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1 IntrodutionUnderstanding the origin of the eletroweak symmetry breaking at MEWB ≤ 1 TeV and thefermion mass generation appears to be one of the big theoretial hallenges of ontemporaryphysis. There exist various ideas of how to give mass to the gauge bosons mediating weakinterations and how to, simultaneously, render the sale of the breaking in the 1 TeV rangein the presene of radiative orretions. One of the most natural tools is supersymmetry,another one - extra dimensions, whih o�er new possibilities both for eletroweak breakingand for supersymmetry breaking (e.g. by suitable boundary onditions). However, with extradimensions there appears a new issue in the game - the problem of stabilization of ompatdimensions, whih, in fat, seems to be a disguised version of the familiar, well-known hierarhyproblem. In this note we would like to address, in the simplest possible set-up, the question ofthe interrelation between these issues. About the supersymmetry breaking we shall be ratherbrief here, simply assuming that it is somehow broken, perhaps even in a hard way; hene, forinstane, the number of fermions does not need to math the number of bosons in the model.Taking that for granted, we onsider here one-loop orretions to the e�etive potential for theradion (whih is the salar exitation of the extra-dimensional metri tensor whose vauumexpetation value �xes the size of extra dimensions) and the Higgs boson, as a soure of theradion stabilization. It turns out that it is possible to reate a non-trivial and quasi-realistiminimum of the e�etive potential in the spae spanned by the salar �elds of the theory, withone universal extra dimension in two ases of speial interest. Firstly, when the eletroweakbreaking is aused by the ondensation of the higher-dimensional Higgs salar, and seondly inthe Higgsless ase, when we imagine that the massless mode of gauge �elds is removed fromthe spetrum by boundary onditions. The notorious feature of the set-up ontaining a Higgsboson is a light, in fat too light, radion exitation. In the Higgsless ase it is muh easier toavoid suh a problem: it is possible to raise the radion mass by oupling a radion to heavyfermions living in the bulk of the model. We �nd it amusing and enouraging at the same timeto �nd stable vauum states with stable extra dimensions and broken gauge symmetry withessentially arbitrarily broken supersymmetry.The paper is organized as follows. In Setion 2 we de�ne the 5d Higgs model. Setion 3ontains details of the redution from 5d to 4d. In Setion 4 we alulate the one-loop e�etivepotential in order to determine the radion mass and we omment on the existing experimentalonstraints on the radion mass. Setion 5 is devoted to the disussion of the radion stability inthe Higgsless senario. Summary and omment on onsequenes of possible variations of theset-up adopted here are presented in Setion 6. The appendix ontains details of the derivationof the e�etive potential.2 General set-upLet us start with the following ation in 5d
S = Sg + Ss + Sf + Sv + Sgf , (1)2



where Sg denotes the Einstein�Hilbert ation,
Sg = −1

2
M3

5

∫ L

0

dy

∫

d4x
√
GR(5) , (2)where R(5) is the Rii salar onstruted from the 5d metri tensor GMN and L = 2πρ. ThesaleM5 sets the 5d gravitational oupling. The notation for the Lorentz indies and spae-timeoordinates is as follows: M,N = 0, 1, 2, 3, 5; µ, ν = 0, 1, 2, 3 and y = x5 is the oordinate ofthe extra dimension. The ation for the omplex salar �eld and vetor bosons reads

Ss =

∫ L

0

dy

∫

d4x
√
G
[

(DMφ)∗(DMφ) − V (5)(φ)
]

, (3)
Sv + Sgf =

∫ L

0

dy

∫

d4x
√
G

{

−1

4
FMNFMN − 1

2ξ
[∂µA

µ − ξ (∂5A5 + evχ)]2
}

, (4)where v is the vauum expetation value of the zero mode of the salar �eld, e4 ≡ e5/
√
L willappear to be the e�etive 4d eletromagneti gauge oupling and

FMN = ∂MAN − ∂NAM , DM = ∂M + ie5AM ,

V (5)(φ) = λ5

(

|φ|2 − µ2

2λ5

)2

, φ =
1√
2

(h+ iχ) .Here we will adopt the Landau gauge, whih is equivalent to the limit ξ → 0.In order to onstrut a Standard Model-like theory, we will follow Ref. [1℄ and introduetwo fermioni �elds ψ = ψ(x, y) (harged) and λ = λ(x, y) (neutral) with the following trans-formation properties:
ψ(x, y) → γ5ψ(x, L− y) and λ(x, y) → −γ5λ(x, L− y) , (5)while for the bosoni �elds we assume

φ(x, y) → φ(x, L− y), Aµ(x, y) → Aµ(x, L− y) and A5(x, y) → −A5(x, L− y) . (6)Then, the invariant fermioni ation reads:
Sf =

∫ L

0

dy

∫

d4x
√
G
[

iψγM(∂M + ie5AM)ψ + iλγM∂Mλ−
(

g5ψφλ+ H..)] , (7)As an be seen, the fermion mass term is generated (as in the Standard Model (SM)) by thesalar vauum expetation value.The size of the extra dimension L = 2πρ is an arbitrary parameter with the dimension oflength. It has no physial meaning. What is physially meaningful is the distane along theompat dimension
Lphys =

∫ L

0

dx5
√

−G55 . (8)3



3 Compati�ationLet us onstrut the 4d e�etive theory. Sine hereafter we will onsider neither Kaluza�Klein(KK) modes of the 4d metri gµν(x, y) nor those of the radion R0(x, y), the bakground 5dmetri an be parametrized as
GMN =

(

gµν(x) 0
0 −R2

0(x)

)

. (9)The ompati�ation of the extra dimension is spei�ed by the following S1/Z2 orbifold ondi-tions:
Aµ(x, y) = Aµ(x,−y) , A5(x, y) = −A5(x,−y) ,
φ(x, y) = φ(x,−y) ,

ψR(x, y) = ψR(x,−y) , ψL(x, y) = −ψL(x,−y) ,
λL(x, y) = λL(x,−y) , λR(x, y) = −λR(x,−y) .Moreover, the �elds should remain unhanged under the shift y → y + 2πρ. The resulting KKexpansion is given in the appendix.An important remark is in order here. In general, instead of disussing the irle and itssymmetries, one ould go immediately to a line segment and impose boundary onditions onthe �elds by oupling them to suitable soures loalized on the branes. These soures appear inthe equations of motion and enfore a de�nite behaviour of the �elds at the boundaries. Thisway one may obtain boundary onditions orresponding to �elds living on a quarter of a irle,or on S1/Z2 × Z

′

2. It is often onvenient to disuss suh set-ups on a irle; however one thenhas to aept �elds that are not periodi. We shall disuss suh a ase later in the paper.After integrating out the extra oordinate, we �nd the e�etive Einstein�Hilbert term mul-tiplied by a a power of the radion �eld
Seff
g = −1

2
M3

5 2πρ

∫

d4x
√−g|R0|R(4) . (10)It will be useful to transform the above ation to the Einstein frame by performing the followingWeyl resaling

gµν −→ |R0|−1gµν , (11)whih results in the gravitational ation
Seff
g = −1

2
M2

4

∫

d4x
√
−gR(4) +

1

2

∫

d4x
√
−g∂µr∂µr , (12)where we have de�ned r =

√

3/2M4 log |R0|, and M4 denotes the e�etive 4d Plank sale.It is worth emphasizing that the Weyl resaling is essential here; it is neessary to properlyidentify the 4d metri as the one that appears on the r.h.s. of Eq. (11), for whih we obtainthe anonial form of the Einstein gravity ation in Eq. (12). Notie also that our de�nition
M2

4 = 2πρM3
5 does not express a relation between four- and �ve-dimensional Plank sales.4



Preise analysis of the Newton law shows that the atual 5d Plank sale, related to the 5dNewton onstant, reads M true
5 = M5〈|R0|〉−1/3, and then M2

4 = 2πρ〈|R0|〉(M true
5 )3.It is straightforward to verify that, after the Weyl resaling, we must also resale Aµ and

A5 to obtain anonial kineti ation
Aµ −→ |R0|−

1

2Aµ , A5 −→ |R0|A5 . (13)The following rede�nition is neessary for fermioni �elds as well
ψ −→ |R0|

1

4ψ , λ −→ |R0|
1

4λ . (14)After the Weyl resaling the 5d metri takes the following form
ds2 = R−1

0 gµνdx
µdxν − R2

0dy
2 . (15)Hene, the physial size of the extra dimension is given by Lphys = 2πρ〈R0〉, where 〈R0〉 isdetermined by the quantum orretions omputed by expanding the Lagrangian around thelassial solution of the 5d Einstein equations♯1

gµν = ηµν

R0(x) = 〈R0〉 = const. ,
(16)

ηµν being the Minkowski metri.It should be noted that the resaling (13) and (14) generates a number of derivative-typeouplings of the radion. Those, however, are not relevant to the alulation of the one-loope�etive potential and therefore will not longer be onsidered.4 Radiative orretionsAfter the Weyl resaling, the 4d tree-level potential in the Landau gauge is obtained, as thefollowing integral over the extra dimension:
V 4(φ, r) =

∫ 2πρ

0

dye−αr
(

V 5(φ) + e−2αr|D5φ|2
)

, (17)where
α =

√
2√

3M4

. (18)Here we will onsider only the ase in whih the zero-mode♯2 of the real omponent h(x) of thesalar �eld φ(x, y) and possibly the radion r(x) an aquire vauum expetation values.Following Ref. [1℄, we shall adopt, to ompute the ontribution of the KK tower to thee�etive potential, the regularization sheme worked out by Delgado et al. (DPQ, see [3℄, see
♯1Note that in Eq. (15), it is gµν whih is the 4d metri.
♯2For an example of a model with a non-trivial pro�le of the Higgs bakground �eld, whih means non-zerovauum expetation values for KK modes, see [2℄. 5



also [4℄, [5℄ for earlier results). The result of Ref. [1℄ was obtained in the absene of gravity,for a �at metri, and assuming that the radion was stabilized. What we are studying now isthe possibility to stabilize the radion through eletroweak radiative orretions and at the sametime to reprodue the usual 4d SM-like theory. We will start from formula (A.5), whih for thesalar �eld is given by:
V1−loop =

1

2

∞
∑

0

∫

d4p

(2π)4
log

[

(p2 +m2
h0

) +
n2

ρ2
e−3α〈r〉

]

, (19)whih is equal to:
V1−loop =

1

2

∞
∑

0

∫

d4p

(2π)4
log
[

l2(p2 +m2
h0

)e3α〈r〉 + n2π2
]

− 3α

2

∞
∑

0

∫

d4p

(2π)4
〈r〉 , (20)where l = πρ. The seond term above is a divergent ontribution that vanishes in the dimen-sional regularization. Applying the DPQ proedure (see the appendix for details) we obtainthe following ontribution from the KK tower of non-zero modes of the salar h:

V
(∞)
h = e

3

2
α〈r〉 ρ

60π
|mh0

|5 ,

V
(R)
h = −e−6α〈r〉 1

64π6ρ4

[

x2
hLi3

(

e−xh
)

+ 3xhLi4
(

e−xh
)

+ 3Li5
(

e−xh
)]

, (21)where xh = e
3

2
α〈r〉2πρ|mh0

|, and salar masses are de�ned in Eq. (A.2). The result is in agree-ment with that of Ref. [6℄.In the ase of a mixing, as in the system (χ,A5), we use the proedure desribed in [1℄ toobtain one-loop orretions
V

(∞)
mix = −e 3

2
α〈r〉 ρ

32
b

1

4

(

b− a2

4

)

F

(

−1

4
,
7

4
; 2; 1 − a2

4b

)

,

V
(R)
mix = −e− 3

4
α〈r〉

b
3

4

(

2
√
b+ a

)
1

4

16π2√ρ Li 3

2

[

exp

(

(

−2πρe
3

2
α〈r〉
)(

2
√
b+ a

)
1

2

)]

, (22)where we have de�ned
a = e−α〈r〉

(

e24〈h〉2 − µ2 + λ4〈h〉2
)

,

b = e−2α〈r〉e24〈h〉2
(

−µ2 + λ4〈h〉2
)

. (23)From Eq. (A.2) one an see that the radion mixes only with the zero mode of the salar �eld
h0. We an alulate the eigenvalues of the squared mass matrix for these �elds

m2
1,2 =

1

2

(

m2
h0

+m2
r ±

√

(mh0
−mr)2 + 4m2

r h0

)

. (24)The ontribution to the one-loop potential from a single salar �eld is
V 0
s =

1

64π2
m4
s

[

log

(

m2
s

κ2

)

− 3

2

]

, (25)6



where κ denotes the renormalization sale. Therefore, the total ontribution of the salar �eldsto the one-loop e�etive potential is given by
V 1−loop
s =

1

2

(

V
(∞)
h + V

(R)
h − V 0

h + 2V 0
1 + 2V 0

2 + V
(∞)
mix + V

(R)
mix + V 0

χ − V 0
A5

)

. (26)Let us �nd the ontributions to the e�etive potential oming from the other �elds.For the vetor boson, the DPQ proedure leads to
V

(∞)
Aµ

= e
3

2
α〈r〉 ρ

60π
|mAµ0

|5 ,

V
(R)
Aµ

= −e−6α〈r〉 1

64π6ρ4

[

x2
Aµ

Li3
(

e−xAµ

)

+ 3xAµLi4
(

e−xAµ

)

+ 3Li5
(

e−xAµ

)

]

, (27)where xAµ = e
3

2
α〈r〉2πρ|mAµ0

| and the vetor masses are de�ned in Eq. (A.3). The total ontri-bution of the vetor �elds to the one-loop e�etive potential is
V 1−loop
v =

3

2

(

V
(∞)
Aµ

+ V
(R)
Aµ

+ V 0
Aµ

)

, (28)where
V 0
Aµ0

=
1

64π2
m4
Aµ0

[

log

(

m2
Aµ0

κ2

)

− 5

6

]

. (29)The fermioni ontributions to the one-loop e�etive potential are
V 1−loop
f = −4

(

V
(∞)
f + V

(R)
f

)

, (30)where
V

(∞)
f = e

3

2
α〈r〉 ρ

60π
|mf |5 ,

V
(R)
f = −e−6α〈r〉 1

64π6ρ4

[

x2
fLi3

(

e−xf
)

+ 3xfLi4
(

e−xf
)

+ 3Li5
(

e−xf
)]

. (31)We have de�ned mf = e−
1

2
α〈r〉 g4√

2
〈h〉 and xf = e

3

2
α〈r〉2πρ|mf |. The mass mf omes from thediagonalization of the fermion masses, whih are written in Eq. (A.4). The total one-looppotential, inluding all ontributions, takes the form

V 1−loop
tot = V 1−loop

s + V 1−loop
v + V 1−loop

f + V tree
s , (32)where

V tree
s = e−α〈r〉

(

−1

2
µ2〈h〉2 +

1

4
λ4〈h〉4 +

µ4

4λ4

)

. (33)This e�etive potential has been obtained by negleting some diagrams. More preisely, themissing ones are those involving virtual �utuations of the 5d metri and their KK exitations.It is easy to see that these diagrams an be safely negleted here. The general argumentonsists of the observation that, in order to turn the �utuations of the 5d metri, hMN ,7



into anonial dimensionful �elds in 4d, one needs to multiply them by the 4d Plank sale,
hMN → hMNM4, whih means that their ouplings to matter are suppressed by inverse powersof M4. Hene, generally, it is justi�ed to neglet these metri �elds in the loops as long as one�nds stabilization due to the matter loops. This point is well illustrated by onsidering radionloops. In this ase the most important diagrams are those involving a single radion internalline, whih is quadratially divergent, and a loop made of a radion line and a salar line, whihis logarithmially divergent. These diagrams give a ontribution to the e�etive potential ofthe order of

α2Λ2 ∼
(

Λ

M4

)2

. (34)Sine we expet that the physial ut-o� for the 4d physis is muh smaller♯3 than the Planksale, we ould therefore have left out these ontributions while retaining the ones previouslydisussed, due to salars, fermion and the gauge �elds. The approximation adopted here on-sistently treats the gravitational interations at the lassial level, while the ruial quantume�ets (inluding the non-zero vauum expetation value for the radion) emerge from the matter�elds.The total e�etive potential has been analysed as a funtion of two parameters: 〈h〉 and
〈r〉. Numerial alulations have been performed for the following set of parameters:

µ = mH√
2
, λ4 = 1

2

(

mH

0.246 TeV

)2
, mH = 0.12 TeV ,

κ = 0.1 TeV , M4 = 2 × 1015 TeV, mt = 0.175 TeV ,

g4 =
√

2mt

0.246 TeV
, e4 =

√

4π/137 , ρ = 2.11 TeV−1 , (35)where mH denotes the tree-level mass of the Higgs boson. We have obtained the minimum ofthe V 1−loop
tot (〈r〉, 〈h〉) at the point (〈r〉, 〈h〉) = (1.89 × 108, 0.259) TeV. Notie that this resultorresponds to 〈R0〉 = 1 (see Fig. 1). We an also ompute e�etive masses2 for the radion-h0system:

m2
h0

=
∂2V 1−loop

tot

∂〈h〉2
∣

∣

∣

∣

min

= 0.014 TeV2 ,

m2
r =

∂2V 1−loop
tot

∂〈r〉2
∣

∣

∣

∣

min

= 1.14 × 10−35 TeV2 ,

m2
r h0

=
∂2V 1−loop

tot

∂〈r〉∂〈h〉

∣

∣

∣

∣

min

= 3.38 × 10−20 TeV2 . (36)We have always hosen the parameter ρ in suh a way that the minimum of the ompletepotential appears at the point 〈r〉 ≪MPl, whih implies R0 ≈ 1 (see disussion below). In suha ase the physial radius of the �fth dimension is given by the parameter ρ. Let us explainthe way we adjust the ρ, whih parametrizes the physial masses and ouplings in 4d. Thepoint is that we are interested in a spei� range of the e�etive physial sales as seen in 4d,whih we onsider realisti. However, these physial sales depend on the expetation value
♯3Note that, if the Higgs-boson mass is small enough, the eletroweak vauum of the one-loop e�etivepotential is unstable, the uto� that follows ould be as small as a few TeV.8
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Figure 1: The total potential for the parameters given in (35). The minimum appears at the point
(〈R0〉, 〈h〉) = (1, 0.258 TeV).of the radion, whih we need to determine dynamially, and this dependene ours throughthe fators that are powers of eα〈r〉 (the parameters that are radion-independent are those thatde�ne the Lagrangian in 5d). To be able to follow the dynamial determination of the radion,we de�ne auxiliary 4d parameters, whih are radion-independent: λ4, e4, g4 di�er from thephysial ones by the suitable powers of eα〈r〉 and we note that the auxiliary parameters areequal to physial ones at 〈R0〉 = eα〈r〉 ≈ 1. The usual approah would be to �x ρ, whih setsthe physial sale of the �fth dimension, to some onvenient value, e.g. ρ = 1, and to keepit onstant during the alulations. However, the above reasoning suggests that the oppositeis more onvenient: in eah model under disussion we shall �x the expetation value of theradion to be equal to unity, and ahieve this by hanging the value of ρ. It is obvious thatphysially this is a legal point of view. In 5d the meaningful quantity is in fat 2πρR0, andany hange of 〈R0〉 an be ompensated by an adjustment of ρ, while keeping the parametersof the Lagrangian, hene the 5d model, unhanged. When we ompatify and swith over to9



mH [TeV℄ mh [TeV℄ mr [10−6 eV℄ ρ−1 [TeV℄ 〈h〉 [TeV℄ Λ4 [10−6 TeV℄0.10 0.098 3.5 0.49 0.265 −7.900.12 0.119 3.4 0.47 0.259 −7.590.14 0.139 3.3 0.47 0.255 −7.360.16 0.160 3.2 0.46 0.252 −7.090.18 0.181 3.0 0.44 0.250 −6.680.20 0.202 2.8 0.42 0.249 −6.050.22 0.225 2.4 0.39 0.247 −5.06Table 1: Higgs boson and radion mass, the sale of the extra dimension ρ−1, the Higgs-bosonvauum expetation values and the resulting osmologial onstant, obtained for di�erent inputtree-level Higgs boson masses mH .the 4d language the situation beomes slightly more ompliated, sine the 4d ouplings, say
λ4, are related to the 5d ones by a power of ρ. Hene to stay in the same 5d model one wouldhave to hange λ4 together with ρ. This is not what we want to do: we are interested in 4dmodels and keep 4d ouplings onstant. This is perfetly aeptable from the point of view ofthe 4d physis; one only needs to keep in mind that in the present piture di�erent values of
ρ orrespond to slightly di�erent 5d ouplings, hene slightly di�erent 5d models. Having saidthis, let us de�ne the proedure that brings us down to 〈R0〉 = 1 and allows us to identify thephysial masses in 4d in a straightforward manner. We start with an arbitrarily hosen valueof ρ and minimize the one-loop potential to �nd 〈R0〉. Then we repeat the proedure, taking
ρ(1) = 〈R0〉ρ. Then we repeat the steps again and again until we reah 〈R0〉 ≈ 1, taking foreah onseutive iteration ρ(n) = 〈R0〉(n−1)ρ(n−1), where n denotes the parameter of the n-thiteration. The proedure onverges to 〈R0〉 ≈ 1 within just a few iterations (as expeted, sinethe physial size of the �fth dimension is 2πρ〈R0〉).In addition, the alulations have been done for various values of the Higgs mass, andthe results are listed in Table 1. We have hosen the tree-level Higgs boson mass to be inagreement with the eletroweak measurements, i.e. roughly between 0.1 TeV and 0.22 TeV.It turns out that for mH >∼ 0.26 TeV the e�etive potential beomes unstable: the radionvauum expetation value runs away to in�nity. It is amusing to notie that mH = 0.204 TeVis the eletroweak 95% CL upper bound on the SM Higgs boson mass [7℄. The existene ofthe minimum is a result of an interplay between bosoni and fermioni ontributions to thee�etive potential, so the largest Higgs mass for whih we obtain stability is orrelated with thetop quark mass mt = 0.175 TeV. Therefore even though our toy model does not re�et all thefeatures of the real 5d SM, it does nevertheless ontain right mass sales. At the same time,it seems to favour the range of the Higgs boson mass that is also antiipated by the one-looppreditions of the SM. We �nd this nie agreement quite amusing. Note also in the table thatthe diagonal Higgs boson massmh and the vauum expetation values 〈h〉 are almost insensitiveto the input, tree-level Higgs boson mass mH ; this is an obvious result of the very small mixingwith the radion. The diagonal radion mass varies between 3.47× 10−6 and 2.39× 10−6 eV. Theresulting size of the extra dimension, ρ−1 ≃ 0.4 � 0.5 TeV, roughly agrees with the existingbound on the size of one universal extra dimension [8℄.10



An important omment is in order here. From the 5d point of view the meaningful physialquantity is the physial size of the �fth dimension, whih is given by Lphys = 2πρ〈R0〉. Hene,at �rst sight, in various physial quantities the powers of ρ should always multiply the samepowers of R0. However, this is not the ase in the 4d Lagrangian and onsequently, one �ndsin the e�etive potential an extra R0 dependene that is not of the form 2πρR0. A loserinspetion of the e�etive potential shows that this extra dependene on 〈R0〉 has its roots inone additional power of R0, whih shows up in mass terms (both in those that originate fromthe µ2 salar mass term and also in KK mass terms) in the 4d Lagrangian. However, this isorret and the reason an be seen in Eqs. (10) and (11). The point is that in (10) we havehosen to perform the Weyl resaling using only the R0, while 2πρ beomes swallowed by thede�nition of the 4d Plank sale M2
4 = 2πρM3

5 .We have seen above that the radion �eld turns out to be very light and that it experienesa negligible mixing with the Higgs �eld: for Mh = 0.12 TeV, we obtain mr = 3.4 × 10−6 eV.Suh a light �eld an modify the Newtonian gravity. A partile of mass ∼ 3.4 × 10−6 eV anmediate fores over a range of ∼ 37 m, see Ref. ([9℄). Therefore suh a small radion mass isexluded by experiments. It is possible to inrease the radion mass by one or two orders ofmagnitude by rising the fermion masses (see also the next setion), but heavy radion is not anatural phenomenon within the present set-up. As pointed out in [9℄ the explanation for a suhlow mass is due to the higher dimensional general ovariane, whih forbids a radion mass termin the higher dimensional theory. Therefore, in the �at 4d theory the radion mass term anappear only as a loop e�et, and sine the ouplings of the radion are Plank-sale-suppressed,the resulting mass is naturally small.5 The Higgsless theoryIn the SM, the Higgs mehanism generates masses for the fermions and for the vetor bosons.In the Higgsless theory one may assume that the fermion masses emerge from some additionaldynamial mehanism [10℄� [13℄, e.g. by the fermion ondensation, while the masses of thevetor bosons are due to a global breakdown of the gauge symmetry by boundary onditionsimposed along extra dimensions. This is a noteworthy alternative to the usual Higgs mehanism,but also a partiularly lear limit of the general ase onsidered in the earlier setions, thus ofpartiular interest to us.Let us begin the disussion with the model that does not ontain a 5d salar �eld
S = Sg + Sf + Sv + Sgf , (37)where Sg denotes the Einstein�Hilbert ation (2) and the ation for fermions and vetor bosonis given by

Sf =

∫ L

0

dy

∫

d4x
√
G
[

iψγM(∂M − ie5AM)ψ + iλγM∂Mλ−
(

m5ψλ+ H..)] (38)and
Sv + Sgf =

∫ L

0

dy

∫

d4x
√
G

{

−1

4
FMNFMN − 1

2ξ
[∂µA

µ − ξ∂5A5]
2

}

, (39)11



respetively. The Yukawa interation present in the Lagrangian (7) has been replaed here bythe 5d mass term m5ψλ. Here again we require the invariane of the ation with respet tothe transformations (5) and (6), whih eliminates the possibility of diagonal fermioni massterms. Here, however, we must modify the set-up employed in Setion 2 and assign the U(1)harge to the fermion λ in suh a way that the mixed mass term ψλ is gauge-invariant, i.e.
QU(1)(λ) = QU(1)(ψ) and γM∂Mλ → γM (∂M − ie5AM)λ. Note, however, that in the one-loopalulation of the e�etive potential for r, whih we will perform here, these two ases, that isinvariant and non-invariant 5d fermion mass terms, are indistinguishable and lead to identialonlusions about the stability of the salar setor.To obtain masses for the vetor bosons we onstrut an orbifold S1/(Z2 ×Z

′

2) suh that theation of the parities on the irle S1 is the following: Z2: y → −y and Z ′

2: L/2+ y → L/2− y.Their ation on the �eld spae reads:
Z2 : Aµ(x, y) = Aµ(x,−y), A5(x, y) = −A5(x,−y) (40)
Z

′

2 : Aµ(x, L/2 + y) = −Aµ(x, L/2 − y), A5(x, L/2 + y) = A5(x, L/2 − y) . (41)So, we have assumed (+,−) and (−,+) parities for Aµ and A5, respetively. The fermioniboundary onditions remain the same as in the Higgs-like model, i.e. the right- and left-handedmodes transform as (+,+) and (−,−), respetively. Therefore the fermions are periodi witha period L. The addition of the seond requirement (41) is a ruial modi�ation of the set-upde�ned in Setion 2. This ondition auses the breakdown of the gauge symmetry, sine (40)alone leads to 4d theory, whih is U(1) invariant. A onsequene of (41) is that the gauge �eldsan no longer be periodi; in fat, one �nds that the onditions (40) and (41) an be onsistentonly if the gauge �elds are antiperiodi: ♯4
Aµ(x, y + L) = −Aµ(x, y) A5(x, y + L) = −A5(x, y) . (42)This is aeptable as long as the Lagrangian remains invariant under the twist operator: T :

AM → −AM . Even more, for onsisteny, the Lagrangian must be invariant under both Z2parities ating with respet to eah brane. The symmetry under Z2 is evident. For Z ′

2, however,one �nds that the interation between the vetor boson and fermions through the ovariantderivative does not ful�l this requirement, as it is antisymmetri
[

ψ̄γMe5AMψ
]

(L/2 + y) = −
[

ψ̄γMe5AMψ
]

(L/2 − y) . (43)In order to make the set-up onsistent, let us assume that the gauge oupling is odd under Z ′

2,so we replae e5 by ǫ(y)e5 with
ǫ(y) =



























...
−1 for −3L/2 < y < −L/2
+1 for −L/2 < y < L/2
−1 for +L/2 < y < 3L/2... (44)

♯4Note that the antiperiodiity (42) is a weaker onstraint than (40) and (41) together.12



Then the Lagrangian is invariant under both Z2 parities. Let us note that in the above on-strution we have not introdued loalized brane terms into the ation. As a onsequene,eah �eld whih is odd with respet to the given brane must vanish on that brane. The gaugetransformations are not allowed to generate suh singular terms, hene one must require thatthe gauge variations of the vetor bosons do vanish at the `odd' �xed point. To be more spei�let us onsider a gauge transformation with a parameter Λ(x, y):
ψ −→ e−iǫe5Λψ , λ −→ e−iǫe5Λλ , AM −→ AM + ∂MΛ . (45)The requirement that suh a gauge transformation does not hange parities of the �elds impliesthat Λ is Z2-even with respet to y = 0 and Z ′

2-odd with respet to y = L/2. It is interestingto see that the above onditions remove the global U(1) transformations from the theory.This is onsistent with the fat that boundary onditions break globally the group of gaugetransformations: not even the global subgroup is left in the e�etive 4d model. Models withjumping gauge ouplings were onsidered before in the literature, see [14℄�[16℄. Note that afterintroduing the jumping oupling the observer who travels around the irle will see preiselythe same oupling between the fermions and the gauge �eld after passing the brane at y = L/2as before. Hene the physis on both half-irles remains the same.Deomposition of the 5d metri tensor and the KK expansion of the fermioni �elds is thesame as in the previous setions. The KK expansion of the vetor boson �elds reads
Aµ(x, y) =

1√
πρ

∞
∑

n=0

Aµn(x) cos
[

y
(

mn +
π

L

)]

,

A5(x, y) =
1√
πρ

∞
∑

n=0

A5
n(x) sin

[

y
(

mn +
π

L

)]

. (46)where mn = 2πn/L. The following mass terms of the vetor bosons are obtained:
m2
Aµn

= e−3α〈r〉
(π

L
+mn

)2

, m2
A5n

= 0 . (47)The salar modes A5n are the Goldstons bosons that beome longitudinal omponents of massive
Aµn.The DPQ proedure leads to

V
(∞)
Aµ

= 0 ,

V
(R)
Aµ

= −e−6α〈r〉 3

64π6ρ4
Li5(−1) . (48)The total ontribution of the vetor �elds to the one-loop e�etive potential reads

V 1−loop
v =

3

2

(

V
(∞)
Aµ

+ V
(R)
Aµ

)

. (49)The mass terms of the fermions are
mψn = −e− 3

2
α〈r〉mn ,

mλn = e−
3

2
α〈r〉mn ,

mψn λn = −e− 1

2
α〈r〉m4 ,

mψ0R λ0L
= −e− 1

2
α〈r〉m4 , (50)13



where m4 = m5/
√

2πρ.The fermioni ontribution to the one-loop e�etive potential reads:
V 1−loop
f = −4

(

V
(∞)
f + V

(R)
f

)

, (51)where
V

(∞)
f = e

3

2
α〈r〉 ρ

60π
|mf |5 ,

V
(R)
f = −e−6α〈r〉 1

64π6ρ4

[

x2
fLi3

(

e−xf
)

+ 3xfLi4
(

e−xf
)

+ 3Li5
(

e−xf
)]

. (52)We have de�ned mf = e−
1

2
α〈r〉m4 and xf = e

3

2
α〈r〉2πρ|mf |. The total one-loop potential inlud-ing all ontributions reads

V 1−loop
tot = V 1−loop

v + V 1−loop
f . (53)We have again analysed the e�etive potential as a funtion of 〈r〉. Numerial alulations havebeen done for the following hoie of parameters:

κ = 0.1 TeV , M4 = 2 × 1015 TeV (54)and for various values of the fermion mass. We have hosen the parameter ρ in suh a way thatthe minimum of the omplete potential appears at the point 〈r〉 ≪ MPl, whih implies R0 ≈ 1(see Fig. 2). In suh a ase the physial radius of the �fth dimension is given by the parameter
ρ. We have found the mass of the radion in the form

m2
r =

∂2V 1−loop
tot

∂〈r〉2
∣

∣

∣

∣

min

, (55)and the value of the salar potential at the minimum Λ4, whih is the osmologial onstant.We have displayed the results in Table 2. One an easily �nd the following approximate relationsbetween the mass of the fermion and the other physial parameters
ρ−1 = cρm4, mr = cm

m2
4

MPl

, Λ4 = −cΛm4
4 , (56)where

cρ = 1.9, cm = 5.2 × 10−2, cΛ = 9.6 × 10−3 . (57)It is seen from the table and relations (57) that the dependene of the radion mass on the inputbulk fermion mass, m5 =
√

2πρm4, is quite strong. The result is the variation of the radionmass between 6.7× 10−7 and 8.2× 10−4 eV. Notie that the value of the osmologial onstantthat we have obtained is muh larger than osmologial onstraints. However, one an anel itby the renormalization ounterterms. To obtain a onstant ounterterm in the 4d theory, afterthe Weyl resaling, the following orretions an be added to the 5d ation:
δS =

∫

d5x
√
G
√

−G55δΛ +

∫

d4x
√−gG55δλ0

∣

∣

∣

y=0
+

∫

d4x
√−gG55δλπ

∣

∣

∣

y=πρ
, (58)14
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Figure 2: The total potential for the parameters given in (54) and for m4 = 0.175 TeV. The minimumappears at the point 〈R0〉 = 1.
m4 [TeV℄ ρ−1 [TeV℄ mr [eV℄ Λ4 [TeV4℄0.08 0.15 6.7 × 10−7 −3.93 × 10−70.175 0.33 3.2 × 10−6 −8.99 × 10−60.35 0.66 1.3 × 10−5 −1.44 × 10−40.7 1.32 5.1 × 10−5 −2.30 × 10−31.4 2.65 2.1 × 10−4 −3.69 × 10−22.8 5.30 8.2 × 10−4 −5.90 × 10−1Table 2: Radion masses together with the sale of the extra dimension ρ−1 and the resultingosmologial onstant, obtained for di�erent input fermion masses m4.where the �rst term spoils 5d ovariane in the bulk, but is aeptable from the 4d point ofview (also, it is onsidered here as a one-loop-order ounterterm). These ounterterms an beused to make the 4d one-loop osmologial onstant vanish without violating the 4d Lorentzinvariane and, more importantly, without destabilizing the salar potential for the radion.It an be seen that the presene of the 5d bulk mass term for the fermions is ruial forthe stabilization. The minimum at a �nite value of the radion disappears when m5 approaheszero (this is the deompati�ation limit, and the radion expetation value runs away towardin�nity). The point is that the dependene of the tree-level fermioni mass term on the radionis di�erent from that of the KK mass terms, and the presene of the minimum is the result ofthe interplay between the terms denoted as V (∞)

f and V (R)
f in (52), the �rst of whih dependson the tree-level fermioni mass, the seond on the KK masses.15



6 SummaryWe have disussed the stabilization of the salar setor inluding the radion, in the QED-likegauge model with one universal extra dimension; with gauge symmetry broken by the 5d Higgsmehanism and in the ase where the breaking ours beause of the boundary onditionsimposed on the gauge �elds. The stabilization is due to the fermioni ontribution to thee�etive potential. In fat, for the stabilization to take plae, the bosoni ontribution must bebalaned by the fermioni one, hene the sales of these two annot di�er too muh. However,one does not need (softly broken) supersymmetry to ahieve the stabilization: it an be arrangedin models born in universal extra dimensions for a reasonably wide range of ouplings and masssales. One does not need ompliated models or unreasonable �ne-tunings; even the simpleQED-like set-up is su�ient. We expet the generi features of our mehanism to hold also inthe ase of (broken) supersymmetry, even in the presene of a larger number of moduli �elds(see also [17℄).It an be seen that the presene of the 5d bulk mass term for the fermions is ruial for thestabilization. For instane, in the Higgs model disussed in Setion 4, the minimum at �nitevalues of the �elds in the radion�salar hyperplane disappears when g5 (so onsequently themass of the zero-mode fermion vanishes) approahes zero (this is the deompati�ation limit,and the radion vauum expetation value runs away toward in�nity). The point is that thedependene of the tree-level fermioni mass term on the radion is di�erent from that of the KKmass terms, and the presene of the minimum is the result of the interplay between the termsdenoted as V (∞)
f and V (R)

f in (31), the �rst of whih depends on the tree-level fermioni mass,the seond on the KK masses. The situation is very similar in the Higgsless ase, for whih therelevant formula is (52).One may also onsider loalized brane mass terms for the fermions of the form G55δ(x
5 −

x5
b)mbψλ. However, these terms play the role of soures in the equations of motion, and theyare anelled by disontinuities in the bulk fermioni on�gurations. Their role is to imposeboundary onditions on the �elds, hene they a�et the quantization of the masses of the KKmodes. This e�et on its own does not reate a minimum: the bulk terms desribed above arestill needed.It is interesting to wath orrelation between the various physial parameters that ariseupon the stabilization of the salar setor. For a Higgs mass larger than 0.26 TeV, we observethat there appears an instability in the e�etive potential in the diretion of the radion - itsvauum expetation value runs away to in�nity (deompati�ation limit). It is interesting tonote that mH ≃ 0.204 TeV is the eletroweak 95% CL upper bound on the Higgs boson mass.Therefore even though our toy model does not re�et all the features of the real 5d SM, itnevertheless favours the range of Higgs boson masses that is also antiipated by the one-looppreditions of the Standard Model. It turns out that, for parameter values adopted here forthe Higgs ase, the radion run-away is the primary instability in the model, not the large-hinstability disussed in [1℄.It is also interesting to note that the osmologial onstant may be anelled by suitableounterterms, in suh a way that stabilization of salars is not a�eted.16
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AppendixHere we provide some details of the dimensional redution (in the Higgs ase) and alulationof the e�etive potential generated by a tower of KK modes.The KK expansion of the �elds living on S1/Z2 gives
Aµ(x, y) =

1√
2πρ

[

Aµ0 (x) +
√

2

∞
∑

n=1

Aµn(x) cos(mny)

]

,

A5(x, y) =
1√
πρ

∞
∑

n=1

A5
n(x) sin(mny) ,

φ(x, y) =
1√
2πρ

[

φ0(x) +
√

2

∞
∑

n=1

φn(x) cos(mny)

]

,

ψ(x, y) =
1√
2πρ

[

ψR0(x) +
√

2

∞
∑

n=1

[ψRn(x) cos(mny) + ψLn(x) sin(mny)]

]

,

λ(x, y) =
1√
2πρ

[

λL0(x) +
√

2
∞
∑

n=1

[λLn(x) cos(mny) + λRn(x) sin(mny)]

]

, (A.1)where mn = 2πn/L.Expanding the 4d Lagrangian around h0 → h0 + 〈h〉, r → r+ 〈r〉, the following salar massterms are obtained in the Landau gauge:
m2
h0

= e−α〈r〉
(

−µ2 + 3λ4〈h〉2
)

,

m2
χ0

= e−α〈r〉
(

−µ2 + λ4〈h〉2
)

,

m2
hn

= e−α〈r〉
(

−µ2 + 3λ4〈h〉2 + e−2α〈r〉m2
n

)

,

m2
χn

= e−α〈r〉
(

−µ2 + λ4〈h〉2 + e−2α〈r〉m2
n

)

,

m2
r = α2e−α〈r〉

(

−1

2
µ2〈h〉2 +

1

4
λ4〈h〉4 +

µ4

4λ4

)

,

m2
r h0

= −αe−α〈r〉
(

−µ2〈h〉 + λ4〈h〉3
)

,

m2
A5n

= e−α〈r〉e24〈h〉2 ,
m2
A5n χn

= −e−2α〈r〉e4〈h〉mn , (A.2)where α, λ4, e4 are de�ned in the main text.For vetor bosons the following mass terms are obtained
m2
Aµn

= e−α〈r〉
(

e24〈h〉2 + e−2α〈r〉m2
n

)

,

m2
Aµ0

= e−α〈r〉e24〈h〉2 . (A.3)
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The masses of the fermions are given by
mψn = −e− 3

2
α〈r〉mn ,

mλn = e−
3

2
α〈r〉mn ,

mψn λn = −e− 1

2
α〈r〉 g4√

2
〈h〉 ,

mψ0R λ0L
= −e− 1

2
α〈r〉 g4√

2
〈h〉 , (A.4)where g4 = g5/

√
2πρ.For the purpose of this paper we have adopted the regularization sheme worked out byDelgado et al. (DPQ, see [3℄) to ompute the ontribution of the KK tower to the e�etivepotential. Let us brie�y reall the basi result obtain by DPQ.Starting from the generi formula

V (φ) =
1

2

∫

d4p

(2π)4

∞
∑

0

log [l2E2 + n2π2] , (A.5)where E2 ≡ p2 + m2(φ), m2(φ) are the bakground-�eld-dependent mass squared of the KKmodes and l = πρ. With the help of the MS renormalization sheme one obtains
V =

1

2
(V (∞) + V (R) + V 0) (A.6)where

V (∞) =
ρ

60π
m5(φ) ,

V 0 =
1

64π2
m4(φ)

[

log

(

m2(φ)

k2

)

− 3

2

]

,

V (R) = − 1

64π6ρ4
(x2Li3(e

−x) + 3xLi4(e
−x) + 3Li5(e

−x)) . (A.7)In the above the x is given by x = 2πρ
√

m2(φ), κ is the renormalization sale, and Lin(x) =
∑∞

s=1
xs
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