of reheating after inflation correctly.

C. Self-similar evolution

In an analytical approach to non-stationary situations
(e.g. when describing free turbulence) it is usually as-
sumed that the evolution is self-similar [85, 86]. As we
have shown, the evolution is self-similar, indeed, at late
times in our numerical integration of the φ4-model, see
Section II. Below we consider self-similar substitutions in

anticipation that they provide a valid leading description
of thermalization in the class of models we consider.

Let n0(k) be a distribution function at some late mo-
ment of time t0, when the regime of self-similarity has
been already established. The subsequent evolution can
be described as rescaling of momenta accompanied by a
suitable change of the overall normalization

n(k, τ) = Aγ n0(kA) , (29)

where we have defined τ ≡ t/t0, γ is some constant and
A = A(τ) is some time dependent function satisfying
A(1) = 1. Both, A(τ) and γ, are determined by the
solution of the kinetic equation (6).

In some cases the collision integral may contain an ad-
ditional explicit time dependence which can be isolated
as an overall factor B(τ). This factor may be induced by
time-dependent classical backgrounds like the scale fac-
tor of the expanding universe or the zero-mode of the
inflaton field. It is convenient to rescale the collision in-
tegral by some typical rate Γ, I ≡ BΓĨ, such that B and
Ĩ are dimensionless. We use B(1) = 1 as normalization.

When Eq. (11) holds, the factor Aγ of each distribu-
tion function, Eq. (29), can simply be taken out of F and
out of the collision integral, which becomes a functional
of n0. After that we can use Eq. (23) with ξ = A which
gives

I(k, τ) = Aγ(m−1)−µBΓĨkA[n0] , (30)

On the other hand, the l.h.s. of the kinetic equation (6)
can be written as

ṅ(k, τ) = Aγ−1Ȧ

(

γn0 + ζ
dn0

dζ

)

, (31)

where we have defined ζ ≡ kA. Using Γ as a separation
constant, the kinetic equation can be split into two: one
for the shape of the distribution function,

γn0 + ζ
dn0

dζ
= −Ĩ(ζ) , (32)

and one for the dynamical evolution

Aµ−γ(m−2)−1 dA

dτ
= −Γt0B . (33)

We will not be concerned with (32) here and simply as-
sume that it has some non-trivial solution. The general
solution of (33) is of the form

A = Θ−p , (34)

where

Θ ≡ Γt0
p

∫ τ

1

B(τ ′)dτ ′ + 1 (35)

and

p ≡ 1

γ(m− 2) − µ
. (36)
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We fix scales using the condition Γt0 = p. For a time-
independent background B, i.e. B ≡ 1, it than follows,
that Θ = τ and eq. (34) simplifies to

A = τ−p . (37)

We will discuss this case first.

1. Self-similar evolution in time-independent background

Substituting (37) in (29) we obtain

n(k, τ) = τ−γp n0(kτ
−p) , (38)

In applications of turbulence theory to thermalization,
this solution is most important. Let kc be the initial value
of some characteristic momentum scale, e.g. the scale
where most of the energy carried out by a self-similar
distribution is concentrated. According to Eq. (38), with
time this scale evolves as

kc(τ) = kc(1) τp . (39)

The exponent p determines the speed with which the
distribution function moves over momentum space and
therefore defines e.g. the time scale of thermalization.
This is a reason why we will be interested mainly in the
value of the exponent p, Eq. (36). In applications to ther-
malization after preheating the energy is concentrated at
low momenta initially and should propagate to high mo-
menta. This means that solution Eq. (38) is physically
relevant for p > 0.

The exponent γ, which enters Eq. (36) can be fixed by
specifying appropriate boundary conditions, which are
specified below.

a. Isolated systems If the wave energy is strictly
conserved it follows that

const =

∫

ddk ωk n(k, τ)

= Aγ−(d+α)

∫

ddζ ωζ n0(ζ) .

(40)

This gives

γ = d+ α . (41)

Similarly, for the evolution with particle number conser-
vation one obtains γ = d. Here we would like to stress
the following subtlety. Clearly, a simple self-similar sub-
stitution Eq. (29) cannot account for energy and particle
number conservation simultaneously, while both quanti-
ties are conserved in a number of systems. If this is the
case, one should choose the integral which gives dominant
restriction of nk, i.e. the energy for energy cascade (ther-
malization) and particle number for the inverse cascade
(Bose-condensation). For the problem of thermalization
of ultra-relativistic particles this gives

pi =
1

(d+ 1)(m− 2) − µ

relativistic

energy cascade
(42)

However, describing thermalization in the non-
relativistic limit, ωk = m + k2/2m with k2/m2 ≪ 1, we
can neglect the kinetic energy with respect to the rest
mass in the normalization condition (40), i.e. we should
use γ = d, as in the case of particle conservation

pi =
1

d(m− 2) − µ

non − relativistic

energy cascade
(43)

b. Driven turbulence. In our lattice integrations we
have found that particle distributions as functions of k
follow a power-law in the wake of a propagating energy
front, nk(τ) = (b(τ)/k)

s
, with exponent s being in agree-

ment with the theoretical predictions for stationary tur-
bulence. Such behavior is expected [85] for the regime of
driven turbulence in the presence of a stationary source
(and then b(τ) = const). However, for the case of free
turbulence we are not aware of any predictions. Here we
consider consequences of such a behavior assuming gen-
eral b(τ) (the case of constant b being a particular case).

Considering distribution the function in the region of
low momenta, nk(τ) = (b/k)s = Aγ n0(kA) we find

b ∝ Aγ/s−1 = τ (1−γ/s)p , (44)

i.e. the transport of energy through the inertial range is
stationary if

γ = s . (45)

This generalizes the concept of stationary turbulence to
a system without sink. (Notice, that this requires a sta-
tionary source in the infra-red.) In this regime the total
energy in particles has to grow linearly with time. Con-
sidering the r.h.s. of relation (40) with γ = s we find
τ = Aγ−(d+α) = τp(d+α−s), or

pt = 1/(d+ α− s) , (46)

where we denote the exponent p for the case of a station-
ary transport as pt to distinguish it from the exponent
which corresponds to an isolated system, pi. Substitut-
ing explicitly the exponent s of the spectra of stationary
turbulence, Eq. (26), we find

pt =
(m− 1)

(d+ α)(m − 2) − µ
= (m− 1) pi . (47)

The latter relation could have been also found using
Eq. (26) and Eqs. (36) with γ = s.

c. Non-stationary source. Let us consider the some-
what more general situation and assume that the energy
inputted into (or taken out from) the system of particles
changes with time as E(τ) = E0τ

r. Clearly, the isolated
system corresponds to r = 0, while a stationary source
corresponds to r = 1. We will now have γ = (d+α)−r/p
and

p =
1 + r(m − 2)

(d+ α)(m− 2) − µ
. (48)
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2. Time-dependend background

We now consider a time-dependent B in Eqs. (34),
(35). As an illustration we choose B(τ) = τ−κ, which
gives

Θ =
1

(1 − κ)
(τ1−κ − 1) + 1 . (49)

Note, and this is important for the interpretation of our
numerical results, that the linear approximation for small
times, τ ∼ 1, gives Θ ≃ τ , which brings us back to the
situation considered in the previous subsection.

The late time behavior, τ ≫ 1, depends on the sign
of 1 − κ > 0. If 1 − κ > 0, the distribution propagates
to the ultraviolet without bound, A(τ) ∝ τ−(1−κ)p and
kc(τ) ∝ τ (1−κ)p. In other words, at late times A ∼ τ−p̃

with

p̃ = (1 − κ)p (50)

for any boundary conditions discussed above in para-
graphsIIIC 1 a - III C 1 c.

However, A(τ) approaches a finite limit at τ → ∞ if
1 − κ < 0

A(τ = ∞) =

[

1 +
1

κ− 1

]−p

. (51)

The propagation of particle distribution functions to-
wards the ultraviolet is limited. This has important con-
sequences for the thermalization of massive particles in
the expanding Universe, as we shall discuss in more detail
below.

Expressions Eqs. (42), (47) and (50) are the main re-
sults of this section. They determine the speed of prop-
agation of the particle distribution in momentum space
for a specific models.

IV. STATIONARY STATES AND SELF-SIMILAR
EVOLUTION IN SPECIFIC MODELS

Here we apply the general results of the previous sec-
tion to a number of particular models of interest.

First of all we have to determine the scaling exponent
µ of dΩ (see Eq. (21)). The scaling of ω is different in rel-
ativistic and non-relativistic regimes. This is accounted
for differently in the argument of the energy conserva-
tion δ-function (where in the non-relativistic regime ω(k)
is replaced by k2/2m) and in the 1/ω factors of rela-
tivistic integration measure (where ω is replaced by m).
To make the discussion of relativistic and non-relativistic
cases uniform, we move ω out from the relativistic inte-
gration measure and define the function U(k, qi)

U(k, qi) ≡
(2π)d+1|Mk|2

2ωk
∏m−1
i=1 2ωqi

. (52)

In what follows we will assume that in a dynamically
interesting range of wave numbers U follows a scaling
law

U(ξk, ξqi) = ξβU(k, qi) (53)

With this definition

dΩ(k, qi) = U(k, qi)δ
d(kµ, qiµ)

m−1
∏

i=1

ddqi
(2π)d

, (54)

and we find

µ = d(m− 2) − α+ β . (55)

We calculate the exponents µ, s, and p for two
classes of models. The first one is characterized by k-
independent matrix elements, the second one has no di-
mensionful parameters. The scalar field models which we
integrated on the lattice belong to the first class. In the
absence of a zero mode in the relativistic limit in (3 + 1)
dimensions they belong to the second class as well.

A. Theory with k-independent matrix elements

For models with k-independent matrix elements the
scaling of U is determind by the ω’s, and we have β = −m
in the relativistic regime and β = 0 in the non-relativistic
case. Eq. (55) gives

µ = d(m− 2) − 1 −m (relativistic) , (56)

µ = d(m− 2) − 2 (non − relativistic) . (57)

Substituting these expressions into Eqs. (42), (43) we find
that in this class of models the exponents p do not de-
pend on the number of dimensions. In particular, for the
energy cascade in an isolated system we have

pi = 1/(2m− 1) (relativistic) , (58)

pi = 1/2 (non − relativistic) . (59)

For m = 3 and m = 4 Eq. (58) gives p = 1/5 and p = 1/7
respectively.

Substituting Eqs. (56), (57) into Eq. (26) we find the
exponent s

s = d− m

m− 1
(relativistic) , (60)

s = d (non − relativistic) . (61)

In the non-relativistic regime both exponents, pi and s
do not depend on m.

1. Three-particle interactions, relativistic regime

Three-particle processes appear in the λφ4 model when
interactions with the zero-mode are important, see Ap-
pendix B and Section IVC 1.
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According to Eq. (58) form = 3 the front of the energy
cascade propagates with

pi =
1

5
, (62)

regardless of of the number of spatial dimensions, d. For
the exponent s of particle distributions in the inertial
range in d = 3 we find

s =
3

2
. (63)

Both exponents coincide with what is observed in our
numerical experiments. Note that the exponent s is ex-
pected to appear in the case of driven turbulence. In
the case of free turbulence the wake of the propagating
turbulent front does not even have to be a power law.
Nevertheless, we do observe a power law with the expo-
nent s = 3/2 to a very good accuracy. This might be
not a chance coincidence. However, in d < 3 the the-
ory predicts s < 1, the spectrum falling-off with k more
slowly compared to thermal equilibrium, and one can get
a different shape of particle distributions in d < 3 (but
we still expect the exponent p to be given by Eq. (58)).

B. Relativistic theory with dimensionless
couplings.

The λφ4 model in d = 3 which we have simulated on
the lattice belongs to the class of models considered in
this paragraph. In d = 2 dimensionless couplings appear
in the λφ6 model. Dimensionless couplings are generic
and this case is not restricted to scalar field models, there-
fore we consider it separately.

If the collision integral does not contain any dimension-
full parameters, it has to scale with µ = 1 and we find
for the exponent pi of energy conserving propagation in
an isolated system, Eq. (42)

pi =
1

(d+ 1)(m− 2) − 1
. (64)

For the physical case of d = 3 and for a 4-particle pro-
cesses (which should dominate at late times in the models
we have considered numerically, see below) we obtain

pi =
1

7
. (65)

Note that for d = 2 and m = 6 we have pi = 1/11, in
agreement with Eq. (58). For the exponent s of particle
distribution functions in the energy cascade we find, see
Eqs. (26)

s =
d+ 2

m− 1
=

5

3
. (66)

C. Explicit time dependence in the collision
integral

The self-similar evolution is modified when an explicit
time dependence is present. Below we consider two spe-
cific models with explicit time dependence in the collision
integrals which appear in the problem of reheating. The
first one is directly related to the relativistic scalar model
we have simulated on the lattice and time-dependence
enters via the coupling to the zero-mode. The second
describes thermalization of non-relativistic particles and
the time dependence is induced by the expansion of the
Universe.

1. Non-zero classical field

Typically, oscillations of the inflaton zero-mode do not
decay completely during the initial stage of parametric
resonance. Moreover, if the resonance parameter is large,
parametric decay stops early, when only a small part of
the initial inflaton energy has been transferred to parti-
cles [8]. The remaining oscillating zero-mode serves as a
source in our turbulent problem. This source acts via two
different channels. The first one can be described as a di-
rect decay into the resonance band(s). The other channel
is m-particle scattering when one or more particles have
zero momentum. These particles belong to the zero-mode
(which is a Bose condensate). While the zero-mode and
excitations with k 6= 0 can be viewed as the same parti-
cles but with different momentum, the formal description
is different. The presence of the zero mode φ0 leads to
new specific terms in the collision integral with reduced
number of particles participating in the interaction pro-
cess and different (and time-dependent) couplings.

The simplest example is 2 by 2 scattering in the λφ4

model when one of the incoming or outcoming parti-
cles belongs to the condensate. These scattering pro-
cesses can be modeled as an effective 3-particle interac-
tion. The corresponding 3-particle collision integral can
be obtained from the 4-particle one with the substitution

np
ωp

→ np
ωp

+ (2π)3δ(3)(~p)φ̄2
0 . (67)

This gives an explicit time dependence in front of the col-
lision integral, B = φ2

0(τ)/φ
2
0(1), and reduces the num-

ber of integrations by one, m = 3. Alternatively, the
3-particle collision integral in the background of a zero
mode can be derived from first principles, see Appendix
B.

The turbulent exponents for the 3-particle scattering
without explicit time dependence (i.e. φ2

0(τ) = 1), are
given by Eqs. (62) and (63). Both agree with what is
observed in our numerical experiments, see Sect. II. We
show in Sect. VI that the collision integral in our lattice
problem is dominated by 3-particle interactions. Ther-
fore, Eq. (63) for the exponent s seems to be indeed
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applicable for the system considered numerically. The
question of applicability of Eq. (62) for the exponent p
deserves special consideration because the amplitude of
the zero-mode changes with time.

During the initial stage, when the total energy in par-
ticles is small compared to the energy stored in the zero-
mode, we can consider the amplitude of oscillations to be
constant and the source of turbulence to be stationary.
However, distribution functions should then evolve with
pt = 2pi, see Eq. (47). At late times on the other hand
we cannot neglect the decay of the zero mode. Numer-
ical integrations show that the amplitude of the zero-
mode decreases as a power law, φ2

0(τ) ∝ τ−κ. At late
times this gives p → (1 − κ)p, see Eq. (50). Numeri-
cally κ = 2/3, however, the conclusion that p = 1/15
would be incorrect. First, for completely decayed zero
mode the 4-particle collision would dominate, leading to
p = 1/7. Therefore, in our problem we should expect
p ≥ 1/7 at all times. Second, the condition τ ≫ 1 is
not fulfilled during our integration time. Indeed, we ob-
served self-similarity for 3600 < η < 10000, see Fig. 3,
which corresponds to τ < 3. For τ ≈ 1 the solution of
Eq. (34), (49) for A(τ) coincides with A = τ−p, while at
τ = 3 it deviates by not more than 5%. Therefore, in this
time interval A(τ) ≈ τ−1/5. Similarly, the quantity Aγ

with γ = 4 for 1 < τ < 3 (energy conservation) is close
numerically to τ−q, where q ≃ 3/5. Hence the indices
of self-similar evolution obtained in Sec. II are explained
by free turbulence driven by three-particle interactions
in the background of zero-mode.

2. Non-relativistic regime in expanding universe

Let us consider now non-relativistic particles in an ex-
panding universe with physical dimension d = 3. We will
be working in the conformal reference frame, Eq. (1). In
these coordinates the expansion of the universe is simply
accounted for by multiplying all bare mass parameters,
M , by the scale factor. This is true both for the origi-
nal field equations and for the kinetic equations (which
are derived from the former). Factors of ω in the mea-
sure Eq. (52) should be replaced by Ma(η). Therefore,
in the non-relativistic regime the collision integral in the
expanding universe can be obtained by multiplying it by
the scale factor in some negative power.

In conformal reference frame the solution of the Fried-
mann equations for the scale factor as a function of
τ ≡ η/η0 can be written as

ab = bH0η0(τ − 1) + 1 , (68)

where H0 is the value of the Hubble parameter at time
η0. For the radiation dominated expansion b = 1, while
b = 1/2 for the matter dominated expansion. Hence, the
function B(τ) takes the form

B(τ) = [bH0η0(τ − 1) + 1]−κ . (69)

where κ = 3/b for the 4-particle process in λφ4 theory,
i.e. κ = 3 and κ = 6 for radiation and matter dominated
expansion respectively. This gives

∫ τ

1

B(τ ′)dτ ′ =
1 − (bH0η0(τ − 1) + 1)1−κ

b(κ− 1)H0η0
. (70)

We see that in the limit τ → ∞

A(τ = ∞) =

[

1 +
1

b(κ− 1)H0η0

]−p

, (71)

where p is given by Eq. (43). The particle distributions
cannot propagate to high momenta and are frozen out at

kc(τ = ∞) =
kc(1)

A(τ = ∞)
=

kc(1)

[b(κ− 1)H0η0]p
. (72)

In the traditional discussion of thermalization of parti-
cles in the expanding Universe, see e.g. [2], the expansion
rate, H0, is compared to the to the rate of interactions,
which in our case can be identified with η0 (see the nor-
malization factor in Eq. (34)). It is concluded that parti-
cles can not thermalize if H0η0 > 1 while they can reach
thermal equilibrium when H0η0 < 1. Equation (72) tells
us that thermalization is indeed impossible for H0η0 > 1
since the distributions do not move towards high mo-
menta in this case. However, it is not guaranteed that
the equilibrium is reached even if H0η0 ≪ 1. The sys-
tem may thermalize only if kc(τ = ∞) is not smaller
than the typical values of momenta in eventual thermal
equilibrium.

V. TWO INTERACTING SCALAR FIELDS.
NUMERICAL RESULTS.

In this Section we present the results of lattice cal-
culations of reheating in the model of two interacting
fields. As in the one field model presented in Section II,
we again consider the massless case, for which the use
of conformal transformation allows mapping of the dy-
namics in expanding Friedmann universe into the case of
Minkowski space-time. This permits a long integration
time on a fixed lattice.

A. The model

At the end of inflation the universe is very close to a
spatially flat Friedmann model. It is convenient to work
in conformal coordinates where the metric takes the form
ds2 = a(η)2 (dη2 − dx2). We consider two scalar fields
Φ and X whose dynamics are determined by the action
S =

∫

dt d3x
√−gL(Φ, X) with Lagrangian density

L =
1

2
gµν∂µΦ∂νΦ +

1

2
gµν∂µX∂νX − V (Φ, X) (73)
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and potential

V (Φ, X) =
λΦ

4
Φ4 +

λΦX

2
Φ2X2 +

λX
4
X4. (74)

We identify the field Φ with the inflaton. Therefore
λΦ ≃ 10−13 [1, 2, 3]. Inflation ends at time η0 when
〈Φ(η0)〉 ≃ 0.35 MPl.

We use the following set of coordinate and field rescal-
ings which bring the system into a dimensionless form
suitable for numerical integration:

dx0

dxi

}

−→
{

dη ≡ dx0 λ
1/2
Φ Λ

dyi ≡ dxi λ
1/2
Φ Λ

(75)

Φ

X

}

−→
{

ϕ ≡ Φ Λ−1a(η)

χ ≡ X Λ−1a(η)
(76)

Re-scaling of the fields with a(η) in Eq. (76) rotates the
scale factor away and maps the model into a scalar field
theory in Minkowski space-time. The classical equation
of motion have two independent parameters

g ≡ λΦX/λΦ, h ≡ λX/λΦ (77)

and simplify to

� ϕ+ ϕ3 + g χ2 ϕ = 0 , (78)

� χ+ hχ3 + g ϕ2 χ = 0 , (79)

We choose Λ = 〈Φ(η0)〉, so that the initial condition for
the inflaton zero-mode reads 〈ϕ(η0)〉 = 1. The equations
(78) and (79), however, are independent on the particular
choice of Λ. At η = η0 all correlation functions of Φ
and X on subhorizon scales characterize a vacuum of
fluctuations around the inflaton mean value.

B. Results of numerical integration

We have studied the two-field model using the follow-
ing set of coupling constants: λΦ = 10−13, g = 30,
and h was varied in the range 0.1g ≤ h ≤ 104g. We
will see below that different values of h lead to differ-
ent duration and different relative importance of the spe-
cific dynamical regimes, as it was already argued for in
Sec. II B. These are: the regime of parametric resonance,
the regime of stationary (or driven) turbulence and the
regime of free turbulence. These issues will be addressed
later in this Section, which we start with the discussion
of particle spectra.

1. Spectra

The particle spectra in the two field model at late times
are very similar to what we have observed in the one field

ε
1 10 10

2

10
5

10
6

10
7

10
8

10
9

10
10

10
11

εn
-3/2ε~

-1ε~

/ φ 0
_

ε
1 10 10

2

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

εn
-3/2ε~

-1ε~

/ φ 0
_

FIG. 4: Particle distributions in the self-similar regime for
h = 10g as functions of the corresponding wave kinetic en-
ergies rescaled by the current zero-mode amplitude φ̄0.. Up-
per and lower panels correspond to χ and φ fields respec-
tively. In both cases from left to right the plots are taken at
η = 1000, 1500, 2000.

model and have the same turbulent exponents. Namely,
in the inertial range nk is a power low with the exponent
s = 3/2, for both fields χ and φ, see Fig. 4. And both
fields evolve in a self-similar way with p = 1/5 at suffi-
ciently late times, when the energy in particles became
comparable to the energy in the zero-mode, see Fig. 5.
Both exponents, s and p, correspond to turbulence sup-
ported by 3-particle interactions.

There are some differences however. For the consid-
ered range of parameters, the coupling of the excitations
to the medium is rather strong, which induces large effec-
tive particle masses, see Appendix A3. Therefore parti-
cles are non-relativistic already in the part of the inertial
range. Namely, Mχ ≃ 5.5φ̄ and Mφ ≃ 1.7φ̄. This man-
ifests itself as ∼ k−3-power-law behavior, which is again
consistent with domination of 3-particle interactions, see
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FIG. 5: Spectral energy distributions for χ (upper panel) and
φ (lower panel) in the model with h = 10g. In each panel
we plot the wave energy per decade found in lattice integra-
tions at three moments of time, η = 1000, 1500 and 2000.
In the lower-left corner of each panel are the same graphs
transformed according to the relation inverse to Eq. (4).

Eq. (59). This can be expressed as a single power law
if particle distributions are plotted as functions of rela-
tivistic kinetic energy,

ǫk ≡ ωk −M , (80)

where M is the effective particle mass. Indeed, in the

relativistic region we have nk ∝ k3/2 ∝ ǫ
3/2
k , while in

the non-relativistic region we obtain nk ∝ k3 ∝ ǫ
3/2
k .

For this reason, the particle distributions were plotted in
Fig. 4 as functions of ǫk. The particle distributions for
the χ field appear in this variable as featureless single
power law. This can be easily understood. First, the
energy transport for 3-particle interactions in the pres-
ence of zero mode corresponds to the transport of kinetic
energy, as energy conservation law in elementary scatter-
ing process, which involves the frequency of zero-mode
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FIG. 6: Different regimes of the evolution of the χ field for two
values of self-coupling, h = 10g and h = 100g. The dashed
lines correspond to a linear growth of energy in the χ field
with time, ρχ ∝ η.

oscillations, ω0 ≈ M , tells us, see Appendix B. Second,
the collision integral, Eq. (B38), being substituted into
expression for the energy flux, Eq. (15), will have ap-
propriate universal scaling behavior in terms of kinetic
energy, ǫk, but not in terms of k. Therefore, the kinetic
energy is indeed the appropriate variable for the case of
3-particle interactions in the presence of zero mode.

For h > g the spectra look stationary in the inertial
range after rescaling ǫ by the current zero-mode ampli-
tude φ̄0 ∼ η−1/3. This is similar to the one field case,
(see fig. 4). However, for h ≤ g we found φ̄0 ∼ η−2/3,
but the spectra still appear stationary after rescaling by
η−1/3. This can be understood in the light of Eq. (44):
b(τ) = τ−1/3 is consistent with the choice γ = 4, s = 3/2
and p = 1/5. Hence, the decreasing amplitude of distri-
bution functions in the region of low k simply reflect the
energy conservation in the system.

2. Stationary and free turbulence regimes

Let us demonstrate now that the regime of station-
ary turbulence does occur in the two field model. This
regime is expected to appear in the case of large values of
dimensionless parameters, g ≫ 1, h≫ 1, when paramet-
ric resonance stops early, while the total energy is still
stored in the zero mode.

We found that in the relevant range of parameters the
description in terms of particles, which we were using so
far, deteriorates. The reason is that in this language at
large couplings there is no unique way to split the total
energy density of the system into contributions coming
from zero mode and fluctuation field.

To deal with this problem we have quantified the en-
ergy transfer in the following way. The quantity ρ0 ≡
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FIG. 7: Spectral energy distributions at two moments of time,
η = 500 (dotted lines) and η = 1400 (solid lines). We compare
two models with different self-coupling, h = 10g and h =
100g.

1
2 φ̇0(ηz)

2
gives a good measure of the total energy density

stored in zero-mode oscillations, if it is measured at those
moments of time, ηz, when the mean field crosses zero,
φ0(ηz) = 0. In this way we can get rid of the ambiguity
in accounting interaction energy between zero-mode and
fluctuations. Similarly, we measure the energy density in
the fluctuation field as ρχ ≡ 〈χ̇2〉t and ρφ ≡ 〈φ̇2〉t for
the χ and φ fields respectively. Here 〈. . .〉t means lattice
and time averaging. We verified numerically that the
sum of these quantities conserves with time and equals
to the initial energy density. This is not true, however,
when we measure the energy density in particles as ωknk.
Both measures of particle energy converge at late times
when the interaction energy becomes unimportant.

This ”kinetic” measure of the total energy density
stored in particles as a function of time is shown in Fig. 6.
We compare models with two different values of h. Three
different regimes are clearly seen in both cases.

1. Parametric Resonance: The energy density ρχ
grows exponentially. This regime continues until
re-scattering becomes important. The larger h is,
the earlier resonance terminates.

2. Stationary Turbulence: At later time the energy
density in χ particles grows linearly in time, which
according to Eq. (5) is a sign of stationary turbu-
lence. During this period the energy density still
stored in the zero-mode dominates the total energy
balance.

3. Free Turbulence: At some point the energy density
in the zero mode drops below the energy density
already stored in particles. Stationary turbulence
cannot be sustained anymore and the regime of free

turbulence, with conserved energy in particles, fol-
lows. We may expect self-similar evolution of par-
ticle distribution functions, which at late times are
good quantities.

In the model with larger self-coupling the parametric
resonance stops earlier and only a negligible part of the
inflaton energy is transferred to particles during the res-
onance stage, see Fig 6. In this parameter range the
transfer of energy from the inflaton into χ-field is dom-
inated by a stationary turbulence. In the Sec. VII B we
show that if all coupling constants are of order of the
inflaton self-coupling, the thermalization is a very long
process and the Universe reheats to unacceptably low
temperature, T ∼ 100 eV. Therefore, some couplings in
the sector of physical fields (e.g. self-couplings, or cou-
plings to the inflaton) in a realistic model have to exceed
significantly the scale of the inflaton self-coupling. With
larger couplings the thermalization proceeds faster. This
is confirmed in our lattice integration, see Fig. 7. At
earlier times the model with larger self-coupling contains
less energy in χ-particles, cf. curves at η = 500. How-
ever, at later times this model takes over and the energy
containing region moves faster towards ultraviolet in the
model with larger self-coupling.

With even larger self-coupling of the χ-field, or its cou-
pling to the inflaton, the period of stationary turbulence
should become even more pronounced. In light of these
findings, we can also understand the results of earlier pa-
pers [8, 9]. E.g., in Figures presented in Ref. [9], we
see clear signs of driven turbulence, which was not iden-
tified as such until now. In particular, in Ref. [9] it was
found that the energy in χ-fluctuations grows with time
as ρχ ∝ t0.95. (Small deviation from ∝ t law can be due
to the fact that the energy in zero mode decreases some-
what and the source deviates from stationarity). This
regime persists until the final integration time, when dis-
tribution functions reach the boundary of the integration
box, and even then the system is far from free turbulence
regime.

We conclude that in the models with an acceptable
reheating temperature, the parametric resonance stops
only when a negligible fraction of the inflaton energy has
decayed. Therefore, in realistic models of the type con-
sidered in the present paper, the major mechanism of
energy transfer from the inflaton into particles is station-
ary turbulence.

VI. IS THE KINETIC APPROACH
APPLICABLE ?

In this section we confront the results of our lattice in-
tegration with the predictions of kinetic theory and ad-
dress the validity of the kinetic description at the ther-
malization stage during our integration time interval.

The particle distributions in the inertial range, n(k) ∼
k−s with s ≈ 3/2, which we observe in the lattice
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simulations, can be understood as corresponding to the
scale invariant energy flux for 3-particle interactions, see
Eq. (63). The observed exponent p = 1/5 of the self-
similar scaling of free turbulence, can also be in accord
with 3-particle interactions, see Eq. (62). However, in
our case bare 3-particle couplings are absent and appear
effectively in interactions with zero-mode. Therefore, the
3-particle collision integral is multiplied by the amplitude
of zero mode squared. Since the amplitude of the zero
mode oscillations decays, one can expect p = 1/5 only
during a small time interval, see Sect. III C 2.

Can 4-particle interactions be responsible for the ob-
served scalings ? For 4-particle interactions pi = 1/7,
see Eq. (65), which is not that far away from the lattice
results, especially if one takes into account energy influx
from the zero-mode. However, for particle distributions
in the inertial range one should expect s = 5/3, which
is not in a good agreement with the observed value of
s = 3/2. Further, in view of Eq. (67) one should expect
the dominance of 4-particle scattering during the time in-
terval when the variances of fluctuations are larger than
φ2

0. This is not the case during the time interval encom-
passed by the lattice simulations, see Fig. 1.

The outlined difficulties may give an indication that
the weak turbulence description is not applicable in our
case. In view of the importance of the issue, we per-
formed a detailed study of collision integrals, anomalous
and higher order correlators, as measurements on the lat-
tice, and compared these with predictions and assump-
tions of kinetic theory.

A. Collision integrals

To verify the extent of agreement between kinetic the-
ory and lattice calculations, and to find out which pro-
cesses dominate the collision integral in our problem, we
carry out the following procedure. First, we numerically
calculate the collision integrals using standard expres-
sions, Eqs. (7)-(10), and the particle distribution func-
tions nk(η) extracted from our lattice calculations. Sec-
ond, using lattice data we calculate time derivatives of
the distribution functions to see if the relation ṅk = Ik[n]
holds. We limit ourselves to 3- and 4-particle collisions.

The general relations, Eqs. (7)-(10), for 4- and 3-
particle collision integrals can be reduced to two and one
dimensional integrations respectively, if the distribution
functions are isotropic. Explicit expressions are given in
Appendix B , Eqs. (B38) and (B39).

The numerically calculated values of I
(3)
k and I

(4)
k colli-

sion integrals are shown in Fig. 8 in comparison with ṅk.
Note that the collision integrals and ṅk take positive and
negative values. For clarity we show only absolute values
of these functions and indicate schematically the bound-
ary between regions where ṅk is negative and positive.
Roughly, in the inertial range ṅk is negative (recall that
in this region the particle distributions can be approxi-
mated as nk(η) = (φ̄0/k)
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FIG. 8: Absolute values of ṅ(k) and of I
(3)
k and I

(4)
k collision

integrals at η = 5000. To the left of the arrow ṅ(k) and colli-
sion integrals are negative, while to the right they are positive.

Occupation numbers, nk, are also shown for comparison. I
(3)
k

agrees with ṅ(k) to the left of the vertical dashed line.

of time), while ṅk should be positive at larger k where
the cut-off starts (recall that energy is flowing into this
region).

We find that I
(3)
k gives a reasonable approximation to

ṅk practically in all range of k which is dynamically im-
portant, which is to the left of the vertical dashed line in
Fig. 8. One reason for the disagreement between ṅ(k) and

I
(3)
k at larger k could be due to the fact that on the lat-

tice some of the allowed resonant wave interactions of the
continuum limit are not present ( cf. [87]). In any case,

in the region where I
(3)
k and ṅk disagree, the occupation

numbers are relatively small, nk < 102, and this region
should not contribute to the dynamics significantly.

The I
(4)
k collision integral is about an order of magni-

tude smaller compared with I
(3)
k and is subdominant in

the evolution of nk, except on the very tail of the distri-

bution, see Fig. 8. The agreement between ṅk and I
(4)
k

in the region of the tail is not coincidental - we observe
it at all η.

B. Anomalous correlators

Usually, kinetic equations are derived under the as-
sumption 〈akaq〉 ≪ 〈a∗kaq〉. However, this condition not
always holds. For example, in the case of particle cre-
ation by a time-varying classical background (e.g. in the
region of parametric resonance)

ṅk =
ω̇k
ωk

Re(σk) , (81)
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FIG. 9: Occupation numbers and absolute values of σk at
η = 5000 (dashed lines) and η = 10000 (solid lines).

where

〈akaq〉 ≡ σk δ(k + q) , (82)

see Appendix B. In this case the anomalous correlators,
σk, can not be neglected, since σk ∼ nk. This holds in
general: if coherent processes are important, the correla-
tors Eq. (82) may modify the dynamics of nk. If this is
the case, they should be included into the kinetic equa-
tion. Since σk were neglected in the kinetic equations,
Eqs. (7)-(10), it is important to verify if the condition
|σk| ≪ nk holds in our simulations.

The correlators σk are shown for several moments of
time in Fig. 9. In the inertial range the anomalous cor-
relators are small indeed, |σk|/nk ≈ 3 · 10−2, while this
ratio is an order of magnitude larger in the region of the
resonance peak (k ≈ 0.5 at late times), which is expected
behavior. The ratio |σk|/nk is growing also in the region
of large k, reaching the value of 0.1 at k = 8 at late
times, see Fig. 3. To avoid confusion, note that k = 8
corresponds to k/φ̄0 ≈ 25, which is the variable used in
Fig. 9. We do not know if the growth of |σk|/nk at large
k is a lattice effect, but we can conclude that the kinetic
equations in its simple form, Eqs. (7)-(10), should be
applicable in the inertial range.

VII. PHYSICAL APPLICATIONS

Many different effects may occur during the stage of
preheating. Some of these were discussed in the Intro-
duction section. They have a common physical origin:
rapid particle creation and large accompanying fluctua-
tions of the classical fields involved. These findings are
unaffected by our results, even in the case when only a
relatively small fraction of the inflaton energy is trans-
ferred to fluctuations during the initial stage of paramet-
ric resonance.

However, in many cases it is necessary to trace the
events further in time, e.g. to find out when and how the
symmetry which was restored during preheating gets bro-
ken later on, or to trace which fraction of baryon or lepton
asymmetry survives in the process of thermalization. Fi-
nally, one needs to know when thermal equilibrium will
be established. This gives e.g. the abundances of partic-
ular dark matter particle candidates and other, possibly
cosmologically “dangerous” relics like the gravitino.

The explicit time dependence of the particle distri-
bution functions, and the knowledge that the evolution
is self-similar, n(k, τ) = Aγ n0(kA) = τ−γp n0(kτ

−p),
which we have found in the present paper, may be use-
ful here. Below we discuss some applications, limiting
ourselves to field variances and to the problem of ther-
malization.

A. Field variances

In some applications, basic observables like field vari-
ances may already give the answer to the problem in
question. This applies to the problem of symmetry
restoration. To illustrate this, let us consider the Higgs
field which is coupled to a χ-field. In the vacuum state
without condensate the mass squared of the Higgs field
would be negative, −µ2, and the corresponding symme-
try is broken. In the presence of the background of χ-
particles, the mass gets “dressed”, m2

eff = −µ2 + g〈χ2〉.
If the field variances are sufficiently large, the symmetry
is restored (and is broken when 〈χ2〉 ≤ µ2/g).

If anomalous correlators are negligible, the field vari-
ances can be calculated using expression

var(χ) ≡ 〈χ2〉 − 〈χ〉2 =

∫

ddk

(2π)d
nk
ωk

. (83)

With the help of the self-similar substitution, Eq. (29),
we find

var(χ, τ) = Aγ−d+α var0(χ) . (84)

Here, the left hand side is taken at conformal time η,
while var0(χ) on the right hand side is the variance at
some earlier time η0.

1. Relativistic regime

a. Free turbulence. In this case γ = d + α, see
Eq. (41), and we find with α = 1

var(χ, τ) = A2α var0(χ) = τ−2pi var0(χ) . (85)

For systems that we have studied numerically, pi = 1/5
at early times which span the integration period. There-
fore, in the free turbulence regime, we should expect
var(χ, τ) = τ−2/5 var0(χ). This is in agreement with the
results of our numerical integration, see Fig. 1. For late-
time evolution, when 4-particle interactions will start to
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FIG. 10: Time dependence of the variance of χ field in the
model with h = 10g considered in Sec. V.

dominate, we predict a slower decrease of the variance,
var(χ, τ) = τ−2/7 var0(χ).

Note that these results have to be divided by the scale
factor squared if expansion of the Universe is important.

b. Driven turbulence. In the regime of stationary
turbulence without sink, according to Eq. (45), γ = s,
which gives var(χ, τ) = As−d+α var0(χ). Using Eq. (60),
we find s− d+ α = 1/(1 −m) and

var(χ, τ) = τ−pt/(1−m) var0(χ) = τpivar0(χ) , (86)

where relation Eq. (47) was also used. Therefore,
during driven turbulence the variance should grow as
var(χ, τ) = τ1/5 var0(χ) in the models which we have in-
tegrated numerically. This is indeed the case as Fig. 10
shows. The transitional period from the regime of para-
metric resonance to the regime of stationary turbulence
at η ∼ 102 is slightly more pronounced in Fig. 10 as com-
pared to Fig. 6. This may be explained by the fact that
different regions of momentum space are emphasized in
ρχ and in var(χ).

2. Non-relativistic regime

In the case of free turbulence we have γ = d, and in
Eq. (84) we have to substitute α = 0, which corresponds
to ωk → M in Eqs. (40), (83). Therefore, var(χ, τ) =
const. For driven turbulence we have γ = s = d, see
Eq. (61), and Eq. (84) again gives var(χ, τ) = const.

We see that in the regime of driven turbulence vari-
ances are slowly changing functions of time (∝ τ1/5 in
the relativistic case and var(χ, τ) = const in the non-
relativistic case), while energy in particles grows fast,
ρχ ∝ τ in this regime. This is in accord with the fact that
variances can be large right after the initial parametric

resonance stage, while the amount of energy transfered
during this stage is low and all energy transfers occur in
the regime of driven turbulence.

B. Thermalization in the absence of zero-mode

We now apply the results obtained earlier in this paper
to the general problem of thermalization of relativistic
and non-relativistic scalar particles, both in Minkowski
space-time and in expanding Friedmann universe. We do
not restrict ourselves to the models which were studied
numerically. Our analysis will be based on expression
(29) with the factor A(τ) being specified for a partic-
ular modeled. This expression describes a self-similar
propagation of the distribution functions into the ultra-
violet. In a classical theory this evolution continues with-
out bound (unless we consider a non-relativistic theory
in expanding universe).

The classical evolution stops when a system reaches the
quantum regime where it can relax to the Bose-Einstein
distribution. We adopt that this happens when in a re-
gion of momenta, kf , which saturate the energy integral,
the occupation numbers became of order one. In this
subsection we consider the case of free turbulence. Then,
one can estimate kf using energy conservation and ap-
proximating the energy density as ρ ∼ ω(kf )k

3
f in the

region where nk ∼ 1. On the other hand, initially the
energy was deposited into particles with lower momenta,
denoted below as ki. The relation ki ∼ Mφ, where Mφ

is the inflaton mass, determines the scale of initial mo-
menta. Eq. (39) gives for the time needed to thermalize
a system:

τ th ∼ (kf/ki)
1/p (87)

Actually this should be considered as a lower limit on the
thermalization time since we have to add a time which
the system will spend in the quantum regime.

As an idealization of the thermalization process we
consider the evolution of a sub-system of excitations of
a field χ, assuming that a fixed part of energy was de-
posited into it initially, while since then χ evolves as an
isolated system. In this subsection, for estimates of the
thermalization time we neglect the presiding regimes of
parametric resonance and of stationary turbulence, since
they are much shorter if the relevant coupling constants
are not drastically different. We consider the possibility
of (partial) thermalization in the regime of driven turbu-
lence in the following subsection.

As a first step we will find the thermalization time
which follows from the exact self-similar solutions ob-
tained above. Then we will show that in all cases which
we consider, the result coincide, parametrically, with the
“naive” perturbative estimates. Doing this comparison
we neglect all numerical coefficients.
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1. Relativistic regime

Equation (87) gives

τ th ∼ (ρ
1/4
f /Mφ)

1/p . (88)

The expansion of the Universe is easily treated in confor-
mal reference frame. We have ρf = ρi = cχρtot, where cχ
is the fraction of the inflaton energy deposited into the
field χ during preheating and driven turbulence. This
finalizes the answer. The result is general and is valid
for any model. The initial inflaton energy can be written
as ρtot ∼ k2

i φ
2
0 ∼ M2

φM
2
Pl, where φ0 is the initial am-

plitude of inflaton oscillations. We find with p = 1/7,
Eq. (65), which corresponds to a relativistic theory with
dimensionless couplings

τ th ∼ c7/4χ

(

MPl

mφ

)7/2

∼ c7/4χ 1021 . (89)

We used here the inflaton parameters, Mφ ≈ 10−6MPl

in M2
φφ

2 model, or Mφ =
√
λMPl with λ ≈ 10−13 in the

λφ4 inflationary model.
To avoid confusion, note that the definition of τ is

different in different models since it involves t0 ∼ Γ−1.
We can assume cχ ≈ 1 if the Universe expansion can be

neglected (this may be of interest for problems outside of
inflationary cosmology), and if the number of competing
channels (other fields beyond χ to which the initial energy
can be deposited) is not large.

a. Minkowski space-time Let us show that Eq. (88)
agrees with the ”naive” perturbative estimate. For this
estimate we define τ as τ = tR Γ, where tR is the per-
turbative estimate of the thermalization time t−1

R ∼ σn.
In the λφ4 model σ ∼ λ2/T 2, n ∼ T 3, T ∼ kf and

therefore t−1
R ∼ λ2kf . On the other hand, parametric

resonance stops when the rate of re-scattering from the
resonance band becomes equal to the rate of particle pro-
duction µ ∼ Mφ ∼ ki. This gives Γ ∼ ki and we find
τ ∼ ΓtR ∼ ki/λ

2kf . Now, ρ ∼ k4
f and ρ ∼ k4

i nk, where
nk correspond to the typical occupation numbers at the
time when parametric resonance stops, nk ∼ 1/λ. We

obtain tRΓ =
(

ρ1/4/ki
)7

, in agreement with Eq. (88).
b. Friedmann universe In this case we can estimate

the final temperature as T ∼ kf/a(τ). Let us consider
a radiation dominated universe with a(τ) = H0η0(τ −
1) + 1, see Eq. (68). We neglect the rapid epoch of
stationary turbulence, and η0 corresponds to a time when
the evolution of χ is driven by its self-interaction with self
coupling λχ, i.e. η−1

0 ∼ Γ ∼ λ2
χn

2
kki ∼ λ2

χ(cχρtot)
2/k7

i ,

where we have used ρχ ∼ k4
i nk. On the other hand H0 ∼

ρ
1/2
tot /MPl. Combining this with Eq. (88) we find a(τ) =

H0η0τ ∼ c
−1/4
χ ρ

1/4
tot /λ

2
χMPl. For the final thermalization

temperature we obtain T ∼ kf/a(τ) ∼ c
1/2
χ λ2

χMPl, where

we have used kf ∼ ρ
1/4
χ . This again agrees with the naive

estimate, σn ∼ H .

Numerically, T ∼ λ2
χMPl ∼ 100 eV, if we use the

strength of the inflaton self-coupling, λ ≈ 10−13. Ther-
fore, in a realistic model, at least some couplings should
be significantly larger than this scale.

2. Non-relativistic regime

Now we consider the thermalization of X-particles of
mass MX in the non-relativistic regime. We assume
that the relaxation is due to the self-interaction λXX

4.
The particle number conserves in the conformal reference
frame in this regime, and Eq. (87) gives

τ th = c
1/3p
X

[

1

Mφ

(

ρf
MX

)1/3
]1/p

, (90)

where cX is the fraction of the inflaton energy which ini-
tially was deposited into the field X (this fraction should
be measured at the time when the self-similar evolution
starts). In the present case p = 1/2, see Eq. (59), and
similarly to Eq. (89) we find for the relaxation time

τ ∼
(

cX
M2

Pl

MφMX

)2/3

∼
[

cX
Mφ

MX

]2/3

108 . (91)

In this expression Mφ/MX ∼ 1 since Bosons which are
much heavier than the inflaton are not created, and in the
opposite regime X-particles would have been relativistic.

As we have seen in Sec. IVC 2 there is no real relax-
ation of massive particles when the expansion has become
important. If some relaxation happens, it should occur
during the time interval when the scale factor does not
deviate significantly from its initial value. Then the ex-
pansion can be neglected and the relaxation proceeds as
in Minkowski space-time. Let us show that the expres-
sions above agree with the “naive” perturbative estimate
in the latter case.

a. Minkowski space-time The perturbative relax-
ation time in the final state can be estimated as t−1

R ∼
vσn, where σ ∼ λ2

X/M
2
X and n ∼ k3

f . Therefore

t−1
R ∼ λ2

Xk
4
f/M

3
X . On the other hand, the rate in the

initial state is given by a similar expression, but is mul-
tiplied by large occupation numbers in the initial state
[88] (which can be viewed as Bose-amplification factor),
Γ ∼ vσnnk ∼ λ2

Xn
2/k2

iM
3
X , where we used n ∼ k3

i nk.

We obtain tRΓ ∼ n2/k4
fk

2
i ∼ (ρ/MX)2/3/k2

i , where

ρ = MXn. This agrees with Eq. (90).
b. Friedmann universe To estimate the thermaliza-

tion time and temperature we need to know the typical
rate of reactions and the value of the Hubble parameter
at the beginning of self-similar evolution. For definiteness
we consider the situation which arises after preheating in
the massive inflaton model coupled to a heavy field X .
We assume that self-coupling of the X-field is sufficiently
large, such that the “parametric” decay of the inflaton
is halted by X-rescattering on each other. Using results
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of Ref. [8] we conclude that at the moment when the
inflaton zero-mode decays completely, the energy den-
sity in the X-field can be estimated as ρχ ∼ M4

X/λχ,

while the rate of re-scattering is η−1
0 ∼ MX . This gives

H0η0 ∼ λ
−1/2
χ MX/MPl ∼ q−1/2, where q is the initial res-

onance parameter. Since q can be very large, the product
H0η0 can be small and the expansion is not significant
at the initial stage of the self-similar evolution. On the
other hand, the time needed to reach the quantum regime
is of order τ th ∼ (kf/ki)

1/p. Since particle number con-
serves during the period of self-similar evolution we have
k3
f ∼ M3

X/λχ, while ki ∼ MX at the end of parametric

resonance stage. This gives τ th ∼ (1/λχ)
1/3p ∼ λ

−2/3
χ .

The condition H0η0τ
th < 1 gives λ

7/6
χ > MX/MPl as a

necessary condition to reach a thermal state before the
freeze-out of distribution functions. Using inflationary
normalization, we conclude that non-relativistic particles
created in “parametric resonance” have a chance to ther-
malize between themselves in an expanding universe if
λχ > 10−5.

C. A faster route to thermalization ?

Considering the regime of free turbulence, we have ob-
tained estimates for the thermalization time which are
in agreement with “naive” perturbation theory. It was
important in these estimates that the relativistic free
turbulence propagates with p = 1/7. This should be
true at sufficiently late times, when all effects related to
zero mode become insignificant. However, free turbu-
lence driven by 3-particle interactions in the presence of
a zero mode evolves with p = 1/5. The evolution of the
front of particle distributions is even faster in the case
of driven turbulence, when p = 2/5. If the quantum do-
main is already reached during one of these two stages
our estimates for thermalization should be changed.

Here we consider the question whether a subsystem of
χ-particles can reach the quantum region in the regime
of a stationary turbulence.

1. Driven turbulence

The quantum domain is reached in the regime of driven
turbulence if the power law of the inertial range will ex-
tend up to nk ∼ 1. In other words, nk = (k/kT )−s should
be valid up to k = kT . Let us consider the model were the
largest coupling is the self-coupling of the χ-field. The
normalization of nk can be fixed if we recall that in the
region of the source, k ∼ ki, the χ-particle distribution

is given by nχ ∼ 1/λχ. This gives kT ∼ kiλ
−1/s
χ , or the

time needed to reach the quantum region is given by

τ ∼ λ−1/sp
χ , (92)

where we have used Eq. (87).

On the other hand, the energy in the subsystem of
χ-particles grows in the regime of driven turbulence as
ρχ(τ) = τ ρχ(1), and should not exceed the total energy
stored in the inflaton zero-mode oscillations. The initial
energy can be estimated as ρχ(1) ∼ k4

resnχ, where kres ∼
q1/4ωφ and q is the resonance parameter: q = λφχΦ2

0/M
2
φ

in the M2
φΦ2 inflaton model, or q = λφχ/λφ in the λΦ4

inflaton model. This gives ρχ(1)/ρtot ∼ λφχ/λχ, and we
obtain the bound

τ < λχ/λφχ . (93)

We conclude that the quantum domain can be reached

in the regime of driven turbulence if λχ > λ
sp/(sp+1)
φχ =

λ
3/8
φχ ∼ 10−4. Here we have used s = 3/2, p = 2/5

and λφχ ∼ 10λφ. These values are realistic, therefore,
physical implications of driven turbulence in applications
to thermalization deserve further study.

VIII. CONCLUSIONS

We have studied the process of thermalization of clas-
sical systems, which at some point in their evolution are
in a highly non-equilibrium state with energy being con-
centrated in a deep “infra-red” region of momenta. Such
states naturally appear e.g. during reheating of the Uni-
verse after cosmological inflation. We have shown that
the process of relaxation in such systems can be divided,
in the general case, into three distinct stages.

In the models of the type we have considered in this
paper, the initial stage of preheating [4] is powered by
parametric resonance. During this initial linear stage the
rate of energy transfer is the fastest. The energy in par-
ticles grows exponentially. However, in the physical situ-
ation of reheating after inflation, the coupling constants
have to be sufficiently large to insure an acceptably short
time-scale of the subsequent thermalization, while with
large couplings, only a negligible fraction of the initial
inflaton energy is transfered into fluctuations during the
parametric resonance stage [8, 9].

We have shown that in such situations the linear stage
is followed by the regime of a driven stationary turbu-
lence. During this stage, the energy in particles grows
linearly in time. The regime of stationary turbulence
stops as soon as the energy in particles starts to domi-
nate the overall energy balance. Therefore, this regime
is a major mechanism of energy transfer from the oscil-
lating inflaton zero-mode into other species in realistic
models of the type we have considered here. This period
of evolution is also prompt. It should be noted that the
source which drives the turbulence is powerful because
coherence effects are still strong in the relevant region of
momenta.

The subsequent long stage of thermalization classifies
as free turbulence. This stage should be generic. The
energy in particles is conserved during this epoch, while
the shape of the particle distribution function changes
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in a self-similar way with the front of the distribution
propagating into the ultra-violet. This stage continues
until the quantum regime is reached and particles can
relax to Bose-Einstein distributions. Applying conven-
tional kinetic theory we have calculated analytically the
time needed to equilibrate a system and the resulting
temperature in terms of coupling constants and initial
inflaton amplitude. The result coincides parametrically
with the “naive” perturbative estimates [1] .

We made a comparison of kinetic theory with the nu-
merical integration of scalar field models on the lattice.
We show that, at late times, the kinetic approach is ap-
plicable, resulting in a weak wave turbulence regime [68].
In the models considered numerically, the evolution is
driven by three-particle scattering in the background of
zero-mode oscillations. The characteristic exponents cal-
culated within the framework of wave kinetic theory are
consistent with the results of our lattice simulations.
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APPENDIX A: NUMERICAL PROCEDURE

In our study we have developed and employed a higher
accuracy version of the LATTICEEASY code [89]. Var-
ious correlation functions were measured with the use of
Fast Fourier Transform (FFT), adopted from Numerical
Recepies [90]. Essential details of our procedure can be
found in Refs. [6, 8, 24, 89]. Here we describe specific
choices of parameters, significant important differences
in the integration scheme and give exact definitions of
lattice observables.

The numerical integration was done on a 3-D cubic
lattice with periodic boundary conditions. The lattice
is parameterized by the box size L, and the number of
lattice points per dimension, N . These give the lattice
spacing b ≡ L/N and the total number of lattice sites,
N3 in three dimensions.

The results presented in the paper are taken from sim-
ulations with 2563 lattice sites and a box size L chosen
to fit a particular problem. For example, in the case of
Eq. (3), L = 7.5π. With this box size the infrared modes
which belong to the resonance band are still well repre-
sented, while the ultraviolet lattice cut-off is sufficiently
far away from the occupied modes, therefore the particle
spectra are not distorted even at late times. We have
studied the dependence of our results on the lattice- and
the box size to avoid lattice artifacts.

The finite-differences scheme that was used is 2nd or-
der in time and 4-th order in space.

a. Finite-differences scheme

We write the equations of motion (3) or (78), (79) as
fourth order finite differences on a three-dimensional spa-
tial cubic lattice with periodic boundary conditions. The
corresponding equations were evolved with the use of a
symplectic integration scheme. Details are as follows.

Particle wave numbers are discrete on the lattice,
k = (n1, n2, n3)k0, where −N/2 ≤ nj ≤ N/2 and k0 =
(2π)/L. The phase space is restricted to k0 ≤ k ≤ kmax,

where kmax =
√

3k0N/2. To avoid distortion at high mo-
menta, it is desirable to take large N. This, however, is
limited by the capabilities of the computer used. The
choice of small values for L is also prohibited since that
will lead to infrared distortions and may even move the
resonance band out of the integration box. The problem
is alleviated by the choice of a finite-differences scheme
which is fourth order in space. This can be quantified in
the following way.

The lattice realization of the Laplacian in our scheme
is given by:

△LΦ(x) =
1

b2

∑

e

[

− 1

12
Φ(x+ 2be) +

4

3
Φ(x + be) − 5

2
Φ(x) +

4

3
Φ(x− be) − 1

12
Φ(x− 2be)

]

. (A1)

The vector index e runs over the three orthonormal direc-
tions of the lattice. △L is a fourth order approximation,
i. e. (△−△L)Φ(x) ∼ O(b4) for a differentiable function
Φ(x) . The Fourier transform of △L differs from that
of △, which would be given by multiplication with k2.
Therefore the dispersion relation for a massless field on

the lattice is also different, and is given by

ω2
L(k) =

1

b2

3
∑

i=1

(

5

2
− 8

3
cos(bki) +

1

6
cos(2aki)

)

, (A2)

We find that ω2
L ≤ k2 and ω2

L − k2 ∼ O(k6b4) for small
k. Numerically, for k ≤ kmax/3, the relative difference
between k and ωL is less then a percent, while for larger
k it grows up to about 30 percent difference at k = kmax.
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FIG. 11: Deviation of the dispersion law for massless excita-
tions on the lattice, (k − ωL)/k, for second and fourth order
finite-difference schemes.

This means, that we can expect essentially undistorted
self-similar and turbulent solutions on the lattice, if the
dominating modes have wave vectors k . kmax/3. In
the case of a second order realization of △L, we find a
considerably smaller available phase space, k . kmax/10.
This is illustrated in Fig. 11 where we plot (k−ωL)/k as a
function of k for the second and fourth order calculation
schemes on the lattice L = 7.5π, used in our integration
of the problem Eq. (3). We see that up to k = 10,
which essentially encompasses the support region of the
distribution functions, see Fig. 3, the dispersion law on
the lattice represents the continuum correctly. That is
why self-similarity was not distorted on our lattice and
could have being detected. (The small deviations from
self-similarity, which can be observed at the very tail of
the distribution and at the latest time, see Fig. 3, are
caused by the distortion of the dispersion law which starts
to be non-negligible here).

b. Classical Approximation and Stochastic Initial

Conditions

The initial linear stage of parametric resonance has a
complete quantum description, which is best expressed in
the language of Bogoljubov transformations. The quan-
tum description of this linear problem can be mapped
into an equivalent classical problem [6]. In our dimen-
sionless variables the initial conditions for the classical
description are given by the following probability distri-
bution for field fluctuations in Fourier space:

P[ψ, ψ̇] ∼ exp

{

− 2

λΦ

∫

d3k 2ωψk (τ0) |ψk|2
}

× δF
(

ψ̇k + iωψk (τ0)ψk

)

(A3)

Here ”ψ” should be replaced by one of the fields φ or χ
that are the dynamical variables in the simlated equa-

tions (3) or (78), (79), and ωφk (η0) ≃
√

k2
L + 3, while

ωχk (η0) ≃
√

k2
L + g. The symbol δF (. . .) is a functional

Dirac-distribution so that the canonical momenta are
locked to the classical trajectory.

c. Measured Quantities:

We measure various physical quantities both in con-
figuration space and in Fourier space. In configura-
tion space it is convenient to measure the zero mode,
φ0 ≡ 〈φ〉, and the variance, var(φ) ≡ 〈φ2〉 − φ2

0. In
Fourier space we measure particle number and other cor-
relators.

For large N lattice averages basically coincide with the
statistical ones (ergodic theorem). We use this fact to
measure expectation values (zero-modes), variances and
higher cumulants of fields and their conjugate momenta.

Spatial Lattice Averages: For averages defined in con-
figuration space 〈O〉 ≡ V −1

∫

d3xO, which on the lattice
is expressed as the sum over the lattice points 〈O〉 ≡
N−3

∑

iOi.
Fourier Spectra: For monitoring purposes we make a

FFT transform at least every period of inflaton oscilla-
tion. The wave amplitudes of fourier transformed fields
are defined by Eq. (B20), see Appendix B. In the dimen-
sionless units that we use in the numerical simulation the
physical wave amplitudes take the form

ãψk ≡ 1√
λΦ

ωψk ψk + iψ̇k

(2π)3/2
√

2ωψk

, (A4)

where again ”ψ” stands for the dynamical variables φ
or χ in the equations (3) or (78), (79). The dimension-

less frequencies are given by ωψk ≡
√

k2
L +mψ

eff

2
, where

mφ
eff

2
= 3〈ϕ2〉+ g〈χ2〉 and mχ

eff
2

= g〈ϕ2〉+3h〈χ2〉. Mak-
ing use of ak, we calculate various correlators, n(k) ≡
〈a∗kak〉, σ(k) ≡ 〈aka−k〉, 〈a∗a∗aa〉, etc. The first one,
which corresponds to the particle occupation numbers, is
of prime interest.

Note that with this simple definition of quasi-particles
the Hamiltonian is not diagonal in terms of aχk and

aφk wave amplitudes if interaction energy is important.
Therefore, the related definition of e.g. particle number
is good only for modes with dominating kinetic energy.

APPENDIX B: KINETIC EQUATION FOR
CLASSICAL WAVES

Following the general approach of Refs. [68, 80] we
derive the wave kinetic equation for the classical system
of interest, the massive λφ4- theory in d dimensions with
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Hamiltonian density

H =
1

2
φ̇2 +

1

2
(∇φ)2 +

M2

2
φ2 +

λ

4
φ4 , (B1)

and in the presence of an oscillating classical background.
We assume random wave fields which are statistically uni-
form, i.e. the equal time correlation functions of φ and
its canonical conjugate momentum φ̇ are homogeneous
and isotropic. We also assume the field to be weakly
interacting.

The first step in the derivation of the kinetic equation
for an arbitrary system is to find Fourier wave ampli-
tudes, ak, such that the quadratic part of the Hamilto-
nian is diagonal in ak, i.e. :

H2 =

∫

ddk ωka
∗
kak . (B2)

The general equation of motion for the wave amplitudes
is

da(k, t)

dt
=
∂a(k, t)

∂t
− iωka(k, t) − i

δHint

δa∗(k, t)
, (B3)

where Hint ≡ H −H2. The first term in the l.h.s. is due
to a possible explicit time-dependence in the definition
of ak, which can appear for example in case of a time-
varying background.

In the kinetic approach we want to get rid of rapidly
varying phases of the wave amplitudes, i.e. to derive the
equation for the slowly changing “occupation numbers”,
nk ∼ a∗kak. To achieve this we multiply Eq. (B3) by a∗k,
subtract the complex-conjugate expression and average.
The result will contain higher order correlators induced
by interaction terms. The resulting BBGKY-hierarchy of
equations for Fourier cumulants can be solved, e.g., in the
random phase approximation in consistent perturbative
expansion.

In the case of (B1) the wave amplitudes for the fluctu-
ation fields are solutions of

δφk =
(2π)d/2√

2ωk

(

ak + a∗−k

)

(B4)

δφ̇k =
(2π)d/2

√
ωk√

2i

(

ak − a∗−k

)

(B5)

where δφk and δφ̇k are Fourier transforms of the canon-
ical field and of its conjugate momenta respectively,
shifted by the “zero mode” φ0 = 〈φ〉 and φ̇0 = 〈φ̇〉. This
gives

ak ≡ ωkδφk + iδφ̇k

(2π)d/2
√

2ωk
. (B6)

From the start we include in ωk the interaction with the
bath of fluctuations,

ω2
k = k2 +M2 + 3λφ2

0 + 3λ〈δφ2〉, (B7)

i.e. ak correspond to “quasiparticles”. The second or-
der correlators in homogeneous and isotropic background
should be “diagonal”

〈a∗kaq 〉 = nkδ
(d)(k − q) (B8)

〈akaq〉 = σkδ
(d)(p + q) (B9)

1. Microscopical Equations of Motion

We derive equations of motion for the zero mode and
for wave amplitudes starting from

�φ+M2φ+ λφ3 = 0 . (B10)

a. Zero-Mode. Averaging (B10) we obtain

φ̈0 + (M2 + 3λ〈δφ2〉)φ0 + λφ3
0 + λ〈δφ3〉 = 0 . (B11)

In this equation 〈δφ3〉 is small compared to the other
terms and may be neglected locally in time in a state
which is close to a Gaussian. If additionally 〈δφ2〉 is ei-
ther weakly varying or small compared to all other terms
in (B11) the solution is given by the Jacobian cosine cn
[78, 91, 92]

φ0(t) ≃ φ̄0 cn

(

µt,
1√
2

λφ̄0

µ

)

, (B12)

where φ̄0 is the amplitude and

µ ≡
√

λφ̄2
0 + 3λ〈δφ2〉 +M2 . (B13)

The period of this function is

T0 = 4µ−1K

(

1√
2

λ1/2φ̄0

µ

)

, (B14)

where K(y) is the complete elliptic integral of the first
kind. This defines the effective frequency, ωc = 2π/T0.
In the large amplitude limit, µ = λ1/2φ̄0, we find ωc ≃
0.85µ. For arbitrary µ one can write the following de-
composition

ωc ≃ µ− 1

8

λφ̄2
0

µ
, (B15)

which is fairly accurate, the maximum deviation from
the exact expression is 3% at µ = λ1/2φ̄0. For small
amplitude of zero-mode oscillations, this expression can
be further approximated as

ωc ≃Meff

(

1 +
3λφ̄2

0

8M2
eff

)

, (B16)

where Meff ≡ (M2 + 3λ〈δφ2〉)1/2. This deviates from
exact result by less than 4% at λφ̄0 < Meff .

For a general discussion of the kinetic equations in the
background of a zero mode it might be useful to expand
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φ0(t) in a Fourier series. However, this decomposition
for the elliptic Jacobi function is strongly dominated by
the first harmonic with ω = ωc. Even at µ = λ1/2φ̄0, the
relative amplitude of the first harmonic is ≈ 0.96, and it
approaches unity with decreasing φ̄0. Therefore, in what
follows we will restrict ourselves to the first term in the
Fourier decomposition of φ0(t).

It is useful to define wave amplitudes for the zero-mode

ac ≡
√

2ωc φ̄0e
−iωct (B17)

in terms of which the zero-mode can be represented as

φ0 =
ac + a∗c√

2ωc
. (B18)

One can also introduce an effective occupation number
of ”condensed waves”,

nc = a∗cac = 2ωcφ̄
2
0 . (B19)

b. Wave amplitudes. The equations of motion for
the wave amplitudes with non-zero momentum can be
written as

ȧk = −iωkak +
1

2

ω̇k
ωk
a∗−k + C

(3)
k + C

(4)
k , (B20)

where

C
(3)
k ≡− 3iλφ0

∫

dΩk12 [δφp1
δφp2

− 〈δφp1
δφp2

〉] δ(d)(k − p1 − p2)

C
(4)
k ≡− iλ

∫

dΩk123 [δφp1
δφp2

δφp3
− 3δφp1

〈δφp2
δφp3

〉

− 〈δφp1
δφp2

δφp3
〉] δ(d)(k − p1 − p2 − p3) ,

and

dΩk12 ≡ ddp1d
dp2√

2ωk(2π)3d/2
, dΩk123 ≡ ddp1d

dp2d
dp3√

2ωk(2π)5d/2

C
(3)
k describes three wave interactions in the background

of a zero-mode-and, while C
(4)
k corresponds to four wave

scattering. The averages in these expressions appeared
because, first, we separated the zero-mode out of the
equation for fluctuations, and, second, we used the ef-
fective frequency for quasiparticles, Eq. (B7). Due to
this choice the averages of C(a) times ak or a∗k will have
the structure of cumulants, which in turn will deviate
from zero only due to correlations induced by processes
of scattering.

Multiplying (B20) by a∗k or by ak and subtracting the
complex-conjugate expressions, we find

ṅk =
ω̇k
ωk

Reσk + ImI3(k) + ImI4(k) (B21)

iσ̇k = 2ωkσk +
i

2

ω̇k
ωk
nk + I∗3 (k) + I∗4 (k) (B22)

where

I3(k) = 6λφ0

∫

dΩk12 〈a∗kδφp1
δφp2

〉c (B23)

I4(k) = 2λ

∫

dΩk123 〈a∗kδφp1
δφp2

δφp3
〉c (B24)

Here 〈. . . 〉c denotes the cumulants, which in a diagram-
matic language are identified with connected diagrams,
see e.g. Ref. [93].

In situations when I3(k) and I4(k) are negligible, Eqs.
(B21) and (B22) describe particle creation in a time-
dependent classical background, or parametric excitation
if it is periodic. (Note that the quantum version of these
equations at this stage can be obtained by the formal
substitution nk → 1/2 + nk.)

Note the following

• In our case ωk contains an rapidly oscillating term,
due to interaction with the zero mode. However,
at late times and at large k it is small. e.g., in our
numerical integration in the region of k near the
peak of the spectral energy distribution, this term
is of order 10−3, see Figs 1 and 3. We neglect this
term in what follows.

• The coefficient in front of the integral Eq. (B23)
is rapidly oscillating. Moreover, oscillations are
not harmonic if the amplitude of φ0 is large. Un-
harmonicity can be dealt with by expanding φ0(t)
in Fourier time series and considering each of the
terms separately. We restrict ourselves to the lead-
ing harmonic in this expansion since at late times
the unharmonicity is small.

• The cumulants contain different combinations of ak

and a∗k, see Eqs. (B4). It is well known that the
leading contribution to the resulting kinetic equa-
tion is due to the ”resonant wave interactions”,
or, in the language of particle physics, only those
terms survive, which are on the “mass-shell”. In
our case those will be 〈a∗pap1

ap2
〉c and 〈a∗pa∗p1

ap2
〉c

for interactions which involve the zero mode, and
〈a∗pa∗p1

ap2
ap3

〉c otherwise. We restrict our atten-
tion to these cumulants only.

• We neglect “anomalous” correlators, σk. These are
small in the inertial range of turbulence as our lat-
tice calculations show, but may be important oth-
erwise.

2. Leading Asymptotic of Collision Terms in
Kinetic Approximation

For a free random field the cumulants Eqs. (B23) and
(B24) are zero, and ṅk = 0 to the first order in perturba-
tion theory. To calculate ṅk in second order one has to
know the solutions for cumulants in the first order with
respect to interactions.
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We use the equation of motion for wave amplitudes,
Eq. (B20), to calculate the time derivatives of the cu-
mulants, ∂ta

∗
c〈a∗pap1

ap2
〉c and ∂t〈a∗pa∗p1

ap2
ap3

〉c. Higher
order correlators which appear in this procedure can be
used in zeroth order of perturbation theory, i.e. they can
be decomposed in nk assuming Gaussianity. To simplify
the equations we use the following notations for products

of nk which appear in these decompositions

Fp
p1p2

≡ ncnp1
np2

− ncnp (np1
+ np2

) (B25)

Fp p1

p2p3
≡ (np + np1

)np2
np3

− npnp1
(np2

+ np3
)(B26)

We find, keeping the terms which will have resonant be-
havior

∂t a
∗
c〈a∗pap1

ap2
〉c ≃ i(ωc + ωp − ωp1 − ωp2) a

∗
c〈a∗pap1

ap2
〉c +

i6λ δ(d)(p − p1 − p2)

(2π)d/2
√

2ωc2ωp2ωp12ωp2
Fp

p1p2
(B27)

∂t 〈a∗pa∗p1
ap2

ap3
〉c ≃ i(ωp + ωp1 − ωp2 − ωp3) 〈a∗pa∗p1

ap2
ap3

〉c +
i6λ δ(d)(p + p1 − p2 − p3)

(2π)3d/2
√

2ωp2ωp12ωp22ωp3
Fp p1

p2p3
(B28)

These equations have the common structure, iJ̇ = ∆ωJ−
A. Since A corresponds to the zeroth order in perturba-
tions, it assumed to be time independent here. An Ap-

propriate particular solution for cumulants is therefore
given by J = A/(∆ω + iǫ), see e.g. Ref. [68]. Using the
relation Im(x+ iǫ)−1 = −πδ(x) we obtain

Im a∗c〈a∗pap1
ap2

〉c ≃ 3λ
δ(d)(p − p1 − p2)δ(ωc + ωp − ωp1 − ωp2)

(2π)d/2−1
√

2ωc2ωp2ωp12ωp2
Fp

p1p2
(B29)

Im 〈a∗pa∗p1
ap2

ap3
〉c ≃ 3λ

δ(d)(p + p1 − p2 − p3)δ(ωp + ωp1 − ωp2 − ωp3)

(2π)3d/2−1
√

2ωp2ωp12ωp22ωp3
Fp p1

p2p3
(B30)

3. Isotropic Wave Kinetic Equations

Applying this result to Eqs. (B23) and (B24) we obtain
the kinetic equation for wave occupation numbers nk

ṅk = I
(3)
k + I

(4)
k , (B31)

where

I
(3)
k =

∫

dΩk
p1p2

Fk
p1p2

− 2

∫

dΩk p1

p2
Fp2

k p1
(B32)

I
(4)
k =

∫

dΩk p1

p2p3
Fk p1

p2p3
(B33)

and

dΩk
p1p2

≡ 18λ2 ddp1d
dp2 δ

(d)(k − p1 − p2)

(2π)d−12ωc2ωk2ωp12ωp2

× δ(ωc + ωk − ωp1 − ωp2)

(B34)

dΩk p1

p2
:=

18λ2 ddp1d
dp2 δ

(d)(k + p1 − p2)

(2π)d−12ωk2ωp12ωp22ωc

× δ(ωk + ωp1 − ωp2 − ωc)

(B35)

dΩk p1

p2p3
≡ 18λ2 ddp1d

dp2d
dp3 δ

(d)(k + p1 − p2 − p3)

(2π)2d−12ωk2ωp12ωp22ωp3

× δ(ωk + ωp1 − ωp2 − ωp3)
(B36)

Both terms in (B31) describe scattering processes of
two waves into two other ones. In (B32) one of them
comes from the zero-mode, while in (B33) all four are
from the fluctuation field. Energy conservation in the
interactions with the zero-mode, ωc+ωk−ωp1−ωp2 = εk−
εp1 − εp2 , can be written as conservation of the energies

εp ≡ ωp − ωc , (B37)

which for small zero-mode amplitude (where ωc ≃ ωp=0)
equals to the relativistic kinetic energy. Therefore, trans-
port of energy over momentum space should be consid-
ered as transport of kinetic energy in this case.

These relations, Eqs. (B32) and (B33), for 3- and 4-
particle collision integrals can be reduced to one and two
dimensional integrations respectively, if the distribution
functions are isotropic, for details see e.g. Refs [68, 84].
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The collision integral for 3-particle interactions in d =
3 takes the form

I
(3)
k =

9λ2φ̄2
0

16π ωk k

(
∫ εk

0

dε2 [n3n2 − nk (n3 + n2)]

+ 2

∫ ∞

εk

dε2 [n2(nk + n1) − nk n1]

)

, (B38)

where εi ≡ ε(pi) and ni ≡ n(εi). Energy conservation in
this case corresponds to ε3 = εk − ε2 and ε1 = ε2 − εk.

The collision integral for 4-particle interactions in λφ4-
theory reduces to

I
(4)
k =

9λ2

32π3 ωk k

∫ ∞

0

dε2

∫ ∞

0

dε3DF (n) , (B39)

where D ≡ min[k, p1, p2, p3] and ε1 = ε2 + ε3 − εk > 0 in
arguments of F (n) = (nk + n1)n2n3 − nkn1 (n2 + n3).

Note an interesting fact. Apart of the prefactor,
Eqs. (B39) and (B38) are functions of relativistic kinetic

energy, I
(i)
k ≡ (ωk k)

−1f(εk). This gives for the flux of
kinetic energy in 3 dimensions (cf. with Eq. (15))

Sρ(k) = −
∫ k d3p

(2π)3
εpI

(3)
p

= − 1

2π2

∫ εk

dε ε f(ε) ,

(B40)

where we have used pdp = ωdε. Therefore, the turbulent
flux should correspond to a particle distribution being
a power law of relativistic kinetic energy. Remarkably,
we have solved for the turbulent fluxes without the usual
assumption of scale-independent dispersion law, Eq. (17).
In fact, the dispersion law was that of relativistic field

theory, ω2
k = k2 + M2

eff . We do observe a single power
law for the particle distributions as functions of kinetic
energy in our lattice integration, even in situations when
M2

eff is large in the inertial range, see Fig. 4, the upper
panel.

4. Kinetic equation for zero-mode

The kinetic equation for the wave occupation numbers
has to be supplemented by the kinetic equation for the
zero mode. We start with the equation

φ̈0 + ω2
cφ0 = −λ

〈

δφ3
〉

(B41)

and repeat the procedure of the previous subsections. As
analog of Eq. (B21) we obtain

ṅc = 2λ Im

(

a∗c√
2ωc

〈

δφ3
〉

)

. (B42)

Substituting (B4) and solving equation for higher order
correlators we get

ṅc = −
∫

ddk

(2π)d
I
(3)
k . (B43)

This result is not surprising since 4-particle collisions
conserve particle number. In the model we consider, 3-
particle interactions are derived from the 4-particle col-
lisions with one of the particles being replaced by the
condensate. Therefore, Eq. (B43) can be interpreted as
a conservation of the total occupation number, in parti-
cles and in the condensate, nc+(2π)−d

∫

ddk nk = const.
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