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Abstract

During the process of thermal leptogenesis temperature decreases by about one order

of magnitude while the baryon asymmetry is generated. We present an analytical

description of this process so that the dependence on the neutrino mass parameters

becomes transparent. In the case of maximal CP asymmetry all decay and scattering

rates in the plasma are determined by the mass M1 of the decaying heavy Majorana

neutrino, the effective light neutrino mass m̃1 and the absolute mass scale m of the

light neutrinos. In the mass range suggested by neutrino oscillations, msol ≃ 8 ×
10−3 eV . m̃1 . matm ≃ 5× 10−2 eV, leptogenesis is dominated just by decays and

inverse decays. The effect of all other scattering processes lies within the theoretical

uncertainty of present calculations. The final baryon asymmetry is dominantly

produced at a temperature TB which can be about one order of magnitude below

the heavy neutrino mass M1. We also derive an analytical expression for the upper

bound on the light neutrino masses implied by successful leptogenesis.



1 Introduction and summary

Leptogenesis [1] provides a simple and elegant explanation of the cosmological matter-

antimatter asymmetry. A beautiful aspect of this mechanism is the connection between

the baryon asymmetry and neutrino properties. In its simplest version leptogenesis is dom-

inated by the CP violating interactions of the lightest of the heavy Majorana neutrinos,

the seesaw partners of the ordinary neutrinos. The requirement of successful baryogenesis

yields stringent constraints on the masses of light and heavy neutrinos. In particular, all

light neutrino masses have to be smaller than 0.1 eV [2].

Leptogenesis is closely related to classical GUT baryogenesis [3], where the deviation

of the distribution function of some heavy particle from its equilibrium distribution pro-

vides the necessary departure from thermal equilibrium. The non-equilibrium process

of baryogenesis is usually studied by means of Boltzmann equations [4, 5]. In the same

way, leptogenesis has been studied during the past years, with increasing sophistication

[6]-[12]. The goal of the present paper is to provide an analytical description of the lep-

togenesis process such that the dependence on the neutrino mass parameters becomes

transparent. As we shall see this is important to understand the size of corrections to the

simplest Boltzmann equations, which have to be taken into account to arrive eventually

at a ‘theory of leptogenesis’.

We will first consider the simplest case where the initial temperature Ti is larger than

M1, the mass of the lightest heavy neutrino N1. We will also neglect decays of the two

heavier neutrinos N2 and N3, assuming that a generation of B−L asymmetry from their

decays either does not occur at all or that it does not influence the final value of B − L.

Further, we restrict ourselves to the non supersymmetric case, and we assume that the

lightest heavy neutrino N1 is the only relevant degree of freedom beyond the standard

model particle species.

Within this minimal framework the Boltzmann equations can be written in the fol-

lowing form1,

dNN1

dz
= −(D + S) (NN1

−N eq
N1

) , (1)

dNB−L

dz
= −ε1D (NN1

−N eq
N1

) −W NB−L , (2)

where z = M1/T . The number density NN1
and the amount of B −L asymmetry, NB−L,

are calculated in a portion of comoving volume that contains one photon at temperatures

T ≫ M1, so that the relativistic equilibrium N1 number density is given by N eq
N1

(z ≪
1We use the conventions of Ref. [10].
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1) = 3/4. There are four classes of processes which contribute to the different terms

in the equations: decays, inverse decays, ∆L = 1 scatterings and ∆L = 2 processes

mediated by heavy neutrinos. The first three all modify the N1 abundance and try to

push it towards its equilibrium value N eq
N1

. Denoting by H the Hubble expansion rate,

the term D = ΓD/(H z) accounts for decays and inverse decays, while the scattering term

S = ΓS/(H z) represents the ∆L = 1 scatterings. Decays also yield the source term for

the generation of the B−L asymmetry, the first term in Eq. (2), while all other processes

contribute to the total washout term W = ΓW/(H z) which competes with the decay

source term. The expansion rate is given by

H ≃
√

8 π3 g∗
90

M2
1

MPl

1

z2
≃ 1.66 g∗

M2
1

MPl

1

z2
, (3)

where g∗ = gSM = 106.75 is the total number of degrees of freedom, and MPl = 1.22 ×
1019 GeV is the Planck mass. Note that we have not included the N1 degrees of freedom

since, as we will see, in the preferred strong washout regime, the heavy neutrinos are

non-relativistic when the baryon asymmetry is produced.

The two terms D and S depend on the effective neutrino mass [7], defined as

m̃1 =
(m†

DmD)11

M1
, (4)

which has to be compared with the equilibrium neutrino mass

m∗ =
16 π5/2 √g∗

3
√

5

v2

MPl
≃ 1.08 × 10−3 eV . (5)

The decay parameter

K =
ΓD(z = ∞)

H(z = 1)
=
m̃1

m∗

, (6)

introduced in the context of ordinary GUT baryogenesis [3], controls whether or not N1

decays are in equilibrium. Here ΓD(z = ∞) ≡ Γ̃D is the N1 decay width. The washout

term W has two contributions, W = W0 + ∆W ; the first term only depends on m̃1, while

the second one depends on the product M1m
2, where m2 = m2

1 +m2
2 +m2

3 is the sum of

the light neutrino masses squared [10].

The solution for NB−L is the sum of two terms [3],

NB−L(z) = N i
B−L e

−
∫

z

zi
dz′W (z′) − 3

4
ε1 κ(z; m̃1,M1m

2) , (7)

where the second term describes B − L production from N1 decays. It is expressed in

terms of the efficiency factor κ [9] which does not depend on the CP asymmetry ε1. In
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the following sections we shall use two integral expressions for the efficiency factor,

κ(z) =
4

3

∫ z

zi

dz′D
(
NN1

−N eq
N1

)
e−

∫
z

z′
dz′′W (z′′) (8)

= −4

3

∫ z

zi

dz′
D

D + S

dNN1

dz′
e−

∫
z

z′
dz′′W (z′′) . (9)

Here NN1
and dNN1

/dz′ are the solution of the first kinetic equation (1) and its derivative,

respectively. The efficiency factor κ(z) is normalized in such a way that its final value

κf = κ(∞) approaches one in the limit of thermal initial abundance of the heavy neutrinos

N1 and no washout (W = 0). In general, for N i
N1

≤ N eq
N1

= 3/4, one has κf ≤ 1. The first

term in Eq. (7) accounts for the possible generation of a B − L asymmetry before N1

decays, e.g. from decays of the two heavier neutrinos N2 and N3, or from a completely

independent mechanism. In the following we shall neglect such an initial asymmetry

N i
B−L. In [2] it was shown that for values m̃1 > m∗ even large initial asymmetries are

washed out for initial temperatures Ti & M1.

The predicted baryon to photon number ratio has to be compared with the value

ηB measured at recombination. It is related to N f
B−L = NB−L(z = ∞) by ηB =

(asph/f)N f
B−L. Here asph = 28/79 [13] is the fraction of B − L asymmetry converted

into a baryon asymmetry by sphaleron processes, and f = N rec
γ /N⋆

γ = 2387/86 is the dilu-

tion factor calculated assuming standard photon production from the onset of leptogenesis

till recombination. Using Eq. (8), one then obtains

ηB =
3

4

asph

f
ε1 κf ≡ d ε1 κf ≃ 0.96 × 10−2 ε1κf . (10)

In the following sections we will study analytically the solutions of the kinetic equa-

tions, focusing in particular on the final value of the efficiency factor. We start in sect. 2

with the basic framework of decays and inverse decays. In the two regimes of weak

(m̃1 < m∗) and strong (m̃1 > m∗) washout the efficiency factor is obtained analytically,

which then leads to a simple interpolation valid for all values of m̃1. ∆L = 1 scatterings

are added in sect. 3, and the resulting lower bounds on the heavy neutrino mass M1

and on the initial temperature Ti are discussed. In sect. 4 an analytic derivation of the

upper bound on the light neutrino masses is given, and in sect. 5 various corrections are

described which have to be taken into account in a theory of leptogenesis. In appendix

A a detailed discussion of the ∆L = 2 processes in the resonance region is presented.

In the case of maximal CP violation the entire ∆L = 2 scattering cross section can be

expressed in terms of M1, m̃1 and m. The resulting Boltzmann equations are compared

with previously obtained results based on exact Kadanoff-Baym equations. In appendix

B various useful formulae are collected.
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Recently, two potentially important, and usually neglected, effects on leptogenesis

have been discussed: the ∆L = 1 processes involving gauge bosons [11, 12] and thermal

corrections at high temperature [12]. Further, the strength of the ∆L = 2 washout term

has been corrected [12] compared to previous analysis. However, the reaction densities

for the gauge boson processes are presently controversial [11, 12]. Also the suggestion

made in [12] to include thermal masses as kinematical masses in decay and scattering

processes leads to an unconventional picture at temperatures T > M1, which differs

qualitatively from the situation at temperatures T < M1. If thermal corrections are

only included as propagator effects [14] their influence is small. This issue remains to be

clarified. Fortunately, both effects are only important in the case of weak washout, i.e. for

m̃1 < m∗, where the final baryon asymmetry is strongly dependent on initial conditions

in any case. In the strong washout regime, m̃1 > m∗, which appears to be favored by

the present evidence for neutrino masses, they do not affect the final baryon asymmetry

significantly. In the following we will therefore ignore gauge boson processes and thermal

corrections. These questions will be addressed elsewhere.

The main results of this paper are summarized in the figures 6, 9 and 10. Fig. 6

illustrates that for the basic processes of decays and inverse decays the analytical approx-

imation for the efficiency factor agrees well with the numerical result. The figure also

demonstrates that scatterings lead to a departure from this basic picture only for val-

ues K = m̃1/m∗ < 1, where the final baryon asymmetry depends strongly on the initial

conditions. Fig. 9 shows the dependence of the efficiency factor on initial conditions and

on ∆L = 1 scatterings for different values of the effective Higgs mass Mh. Again, for

m̃1 > m∗ this dependence is small and, within the theoretical uncertainties, the efficiency

factor is given by the simple power law

κf = (2 ± 1) × 10−2

(
0.01 eV

m̃1

)1.1±0.1

. (11)

Knowing the efficiency factor, one obtains from Eqs. (10) and (118) the maximal baryon

asymmetry. Fig. 10 shows the lower bound on the initial temperature Ti as function

of m̃1. In the most interesting mass range favored by neutrino oscillations it is about

one order of magnitude smaller than the lower bound on M1. The smallest temperature

Tmin
i ≃ 3× 109 GeV is reached at m̃1 ≃ 2× 10−3 eV. In sect. 4 an analytic expression for

the light neutrino mass bound is derived, which explicitly shows the dependence on the

involved parameters.
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2 Decays and inverse decays

It is very instructive to consider first a simplified picture in which decays and inverse de-

cays are the only processes. For consistency, also the real intermediate state contribution

to the 2 → 2 processes has to be included. The kinetic equations (1) and (2) then reduce

to

dNN1

dz
= −D (NN1

−N eq
N1

) , (12)

dNB−L

dz
= −ε1 D (NN1

−N eq
N1

) −WIDNB−L , (13)

where WID is the contribution to the washout term due to inverse decays. From Eqs. (8)

and (12) one obtains for the efficiency factor,

κ(z) = −4

3

∫ z

zi

dz′
dNN1

dz′
e−

∫
z

z′
dz′′WID(z′′) . (14)

As we shall see, decays and inverse decays are sufficient to describe qualitatively many

properties of the full problem.

After a discussion of several useful analytic approximations we will study in detail

the two regimes of weak and strong washout. The insight into the dynamics of the non-

equilibrium process gained from the investigation of these limiting cases will then allow

us to obtain analytic interpolation formulae which describe rather accurately the entire

parameter range. All results will be compared with numerical solutions of the kinetic

equations.

2.1 Analytic approximations

Let us first recall some basic definitions and formulae. The decay rate takes the form [4],

ΓD(z) = Γ̃D

〈
1

γ

〉
, (15)

where the thermally averaged dilation factor is given by the ratio of the modified Bessel

functions K1 and K2, 〈
1

γ

〉
=
K1(z)

K2(z)
, (16)

and Γ̃D is the decay width,

Γ̃D =
m̃1M

2
1

8πv2
, (17)
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Figure 1: The dilation factor. The dashed line is the analytical expression Eq. (26) to be

compared with the numerical result (solid line).

with the Higgs vacuum expectation value v = 174 GeV. The decay term D is conveniently

written in the form [3]

D(z) = K z

〈
1

γ

〉
. (18)

The inverse decay rate is related to the decay rate by

ΓID(z) = ΓD(z)
N eq
N1

(z)

N eq
l

, (19)

where N eq
l is the equilibrium density of lepton doublets. Since the number of degrees of

freedom for heavy Majorana neutrinos and lepton doublets is the same, gN1
= gl = 2, one

has

N eq
N1

(z) =
3

8
z2K2(z) , N eq

l =
3

4
. (20)

The contribution of inverse decays to the washout term W is therefore

WID(z) =
1

2

ΓID(z)

H(z) z
=

1

4
Kz3K1(z) , (21)

which, together with Eqs. (16), (18) and (20), implies

WID(z) =
1

2
D(z)

N eq
N1

(z)

N eq
l

. (22)
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All relevant quantities are given in terms of the Bessel functions K1 and K2, whose

asymptotic limits are well known. At high temperatures one has,

K2(z) ≃
2

z
K1(z) ≃

2

z2
, z ≪ 1 , (23)

whereas at low temperatures,

K2(z) ≃ 1

z

(
15

8
+ z

)
K1(z)

≃ 1

z2

(
15

8
+ z

)√
π

2
z e−z , z ≫ 1 . (24)

Accurate interpolating functions for K1(z) and K2(z) for all values of z are

K2(z) ≃ 1

z

(
15

8
+ z

)
K1(z)

≃ 1

z2

(
15

8
+ z

)√
1 +

π

2
z e−z . (25)

Note, that for z ≪ 1 this approximation gives K2(z) ≃ 15/(8z2) rather than the exact

asymptotic form 2/z2. However, the high temperature domain is not so important for

baryogenesis and the approximation (25) is rather precise in the more relevant regime

around z ≃ 1.

Eq. (25) yields very simple expressions for the dilation factor and the decay term,
〈

1

γ

〉
(z) ≃ z

15
8

+ z
, D(z) ≃ K

z2

15
8

+ z
. (26)

As Fig. 1 shows these analytical approximations are rather precise. The relative error is

always less than 7%. The washout term (21) becomes in the approximation (25),

WID(z) ≃ 1

4
Kz2

√
1 +

π

2
z e−z . (27)

It is useful to define a value zd, corresponding to a ‘decay temperature’ Td below which

decays are in equilibrium, by ΓD(zd)/H(zd) = zdD(zd) = 2. The value of zd is determined

by K, and from Eq. (26) one obtains

z3
d −

2

K

(
zd +

15

8

)
≃ 0 . (28)

For K ≪ 1, this yields zd ≃
√

2/K, whereas zd ≃ (15/4K)1/3 for K ≫ 1. At K ≃ 1 one

has zd ≃ 2.

Inverse decays are in equilibrium if WID(z) ≥ 1. From Eq. (27) one easily finds that

WID(z) reaches its maximal value WID(zmax) ≃ 0.3K at zmax ≃ 2.4. Hence, for K > 3,

there exists an interval zin ≤ zmax ≤ zout, where inverse decays are in equilibrium. For

K . 3 no such interval exists and inverse decays are always out of equilibrium.
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Figure 2: Out of equilibrium decays. N1 number density, efficiency factor and decay

temperature Td = M1/zd for K = 10−2 and K = 10−4.

2.2 Out-of-equilibrium decays

In the regime far out of equilibrium, K ≪ 1, decays occur at very small temperatures,

zd ≫ 1, and the produced B − L asymmetry is not reduced by washout effects. In this

case the integral for the efficiency factor (14) becomes simply,

κ(z) ≃ 4

3

(
N i
N1

−NN1
(z)
)
. (29)

For z < zd no asymmetry is generated because the heavy neutrinos do not decay.

They also cannot be produced since inverse decays are switched off as well. Hence, in

this regime the dynamics is completely frozen. For z > zd the equilibrium abundance is

negligible, and from Eq. (12) one finds,

NN1
(z) ≃ N i

N1
e
−
∫

z

zi
dz′ D(z′)

≃ N i
N1

e
−K

(
z
2

2
− 15z

8
+( 15

8 )
2
ln (1+ 8

15
z)
)

. (30)

Note that we have neglected the small neutrino abundance which for N i
N1

≪ N eq
N1

is

produced before the neutrinos decay. Fig. 2 shows the evolution of NN1
(z) and NB−L(z)
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for K = 10−2 and K = 10−4, with N i
N1

= N eq
N1

= 3/4, comparing the numerical solutions

with the analytical expressions.

The final value of the efficiency factor κf = κ(∞) is proportional to the initial N1

abundance. If N i
1 = N eq

1 = 3/4, then κf = 1. But if the initial abundance is zero, then

κf = 0 as well. Therefore in this region there is the well known problem that one has to

invoke some external mechanism to produce the initial abundance of neutrinos. Moreover

the assumption that the initial asymmetry is washed out does not hold. Thus in the

regime K ≪ 1 the results strongly depend on the initial conditions and the picture is not

self-contained.

2.3 Dynamical initial abundance

In order to obtain the efficiency factor in the case of vanishing initial N1-abundance,

NN1
(zi) ≡ N i

N1
≃ 0, one has to calculate how heavy neutrinos are dynamically produced

by inverse decays. This requires solving the kinetic equation (12) with the initial condition

N i
N1

= 0.

Let us define a value zeq by the condition

NN1
(zeq) = N eq

N1
(zeq) . (31)

Eq. (12) implies that the number density reaches its maximum at z = zeq. An approximate

solution can be found by noting that for z < zeq inverse decays dominate and thus

dNN1

dz
≃ D N eq

N1
> 0 . (32)

A straightforward integration yields for z < zeq (cf. (16), (18), (20)),

NN1
(z) ≃ 3

8
K

∫ z

zi

dz′z′3K1(z
′)

=
3

2

∫ z

zi

dz′ WID(z′) . (33)

In the case zi ≪ z < 1, this implies for the number density,

NN1
(z) ≃ K

8
z3 , (34)

where the small dependence on zi has been neglected.

We can now calculate the corresponding approximate solution for the efficiency factor

κ(z). For z < zeq the efficiency factor κ ≡ κ− is negative since, NN1
< N eq

N1
. From

10



Eqs. (14) and (32) one obtains

κ−(z) ≃ −4

3

∫ z

zi

dz′D(z′)N eq
N1

(z′) e−
∫

z

z′
dz′′WID(z′′)

= −2

∫ z

zi

dz′WID(z′)e−
∫

z

z′
dz′′WID(z′′)

= −2
(
1 − e

−
∫

z

zi
dz′ WID(z′)

)

≃ −2
(
1 − e−

2
3
NN1

(z)
)
, z ≤ zeq . (35)

As expected, for NN1
≪ 1 the efficiency factor is proportional to NN1

, up to corrections

which correspond to washout effects. For z > zeq, κ
−(z) is reduced by washout effects.

For z ≥ zeq, there is an additional positive contribution to the efficiency factor,

κ+(z) ≃ 4

3

∫ z

zeq

dz′D(z′)
(
NN1

(z′) −N eq
N1

(z′)
)
e−

∫
z

z′
dz′′WID(z′′) . (36)

The total efficiency factor is the sum of both contributions,

κf(z) = κ+(z) + κ−(z) . (37)

For z ≥ zeq we now have to distinguish two different situations, the weak and strong

washout regimes, respectively.

2.3.1 Weak washout regime

Consider first the case of weak washout, K ≪ 1, which implies zeq ≫ 1. From Eq. (33)

one then finds,

NN1
(zeq) ≃

9π

16
K ≡ N(K) . (38)

A solution for NN1
(z), valid for any z, is obtained by using in Eq. (33) the useful approx-

imation ∫ z

0

dz′ z′3K1(z
′) ≃ 3π z3

[(9π)c + (2 z3)c]1/c
, (39)

with c = 0.7. This yields an interpolation of the two asymptotic regimes (cf. Eqs. (34)

and (38)), which is in excellent agreement with the numerical result, as shown in Fig. 3a

for K = 10−2.

For z > zeq ≫ 1 decays dominate over inverse decays, such that

dNN1

dz
= −D NN1

< 0 . (40)
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In this way one easily obtains

NN1
(z) = N eq

N1
(zeq) e

−
∫

z

zeq
dz′ D(z′)

. (41)

Moreover, for z > zeq, WID(z) is exponentially suppressed and washout effects can be

neglected in first approximation. For the negative part of the efficiency factor one then

has (cf. Eq. (35))

κ−(z) = −2
(
1 − e−

2
3
N(K)

)
. (42)

From Eq. (29) one obtains for the positive contribution,

κ+(z) =
4

3
(N(K) −NN1

(z)) . (43)

The final efficiency factor is then given by

κf(K) ≃ 4

3
N(K) − 2

(
1 − e−

2
3
N(K)

)
. (44)

To first order in N(K) ∝ K the final efficiency factor vanishes. This corresponds to

the approximation where washout effects are completely neglected. As discussed above,

κf is then proportional to N i
N1

and therefore zero. To obtain a non-zero asymmetry the

washout in the period z < zeq is crucial. It reduces the absolute value of the negative

contribution κ−(z), yielding a positive efficiency factor of order O(K2),

κf(K) =

[
2

3
N(K)

]2

≃ 9π2

64
K2 . (45)

Such a reduction of the generated asymmetry has previously been observed in the context

of GUT baryogenesis [15]. Note, that for K > 1 Eq. (45) does not hold, since in this case

zeq becomes small and washout effects for z ≥ zeq are also important.

In Fig. 3a the analytical solutions for NN1
(z) and |NB−L(z)| = (3/4)|ε1κ(z)| are com-

pared with the numerical results for K ≃ 10−2. A residual asymmetry survives after

zd ≫ zeq as remnant of the cancellation between the negative and the positive contribu-

tions to the efficiency factor. The second one is prevalent because washout suppresses

κ− more efficiently. As one can see in Fig. 3a, the analytical solution for the asymme-

try slightly underestimates the final numerical value. This is because for K & 10−2 the

approximation of neglecting washout for z ≥ zeq becomes inaccurate.

2.3.2 Strong washout regime

As K increases, zeq decreases, and at K ≃ 3 the maximal number density N(K) reaches

the equilibrium density Neq at zeq ≃ 1. For K ≫ 1, one obtains from Eq. (34), zeq ≃

12
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(6/K)1/3 ≃ zd ≪ 1. A more accurate description for z . zeq has to take into account

decays in addition to inverse decays, i.e. one has to solve Eq. (12). Since zeq ≪ 1, one

can use N eq
N1

≃ 3/4, and one then easily finds,

NN1
(z) =

3

4

(
1 − e−

1
6
K z3
)
, (46)

which correctly reproduces Eq. (34) for z ≪ zeq. An example, with K = 100, is shown in

Fig. 3b which illustrates how well the analytical expression for neutrino production agrees

with the numerical result.

Consider now the efficiency factor. ForK ≫ 1 we can neglect the negative contribution

κ−, assuming that the asymmetry generated at high temperatures is efficiently washed

out. This is practically equivalent to assuming thermal initial abundance. We will see

in the next section how to describe the transition from the weak to the strong washout

regime.

For K & 3, inverse decays are in equilibrium in the range zin < z < zout, with

zin ≃ 2/
√
K. In the strong washout regime, K ≫ 1, the efficiency factor can again be

calculated analytically.

For z . zd ≃ [15/(4K)]1/3 decays are not effective in tracking the equilibrium distri-

bution. For the difference

∆ = NN1
(z) −N eq

N1
(z), (47)

with NN1
(0) = N eq

N1
(0) = 3/4 ≡ Neq, one has,

∆(z) ≃ N i
N1

−N eq
N1

(z) ≃ 3

16
z2 , z . zd . (48)

The corresponding efficiency factor is given by (cf. (8))

κ(z) ≃ 4

3

∫ z

zi

dz′D(z′)∆(z′) ≃ 2K

75
z5 , z . zd . (49)

On the other hand, for z > zd the neutrino abundance tracks closely the equilibrium

behavior. Since D ∝ K, one can solve Eq. (12) systematically in powers of 1/K, which

yields

∆(z) = − 1

D

dN eq
N1

dz
+ O

(
1

K2

)
. (50)

Using the properties of Bessel functions, Eq. (20) yields for the derivative of the equilib-

rium density,
dN eq

N1

dz
= −3

8
z2K1(z) = − 3

2Kz
WID(z) . (51)
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We can now calculate the efficiency factor. From Eqs. (14) and (51) one obtains

κ(z) =
2

K

∫ z

zi

dz′
1

z′
WID(z′) e−

∫
z

z′
dz′′WID(z′′)

≡
∫ z

zi

dz′ e−ψ(z′,z) . (52)

The integral is dominated by the contribution from a region around the value z̄ where

ψ(z′, z) has a minimum. The condition for a local minimum zB, the vanishing of the first

derivative, yields

WID(zB) =

〈
1

γ

〉−1

(zB) − 3

zB
. (53)

Since the second derivative at zB is positive one has z̄ = min{z, zB}.
The integral (52) can be evaluated systematically by the steepest descent method

(cf. [3]). Alternatively, a simple and very useful approximate analytical solution can be

obtained by replacing in the exponent of the integrand WID(z) by

W ID(z) =
z̄

z
WID(z) = −Kz̄

4

d

dz
(z2K2(z)) . (54)

The efficiency factor then becomes

κ(z) ≃ 2

Kz̄

∫ z

zi

dz′W ID(z′) e−
∫

z

z′
dz′′W ID(z′′)

=
2

Kz̄

(
1 − e

−
∫

z

zi
dz′W ID(z′))

)
. (55)

It is now easy to understand the behavior of κ(z). For zd . z < zB, one has κ ∝ 1/z,

while for z ≥ zB the efficiency factor gets frozen at a final value κf ≃ 2/(K zB), up to a

small correction O(exp (−K)).

One can also easily find global solutions for all values of z by interpolating the asymp-

totic solutions for z < zd and z > zd, respectively. From Eqs. (18), (48), (50) and (51)

one obtains for the difference between N1-abundance and equilibrium abundance,

∆(z) ≃
(

1 +
Kz3

15
4

+ 2z

)−1
3

16
z3K1(z) . (56)

Similarly, an interpolation between the expressions (49) and (55) for the efficiency factor

is given by

κ(z) ≃
(

1 +
K2z̄z5

75

)−1
2K

75
z5 . (57)

A typical example of strong washout is shown in Fig. 4 for the value K = 100, as in

Fig. 3b, but now for thermal initial abundance. In this figure we also show the decay,
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Figure 4: Strong washout: comparison between analytical and numerical (full lines) results.

Inverse decays are in equilibrium in the temperature range zin ≤ z ≤ zout ∼ zB ; |ε1| = 10−6.

inverse decay and washout terms. Instead of the neutrino abundance the deviation ∆(z)

is shown. The dotted, short dashed, dot-dashed and dashed lines are the approximations

Eq. (26) for the D term, Eq. (27) for the WID term, Eq. (56) for ∆(z) and Eq. (57) for

κ(z), respectively. The thin solid lines are the numerical results which agree well with

the analytical approximations. The behavior κ(z) ∝ 1/z for z > zd and the freeze-out of

NB−L at zout are clearly visible.

Let us now focus on the final value of the efficiency factor κf = κ(∞). Note, that for

K ≫ 1 also zB ≫ 1, and the condition (53) becomes approximately WID(zB) ≃ 1. This

means zB ≃ zout. Hence, the asymmetry produced for z ≤ zout is essentially washed out,

while for for z > zout washout is negligible (WID < 1). This simple picture will have some

interesting consequences and applications.

The integral in Eq. (55) is easily evaluated,

∫ ∞

0

dz′W ID(z) =
1

2
zB(K)K . (58)
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βK

zB

Figure 5: zB as function of the decay parameter βK. The case studied in this section

corresponds to β = 1. The solid red line is the numerical solution of eq. (59), the dotted

black line shows the asymptotic solution (60), and the blue dashed line is the interpolation

(62).

Using the approximations (18) and (27), the condition (53) for zB(K) becomes explicitly

K

4
zB(K)3 e−zB(K)

√
1 +

π

2
zB(K) ≃ zB(K) − 1 . (59)

zB(K) approaches one as K goes to zero2. For K ≫ 1 the solution of Eq. (59) is given by

zB(K) ≃ −5

2
W−1

(
− 4

5π1/5
K−2/5

)
, (60)

where W−1 is one of the real branches of the Lambert W function [16]. This result can

be approximated by using the asymptotic expansion of W−1 [16, 17],

zB(K) ≃ 1

2
ln

(
πK2

1024

[
ln

(
3125πK2

1024

)]5
)

+ O
(

ln(K)

ln(ln(K))

)
. (61)

A rather accurate expression for zB(K) for all values of K is given by the interpolation

(cf. Fig. 5),

zB(K) ≃ 1 +
1

2
ln

(
1 +

πK2

1024

[
ln

(
3125πK2

1024

)]5
)
. (62)

2Note that the solution zB(K) of Eq. (53) approaches asymptotically 1.33 for K → 0. However, in

the strong washout regime and also for the extrapolation K → 0 this difference is irrelevant for κf .
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K

κf

Figure 6: The final efficiency factor κf as function of the decay parameter K for thermal

and dynamical initial N1 abundance, respectively. The thick solid lines are the numerical

solutions. The thin lines show, for comparison, the numerical solutions of the complete

Boltzmann equations including N1-top scatterings with an effective Higgs mass Mh/M1 =

0.1. The red circles represent Eq. (63) for the efficiency factor, evaluated using Eq. (62)

for zB(K).

Note the rapid transition from strong to weak washout at K ≃ 3.

The final value of the efficiency factor takes the simple form

κf(K) ≃ 2

zB(K)K

(
1 − e−

1
2
zB(K)K

)
. (63)

This analytical expression for the final efficiency factor, combined with Eq. (62) for

zB(K), provides an accurate description of κf(K), as shown in Fig. 6. Eq. (63) can also

be extrapolated into the regime of weak washout, K ≪ 1, where one obtains κf = 1

corresponding to thermal initial abundance, N i
N1

= N eq
N1

= 3/4. It turns out that also in

the transition region Eqs. (63) and (62) provide a rather accurate description, as is evident

from Fig. 6. The largest discrepancy between analytical and numerical results is about

30% around K ∼ 1. For comparison also the numerical result including scatterings is

shown. The difference with respect to the basic ‘decay-plus-inverse-decay’ picture becomes

significant only for K < 1.
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The above analysis is easily extended to the case where the strength of the washout

term WID is modified to βWID. For instance, in the model considered in [3], B−L number

changes by two in heavy particle decays, corresponding to β = 2. On the other hand,

the heavy particle abundance is not affected by this change. The final efficiency factor is

therefore given by

κf(K) ≃ 2

zB(K)βK

(
1 − e−

1
2
zB(K)βK

)
, (64)

where zB(K) is again given by Eq. (59). In the regime K ≫ 1 our expression for the final

efficiency factor can be approximated by

κf(K) ≃ 2

zB(K)βK
≃ 1

1.2 βK (ln βK)0.8
, (65)

which is very similar to the result3 obtained by Kolb and Turner [3].

Comparing the efficiency factor (63) with the solution of the Boltzmann equations

including scatterings, as shown in Fig. 6, one arrives at the conclusion that the simple

decay-plus-inverse-decay picture represents a very good approximation for leptogenesis in

the strong washout regime. As we will see, the difference is essentially negligible within

the current theoretical uncertainties.

2.3.3 Global parametrization

Given the results of the previous sections it is straightforward to obtain an expression for

the efficiency factor for all values of K also in the case of dynamical initial abundance.

We first introduce a number density N(K) which interpolates between the maximal num-

ber densities Neq = 3/4 and N(K) = 9πK/16 (cf. (38)) for strong and weak washout,

respectively,

N(K) =
N(K)

(
1 +

√
N(K)
Neq

)2 . (66)

The efficiency factor is in general the sum of a positive and a negative contribution,

κf(K) = κ+
f (K) + κ−f (K) .

Here κ−f (K) is given by (42) for K ≪ 1. A generalization, accounting for washout also for

z ≥ zeq, reads

κ−(z) = κ−(zeq) e
2
3
N(K)−

∫
z

0
dz′WID(z′) (67)

3Quantitatively, a discrepancy by a factor ∼ 7 was noted in [18], which is mostly related to the

definition of the decay parameter K (cf. Eq. (6)).
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This expression extends the validity of the analytical solution to values K > 10−2 in the

case of a dynamical initial abundance. κf is exponentially suppressed for K ≫ 1. An

interpolation, satisfying the asymptotic behaviors at small and large K, is given by

κ−f (K) = −2 e−
2
3
N(K)

(
e

2
3
N(K) − 1

)
. (68)

On the other hand, the expression (63) for κ+
f (K), which is valid for K ≫ 1, has to

approach 4/3N(K) for K ≪ 1. These requirements are fulfilled by

κ+
f (K) =

2

zB(K)K

(
1 − e−

2
3
zB(K)KN(K)

)
. (69)

Equations (66), (68) and (69), together with the interpolation (62) for zB(K), yield an

accurate description of the efficiency factor κf(K) for all values of K, as demonstrated by

Fig. 6.

This result is a good starting point for obtaining an analytic description of the effi-

ciency factor for the full problem. In the following sections we shall go beyond the simple

decay-and-inverse-decay picture and include other processes step by step.

3 The scattering term

3.1 Analytic approximations

The scattering term S and the related washout contribution W∆L=1 arise from two differ-

ent classes of Higgs and lepton mediated inelastic scatterings involving the top quark (t)

and gauge bosons (A),

S = St + SA . (70)

Their main effect is to enhance the neutrino production and thus the efficiency factor

for m̃1 < m∗. Further, they also contribute to the washout term, which leads to a

correction of the efficiency factor for m̃1 > m∗, i.e. in the strong washout regime. Since

the scattering processes are specific to leptogenesis we shall use in this section mostly

the variable m̃1 ≥ m1 [19] rather than K. Top quark and gauge boson scattering terms

are expected to be of similar size. However, the reaction densities for the gauge boson

processes are presently controversial [11, 12]. We shall therefore discuss these processes in

detail elsewhere. We shall also neglect the scale dependence of the top-Yukawa coupling,

which reduces the size of St, since this decrease of S will be partially compensated by SA.

The term St is again the sum of two terms arising from the s-channel processes N1 l ↔
t q and the t-channel processes N1 t↔ l q, N1 q̄ ↔ l t̄,

St = 2Sφ,s + 4Sφ,t . (71)
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The scattering terms are defined as usual in terms of scattering rates and expansion rate,

Sφ,s(t) =
Γ

(N1)
φ,s(t)

Hz
, (72)

and introducing the functions fφ,s(t)(z) (cf. appendix B) it is possible to write

St =
KS

6
(fφ,s(z) + 2 fφ,t(z)) ; (73)

here we have introduced the ratio

KS =
m̃1

ms
∗

, (74)

with

ms
∗ =

4π2

9

gN1
v2

m2
t

m∗ ≃ 10m∗ . (75)

At high temperatures, z ≪ 1, the functions fφ,s(t) have the following asymptotic form,

fφ,s(z) ≃ 2

[
1 − z2

(
ln

(
2

z

)
− γE

)]
, (76)

fφ,t(z) ≃ 2

[
1 +

z2

2
ln

(
M1

Mh

) (
ln

(
2

z

)
− γE

)]
. (77)

In Fig. 7 we have plotted the rates S + D and D as function of z for KS = 1, i.e.

m̃1 = ms
∗. For values z < 2 the sum S +D is dominated by the scattering rate S, while

for z > 2 the decay rate D ≃ K z dominates. A simple analytic approximation for the

sum D + S is given by

D + S ≃ KS

[
1 + ln

(
M1

Mh

)
z2 ln

(
1 +

a

z

)]
, (78)

where

a =
K

KS ln(M1/Mh)
=

8 π2

9 ln(M1/Mh)
. (79)

Here we have introduced the Higgs mass Mh to cut off the infrared divergence of the

t-channel process. As Fig. 7 illustrates, the approximation (78) agrees well with the

numerical result for Mh/M1 = 10−5 as well as Mh/M1 = 10−1. Note that the latter value

corresponds to the thermal Higgs mass, Mh ≃ 0.4 T , at the baryogenesis temperature TB

in the strong washout regime.

The washout term induced by the ∆L = 1 scattering processes is again the sum of s-

and t-channel contributions,

W∆L=1 = Wφ,s + 2Wφ,t . (80)
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Figure 7: The rates S + D and D are shown as function of z for KS = 1, i.e. m̃1 = ms
⋆. The

dash-dotted line is the simple approximation S + D ≃ KS + K z, while the two short dashed

lines represent Eq. (78) for Mh/M1 = 10−5 (higher) and Mh/M1 = 10−1 (lower), to be compared

with the numerical results (thick solid lines). The dotted line shows the expression (18) for D,

to be compared with the numerical result for D (solid line).

The washout rates are directly related to the scattering rates (72),

Wφ,t =
Γlφ,t
H z

=
N eq
N1

N eq
l

Sφ,t , (81)

Wφ,s =
NN1

N eq
N1

Γlφ,s
H z

=
N eq
N1

N eq
l

NN1

N eq
N1

Sφ,s . (82)

Using Eq. (22) for the equilibrium number densities one obtains

W∆L=1 = 2WID
1

D

(
NN1

N eq
N1

Sφ,s + 2Sφ,t

)
. (83)

The washout rate including inverse decays is then given by

W0 = WID +W∆L=1

= WID

(
1 +

1

D

(
2
NN1

N eq
N1

Sφ,s + 4Sφ,t

))
. (84)
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This is the total washout rate as long as ∆W , the off-shell contribution from heavy

neutrinos, can be neglected. This is justified for sufficiently small values of M1 (cf. sect. 4).

3.2 Dynamical initial abundance

We can now calculate the production of heavy neutrinos and study how the efficiency

factor gets enhanced by the presence of the scattering term. We again define a value zeq

by the condition (31),

NN1
(zeq) = N eq

N1
(zeq) .

For z < zeq the number density can be obtained by integrating the equation

dNN1

dz
≃ (D + S)N eq

N1
> 0 . (85)

The result is given by the expression (z ≤ zeq)

NN1
(z) =

3

8
KS

[
IA(z) + ln

(
M1

Mh

)
IB(z)

]
. (86)

Here the first integral is given by

IA(z) =

∫ z

0

dz′ z′2K2(z
′) ≃ 3π z3

[(9π)c + (2 z3)c]1/c
+ z3K2(z) , (87)

where we have used the approximation Eq. (39). The second integral can be expressed as

IB(z) =

∫ z

0

dz′ z′4 ln
(
1 +

a

z′

)
K2(z

′)

≃ 2

∫ 1

0

dz′ z′2 ln
(
1 +

a

z′

)
+ a

∫ z

1

dz′ z′3K2(z
′)

≃ 2

3

(
(1 + a3) ln(1 + a) − a3 ln a− a2 +

1

2
a

)
+ aK3(1) − a z3K3(z) . (88)

The value zeq can now be determined by setting NN1
, as determined from Eqs. (86), (87)

and (88), equal to N eq
N1

. Using an approximate form for K3 , one obtains an equation

similar to Eq. (59), as described in appendix B. This yields a good approximation for zeq

in the case m̃1 < m∗.

3.2.1 Weak washout regime

Consider now the case of weak washout, m̃1 ≪ m∗ ≃ 10−3 eV, which implies zeq ≫ 1.

For z > zeq, decays dominate over inverse decays,

dNN1

dz
≃ −(D + S)NN1

< 0 . (89)
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Using D + S ≃ Kz, valid for z ≫ a (cf. (78) and fig. 7), this yields for the number

density the simple expression

NN1
(z) ≃ N eq

N1
(zeq) e

−
∫

z

zeq
dz′ (S+D)

≃ N eq
N1

(zeq) e
−K

2
(z2−z2eq). (90)

In Fig. 8 the solution NN1
(z) is shown for m̃1 = 10−5 eV. The analytical solution

agrees well with the numerical result. We also make a comparison with the result already

displayed in Fig. 3, where the S term is neglected. As expected, the presence of the S

term enhances the density NN1
at z = zeq. Moreover the comparison illustrates the strong

sensitivity of the efficiency factor in the case m̃1 ≪ m∗, not only to the initial conditions,

but also to the theoretical description. A difference in N1 abundance by less than a factor

of two at zeq corresponds to final efficiency factors which differ by two orders of magnitude.

This is due to delicate cancellations between the positive and the negative contribution

to the efficiency factor and is a source of large theoretical uncertainties in the small m̃1

regime.

We can now calculate the efficiency factor. In sect. 2.3.1 we have seen that in the

absence of scatterings the inclusion of the small washout term was necessary to create

an asymmetry between the negative contribution, κ−, and the positive one, κ+, in order

to have a non-zero final value κf . Given the S term one can neglect washout to first

approximation. From Eq. (8) one then obtains

κ(z) = −4

3

∫ z

zi

dz′ j−1 dNN1

dz′
, (91)

where (cf. (18), (78))

j(z) =
D + S

D
≃
[
z

a
ln
(
1 +

a

z

)
+
KS

K z

] (
1 +

15

8 z

)
. (92)

Due to the S term we now have κf 6= 4
3
N i
N1

, although washout is neglected. The reason

is quite clear: as in the case without scatterings, the asymmetry is changed only by

decays and inverse decays; however, the number of decaying neutrinos at zeq is now larger

because of the additional production due to scatterings. To first approximation we can

thus calculate the efficiency factor neglecting washout.

For z ≤ zeq one obtains (cf. (39)),

κ−(z) = −4

3

∫ z

zi

dz′DN eq
N1

≃ − 3πK z3

[(18 π)c + (4z3)c]1/c
. (93)
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Figure 8: Effect of scatterings on neutrino production for m̃1 = 10−5 eV. The numerical results

have been calculated for ∆W = 0 and Mh/M1 = 10−5 (thick solid lines). The short-dashed lines

are the analytical solutions for NN1
(Eqs. (86) and (90)) and for κ(z) (Eqs. (93) and (94)), with

Mh/M1 = 10−5. For comparison we also show the result where scatterings are neglected (thin

solid lines).

For z > zeq one has j ≃ const. (cf. Fig. 7); Eq. (91) the yields the simple result,

κ(z) =
4

3

(
NN1

(zeq) j
−1(zeq) −NN1

(z) j−1(z)
)

+ κ−(zeq) , (94)

which is shown in Fig. 8 for m̃1 = 10−5 and Mh/M1 = 10−5 (short dashed line); it agrees

reasonably well with the corresponding numerical solution (solid line). The analytical so-

lution somewhat overestimates |κ−f |; correspondingly, the final value κf is underestimated.

The analytical solution explains why the final value of the efficiency factor, κf , is

proportional to m̃1,

κf ≃
4

3

[
NN1

(zeq) j
−1(zeq) − Ñ(K)

]
∝ m̃1 . (95)

where

Ñ(K) =
2N(K)z3

eq(
(9π)c + (2z3

eq)
c
)1/c , (96)
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Figure 9: The final efficiency factor when scatterings are included. The numerical results

are shown for Mh/M1 = 10−10, 10−5, 10−1, 1 (dot-dot-dash, solid, dashed and dot-dashed line

respectively). The thin dashed line is the simple result from the decay-plus-inverse-decay picture

when scatterings are neglected. The short-dashed lines are the analytical results in the case of

thermal initial abundance (Eq. (107) with j(zB) → j2(zB) in the exponential) and zero initial

abundance (Eqs. (110) + (109), Mh/M1 = 10−5). The circled line is the power law fit (108).

The dashed box indicates the range (msol,matm).

with N(K) = 9πK/16. Contrary to the case discussed in sect. 2.3.1, for which NN1
(zeq) ≃

Ñ(K) ≃ N(K) and j = 1, NN1
(zeq) and Ñ(K) are now different. Hence, there is no

cancellation of terms O(m̃1) between κ+ and κ−.

The expression (95) for the final efficiency factor fails for effective neutrino masses

m̃1 > 10−5 eV. Including washout mainly reduces the negative contribution κ− and

thereby enhances the final value of the efficiency factor. Eq. (93) is then changed into

κ−f = −4

3

∫ ∞

zi

dz′DN eq
N1
e−

∫
∞

z′
dz′′W0(z′′) . (97)

For z < zeq one has NN1
< N eq

N1
, and the washout rate becomes (cf. (84))

W0(z) ≃WID(z)
D + 4Sφ,t

D
. (98)

26



From the expression (78) for D + S one obtains

D + 4Sφ,t ≃ KS

(
2

3
+ ln

(
M1

Mh

)
z2 ln

(
1 +

a

z

))

≃ 2

3
Ks +K z ; (99)

here the last approximation requires a≪ 1. Together with Eq. (18) this yields

W0(z) ≃WID(z)
(
1 +

α

z

)
, (100)

where the coefficient α is given by

α =
2KS

3K
+

15

8
. (101)

Since WID/z is a total derivative, one obtains for the efficiency factor,

κ−f = −2

∫ ∞

zi

dz′WID(z′) e−
1
4
Kαz′2K2(z′) e−

∫
∞

z′
dz′′WID(z′′)

≃ −2 e−
1
2
Kα

∫ ∞

zi

dz′WID(z′) e−
∫
∞

z′
dz′′WID(z′′) , (102)

where we have used z2K2(z) ≃ 2 for z . 1. Except for the exponential pre-factor, this

yields the result obtained in sect. 2.3.1 for decays and inverse decays (cf. (42)) when the

wash-out at z > zeq is neglected

κ−f = −2 e−
1
2
Kα
(
1 − e−

2
3
N(K)

)
. (103)

The case without scatterings is recovered for α = 0.

3.2.2 Strong washout regime

In the case of strong washout, K ≫ 1, the density of heavy neutrinos follows closely the

equilibrium abundance, and one can obtain an analytical solution repeating the discussion

in sect. 2.3.2. The efficiency factor is now given by

κ(z) = −4

3

∫ z

zin

dz′ j−1
dN eq

N1

dz′
e−

∫
z

z′
dz′′W0(z′′) . (104)

Using NN1
/N eq

N1
≃ 1 in the washout rate one obtains (cf. (84)),

W0 ≃ WID j . (105)

27



In this way one finds for the efficiency factor

κ(z) =
2

K

∫ z

zi

dz′
1

z′j(z′)
WID(z′) e−

∫
z

z′
dz′′WID(z′′)j(z′′)

≡
∫ z

zi

dz′ e−ψS(z′,z) . (106)

As in sect. 2.3.2, the dominant contribution to the integral arises from a region around

a value zB ≫ 1 where ψS(z
′, z) has a minimum. Since D + S ≃ KS +Kz for large z, the

value zB is again given by Eq. (53) up to corrections O(KS/(K z2
0)). Replacing nowWID(z)

by WID(z)zBj(zB)/(zj(z)) in the exponent of the integrand and by WID(z)j(z)/j(zB) in

the pre-factor, respectively, one obtains for the final efficiency factor the approximate

solution,

κf =
2

zBK j(zB)2

(
1 − e−

1
2
zBKj(zB)

)
. (107)

This extends Eq. (64) to the case where scatterings are included.

Note, that at smallK the efficiency factor (107) does not approach one, the value corre-

sponding to thermal initial abundance. However, any initial abundance can be reproduced

by adjusting the exponent in Eq. (107). Replacing j(zB) by j(zB)2 leaves Eq. (107) essen-

tially unchanged at large K, whereas at small K one has κf ≃ 1 corresponding to thermal

initial abundance. The result is shown in Fig. 9 (short-dashed line) and compared with

numerical results for different values of Mh/M1. In the strong washout regime, m̃1 ≫ m∗,

and for Mh/M1 = 10−5, the analytical and numerical results agree within 10%. Since the

strong washout regime is most interesting with respect to neutrino mass models, this is

one of the most relevant results of this paper.

For practical purposes it is interesting to note that, within the current theoretical

uncertainties, the efficiency factor for m̃1 > m∗ is given by the simple power law,

κf ≃ (2 ± 1) × 10−2

(
0.01 eV

m̃1

)1.1±0.1

. (108)

The quoted uncertainties represent, approximately, the range visible in Fig. 9 for large

m̃1. It is limited from above by the thin solid line corresponding to decays plus inverse

decays and from below by the dot-dot-dashed line where scatterings are included with the

extremely small ratio Mh/M1 = 10−10. Note that Mh/M1 = 0.1 corresponds to a thermal

Higgs mass, Mh ≃ 0.4 T , at the baryogenesis temperature TB ≃ M1/5.

3.2.3 Global parametrization

As in sect. 2.3.3 we can now obtain an expression for the efficiency factor for all values

of K by interpolating between the two regimes of small K and large K. We shall use the
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number density Ñ(K) (cf. (96)) and the interpolation (62) for zB(K), which is related to

the baryogenesis temperature by TB = M1/zB.

The efficiency factor is the sum of a positive and a negative contribution,

κf(K) = κ+
f (K) + κ−f (K) .

Here κ−f (K) differs from Eq. (68) just by the exponential pre-factor induced by the scat-

terings (cf. (103)), which yields

κ−f (K) = −2 e−
2
3(N(K)+ 3

4
Kα)

(
e

2
3
Ñ(K) − 1

)
. (109)

The expression (107) for κ+
f (K), which is valid for K ≫ 1, has to approach Eq. (95) for

K ≪ 1. An interpolating function is given by

κ+
f (K) =

2

zB(K)K j2(zB)

(
1 − e−

2
3
zB(K)Kj2(zB)NN1

(zeq) j−1(zeq)
)
. (110)

Eq. (69) is recovered for j = 1 and S = 0. The sum κf = κ+
f + κ−f is shown in Fig. 9 for

Mh/M1 = 10−5. The agreement with the numerical result is very good. Including washout

yields a description which correctly interpolates between the weak washout regime, m̃1 ≪
m∗ and the strong washout regime, m̃1 ≫ m∗.

3.3 Lower bounds on M1

The results for the efficiency factor are easily translated into theoretical predictions for

the observed baryon-to-photon ratio using the relation (10). The theoretical prediction

has to be compared with the results from WMAP [20] combined with the Sloan Digital

Sky Survey [21], Ωb h
2 = 0.023 ± 0.001, corresponding to

ηCMB
B = (6.3 ± 0.3) × 10−10 . (111)

The comparison yields the required CP asymmetry in terms of the baryon-to-photon ratio

and the efficiency factor κf (cf. (10)),

εCMB
1 =

ηCMB
B

d κf

≃ 6.3 × 10−8

(
ηCMB
B

6 × 10−10

)
κ−1

f . (112)

The CP asymmetry ε1 can be written as product of a maximal asymmetry and an

effective leptogenesis phase δL [22],

ε1 = εmax
1 sin δL . (113)
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The connection between the leptogenesis phase and other CP violating observables is an

important topic of current research [23]. The maximal CP asymmetry εmax
1 depends in

general on M1, m̃1 and, via the light neutrino masses mi, on the absolute neutrino mass

scale m [10]. For given light neutrino masses, i.e. fixed m1 and m3, ε1 is maximized in

the limit m1/m̃1 → 0, for which one obtains [24],

εmax
1 (M1, m) =

3

16π

M1

v2
(m3 −m1) . (114)

This expression reaches its maximum for fully hierarchical neutrinos, corresponding to

m1 = 0 and m3 = matm ≡
√

∆m2
atm.

Neutrino oscillation experiments give for atmospheric neutrinos [25, 26]

∆m2
atm = (2.6 ± 0.4) × 10−3 eV2 , (115)

and for solar neutrinos [27]

∆m2
sol ≃ (7.1+1.2

−0.6 × 10−5) eV2 , (116)

implying

matm = (0.051 ± 0.004) eV . (117)

Thus, apart the small experimental error, matm is a fixed parameter and the resulting

maximal asymmetry depends uniquely on M1 [24],

εmax
1 (M1) =

3

16π

M1matm

v2
≃ 10−6

(
M1

1010 GeV

) ( matm

0.05 eV

)
. (118)

The maximal CP asymmetry, or equivalently the maximal leptogenesis phase, cor-

responds to a maximal baryon asymmetry ηmax
B . The CMB constraint ηmax

B ≥ ηCMB
B ,

together with Eq. (118), then yields a lower bound on the heavy neutrino mass M1,

M1 > Mmin
1 =

1

d

16 π

3

v2

matm

ηCMB
B

κf

≃ 6.4 × 108 GeV

(
ηCMB
B

6 × 10−10

)(
0.05 eV

matm

)
κ−1

f . (119)

Note that the bound depends on the combination ηCMB
B /matm whose error, after the

WMAP result, receives a similar contribution both from ηCMB
B and matm such that

Mmin
1 (m̃1) = (6.6 ± 0.8) × 108 GeV κ−1

f (m̃1) & 4 × 108 GeV κ−1
f (m̃1) , (120)

with the last inequality indicating the 3σ lower bound. For values of M1 ≪ 1014 GeV

[10] one can use the results of this section for the efficiency factor, neglecting the ∆L = 2

washout term. Eq. (119) then provides a lower bound on M1 which depends only on m̃1.
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Figure 10: Analytical lower bounds on M1 (circles) and Ti (dotted line) for m1 = 0,

ηCMB
B = 6 × 10−10 and matm = 0.05 eV. The analytical results are compared with the

numerical ones (solid lines). The vertical dashed lines indicate the range (msol,matm).

The gray triangle at large M1 and large m̃1 is excluded by theoretical consistency (cf. ap-

pendix A).

Fig. 10 shows the analytical results forMmin
1 (m̃1), based on Eq. (107) for thermal initial

abundance (thin lines) and the sum of Eqs. (109) and (110) for zero initial abundance

(thick lines). For comparison also the numerical results (solid lines) are shown. The

absolute minimum for M1 is obtained for thermal initial abundance in the limit m̃1 → 0,

for which κf = 1. The corresponding lower bound on M1 can be read off from Eq. (120)

and at 3 σ one finds

M1 & 4 × 108 GeV . (121)

This result is in agreement with [10] and also with the recent calculation [12]. Note that the

lower bound on M1 becomes much more stringent in the case of only two heavy Majorana

neutrinos [28]. The bound for thermal initial abundance is model independent. However,

it relies on some unspecified mechanism which thermalizes the heavy neutrinos N1 before

the temperature drops considerably below M1. Further, the case m̃1 ≪ 10−3 eV is rather

artificial within neutrino mass models, and in this regime a pre-existing asymmetry would

not be washed out [2].

31



For zero initial abundance the lower bound is obtained for κ0(m̃1) = κpeak ≃ 0.18,

corresponding to m̃peak
1 ≃ 10−3 eV. In this case one obtains from Eq. (120) [10],

M1 & 2 × 109 GeV . (122)

Particularly interesting is the lower bound on M1 in the favored neutrino mass range

msol . m̃1 . matm. This range lies in the strong washout regime where the simple power

law scaling (108) holds. One thus obtains from Eq. (120)

Mmin
1 (m̃1) ≃ (3.3 ± 0.4) × 1010 GeV

(
m̃1

10−2 eV

)1.1

, (123)

which at 3 σ implies

M1 & 2 × 1010 GeV

(
m̃1

10−2 eV

)1.1

≃ (1010 ÷ 1011) GeV , (124)

where the last range corresponds to values msol . m̃1 . matm. Note that these bounds

are fully consistent with neglecting the ∆L = 2 washout term, which is justified for

Mmin
1 ≪ 1014 GeV.

In the case of near mass degeneracy between the lightest and the next-to-lightest

heavy neutrino N2, y = (M2 −M1)/M1 ≪ 1, the upper bound on the CP asymmetry ε1

is enhanced by a factor ξ(y) ≃ 1/(3y) [29, 30]. The CP asymmetry of N2 can also be

maximal. Since the number of decaying neutrinos is essentially doubled, one obtains for

the reduced lower bound on M1 (y < 1),

M1 > Mmin
1 (m̃1, y) =

Mmin
1 (m̃1)

2 ξ(y)
, (125)

where Mmin
1 is given by Eq. (119). It has been suggested that for extreme degeneracies

a resonant regime [11] is reached where εmax
1 = O(1). In this case there is practically no

lower bound on M1 from leptogenesis.

3.4 Lower bound on Ti

It is usually assumed that the lower bound on the initial temperature Ti roughly coincides

with Mmin
1 , the lower bound on the heavy neutrino mass M1. Here Ti can be thought of

as the temperature after reheating, below which the universe is radiation dominated [31].

However, in the following we will show that this is only the case in the weak washout

regime, i.e. for m̃1 . m∗ ≃ 10−3 eV, whereas in the more interesting strong washout

regime Ti can be about one order of magnitude smaller than M1.

32



10-6 10-5 10-4 10-3 10-2 10-1 100

10-6 10-5 10-4 10-3 10-2 10-1 100

10-4

10-3

10-2

10-1

10-4

10-3

10-2

10-1

10

7

5

1

~

3

z i
<<

1

 

 κ
f

m
1
 (eV)

Figure 11: The final efficiency factor for different values of zi = M1/Ti as indicated. For

zi & zB there is a significant suppression.

In general, the maximal baryon asymmetry is a function of both, M1 and Ti = M1/zi,

ηmax
B (M1, m̃1, m, zi) = d εmax

1 (M1, m̃1, m) κf(m̃1, zi) . (126)

In a rigorous procedure one would have to treat M1 and Ti as independent variables and

to determine the values zmax
i = M1/T

min
i as well as Mmin

1 for which the CMB constraint

ηmin
B ≥ ηCMB

B is satisfied. This will yield a value Mmin
1

∣∣
zi

somewhat larger than Mmin
1

∣∣
zi=0

.

For simplicity, we shall use the approximation Mmin
1

∣∣
zi
≃ Mmin

1

∣∣
zi=0

in the following. We

then define the value zmax
i , and the corresponding temperature Tmin

i = Mmin
1 /zmax

i , by

requiring that the final asymmetry ηmax
B agrees with observation within 1σ relative error

of the quantity ηCMB
B /matm which controls Mmin

1 .

In the weak washout regime, i.e. m̃1 < m∗, one has zmax
i ≃ 1. At temperatures smaller

than M1, the predicted asymmetry rapidly decreases. Either, there is not enough time

to produce neutrinos (for zero initial abundance) or the thermal abundance is Boltzmann

suppressed (for thermal initial abundance). As Fig. 11 illustrates, for m̃1 < m∗ the final

efficiency factors for zi = 1 and zi ≪ 1 differ by only 10%. Hence, in the weak washout

regime one has zmax
i ≃ zB ≃ 1.

In the strong washout regime the baryon asymmetry is predominantly produced

around zB. The value of zmax
i is thus given by zmax

i ≃ zB − 1.3 σψ, where σψ is the
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Figure 12: The function exp (−ψS(z,∞)) (cf. Eq. (106)) for m̃1 = 10−2 eV (full line) and

m̃1 = 10−1 eV (dashed line).

width of the Gaussian which approximates the function exp (−ψf
S(z)) (cf. (106)) peaked

at z = zB and whose integral between zmax
i and infinity gives the final efficiency factor

minus the small error that is tolerated. In Fig. 12 the function exp (−ψf
S(z)) is shown

for m̃1 = 10−2 eV and m̃1 = 10−1 eV, respectively. The width of the peak is given by

σψ ≃ (ψ′′(zB))−1/2 ≃ 1.5 for m̃1 ≫ m∗.

One can easily write down an approximate expression for zmax
i (K) which interpolates

between the two regimes of weak and strong washout,

zmax
i (K) ≃ zB − 2 e−3/K . (127)

The importance of the quantity zB becomes apparent by comparing Figs. 5 and 11. For

instance, for m̃1 = matm ≃ 0.05 eV one has zB ≃ 8 and thus zmax
i ≃ 6, while for m̃1 =

msol ≃ 0.008 eV one has zB ≃ 6 and thus zmax
i ≃ 4. Clearly, for values zi > zmax

i (K) the

suppression of the efficiency factor becomes significant.

From Eq. (127) one immediately obtains a lower bound on the initial temperature Ti,

Ti >
Mmin

1

zmax
i

≃ Mmin
1

zB − 2 e−3/K
. (128)

The result is shown in Fig. 10. For small m̃1 . m∗ one has zmax
i ≃ 1 and consequently

Tmin
i ≃Mmin

1 . Hence, in particular, the 3 σ bounds (121) and (122) apply also to Ti. More

interestingly, in the favored region msol . m̃1 . matm (dashed box) the 3 σ bound (124)
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gets relaxed by a factor 4 to 6 and thus

Tmin
i = (4 × 109 ÷ 2 × 1010) GeV (129)

Therefore, in the favored region of m̃1 (dashed box), Tmin
i (m̃1) is only one order of mag-

nitude higher than the absolute minimum Ti ≃ 3 × 109 GeV at m̃1 ≃ m∗ (zero initial

abundance) and less than two orders of magnitude higher than the asymptotical minimum

for m̃1 ≪ m∗ (thermal initial abundance). This is important in view of the ‘gravitino

problem’ which yields an upper bound on Ti for some supersymmetric extensions of the

standard model.

Comparing our results with those of [12], where the additional B − L asymmetry has

been calculated which is produced during the reheating period at temperatures above Treh

and below some maximal temperature Tmax, we find the same amount of relaxation of the

bound on Ti = Treh. This indicates that the relaxation is a consequence of TB < Mmin
1 in

the case of strong washout rather than the existence of a non radiation dominated regime

above Treh.

4 Upper bound on the light neutrino masses

We now want to study the effect of the contribution ∆W to the total washout. This term

originates from the ∆L = 2 processes φl ↔ φ̄l̄ and φφ↔ l̄l̄ with the heavy neutrinos N1,

N2 and N3 in s- and t-channel, respectively. ∆W is the only term in the kinetic equations

which is not proportional to m̃1 but instead to the heavy neutrino mass M1.

At low temperatures the washout term ∆W reads,

∆W (z) ≃ ω

z2

(
M1

1010 GeV

)(
m

eV

)2

, (130)

where m is the absolute neutrino mass scale, and the dimensionless constant ω is given

by

ω =
9
√

5Mp 10−8 GeV3

4π9/2 gl
√
g⋆ v4

≃ 0.186 . (131)

∆W is compared in Fig. 13 of appendix A with the total washout term

W (z) = W0(z ; m̃1) + ∆W (z ;M1m
2) . (132)

As discussed in the appendix, there is a sharp transition to a low temperature regime

where ∆W dominates over W0. This transition occurs for a value z∆ ≫ 1, which is

determined by

W0(z∆) = ∆W (z∆) . (133)
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From Eqs. (105) and (130) one easily obtains,

K z
9/2
∆ e−z∆ ∼ ω

(
M1

1010 GeV

) (
m

eV

)2

. (134)

In the case z∆ & zB, the values of zB and of the efficiency factor at z ∼ z∆ are not

affected by ∆W . Since for z > zB no asymmetry is produced, the total efficiency factor

is simply given by

κ̄f(m̃1,M1m
2) = κf(m̃1) e

−
∫
∞

zB
dz∆W (z)

, (135)

where the second factor describes the modification due to the presence of ∆W . Note that

κ̄f depends on m̃1 also via zB. For zB & 3 we can use the low temperature limit (130) for

∆W , which yields

κ̄f(m̃1, M1m
2) = κf(m̃1) e

− ω

z2 ( M1
1010 GeV

) ( m

eV)
2

. (136)

Given the solar and atmospheric mass squared differences and a neutrino mass pattern,

i.e. m2
3 −m2

2 > m2
2 −m2

1 or m2
3 −m2

2 < m2
2 −m2

1, the dependence of m3 on m1 is fixed.

In Ref. [2] the absolute neutrino mass scale m was used as variable. In the following we

prefer to use instead the lightest neutrino mass m1. In the case of normal hierarchy, with

m 2
3 −m 2

2 = ∆m2
atm and m 2

2 −m 2
1 = ∆m2

sol, one has

m 2
3 = m2

1 + ∆m2
atm + ∆m2

sol , (137)

m 2
2 = m2

1 + ∆m2
sol, (138)

m2 = 3m2
1 + ∆m2

atm + 2 ∆m2
sol . (139)

In the case of inverted hierarchy analogous relations hold.

Consider now the maximal baryon asymmetry (cf. (10)),

ηmax
B (m̃1,M1, m1) ≃ d εmax

1 (m̃1,M1, m1) κ̄f(m̃1,M1, m1) . (140)

In the case m1 = 0 the maximal CP asymmetry was depending only on M1 (cf. Eq.

(118)). If m1 ≥ 0 this is suppressed by a function β(m̃1, m1) ≤ 1 depending both on m1

and on m̃1 [24, 2] such that

εmax
1 (M1, m̃1, m1) = εmax

1 (M1) β(m̃1, m1) . (141)

The maximal value β = 1 is obtained in the case m1 = 0. The function β is conveniently

factorized,

β(m̃1, m1) = βmax(m1) f(m̃1, m1) . (142)
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The first factor,

βmax(m1) =
(m3 −m1)

matm
=

matm

(m3 +m1)
, (143)

is the maximal value of β for fixed m1, which decreases ∝ 1/m1 for m1 ≫ matm. The

function f contains the dependence on m̃1,

f(m̃1, m1) ≃

(
m3 −m1

√
1 +

m2
atm

m̃2
1

)

m3 −m1
. (144)

This expression describes correctly the behavior of the maximal CP asymmetry in the

limits m1 → 0 and m̃1 → ∞. However, it has recently been pointed out [32] that

Eq. (144) underestimates the maximal CP asymmetry in particular in the regime of quasi-

degenerate neutrinos4. For simplicity, we shall first calculate the neutrino mass bound

using Eq. (144) and then discuss the correction.

Let us now calculate the value M1 that maximizes ηmax
B . In the (m̃1,M1)-plane this

defines a trajectory ηmax
B (m̃1, m1) along which ηmax

B is maximal with respect to M1. The

corresponding condition,
d ln ηmax

B

dM1
= 0 , (145)

yields the relation,
ω

zB

(
M1

1010 GeV

)(
m

eV

)2

= 1 , (146)

where the quantity zB is a function of m̃1. It is now easy to see that the ratio ηmax
B /ηCMB

B ,

maximized with respect to M1, can be expressed in the following form,

ηmax
B (m̃1;m1)

ηCMB
B

≃ χ ξ
zB(m̃1) f(m̃1, m1) κf(m̃1)

(m1 +m3)m
2 , (147)

where χ is the constant

χ =
25 d

6 e ω

eV4

m0
≃ 1.6 eV3 . (148)

and m0 = (16 π/3) (v2/1016 GeV) ≃ 0.051 eV. The parameter ξ is the product

ξ =
ξε ξ

2
atmξ0

ξη ξ∆
. (149)

4The expression (144) has been obtained using Eq. (22) in Ref. [2] and assuming x3 = 0, which is valid

only in the limit m1 → 0. Note, however, that Eq. (144) approximates the maximal CP asymmetry within

about 20% also in the quasi-degenerate case for the relevant values of m̃1. For quasi-degenerate neutrinos,

with m1 ≃ m3 < m̃1, one easily finds that the maximal CP asymmetry is reached for x3 ≃ m1/(2m̃1).
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It accounts for various factors affecting the ratio ηmax
B /ηCMB

B : (1) the maximal CP asym-

metry, ξε; (2) the atmospheric neutrino mass scale, ξatm = matm/(0.05 eV); (3) the ob-

served baryon asymmetry, ξη = ηCMB
B /(6× 10−10); (4) the variation ξ∆ of the strength of

the ∆L = 2 washout term, and (5) the variation ξ0 of the efficiency factor at small M1m
2.

This parametrization of the maximal asymmetry is useful to study the dependence of the

neutrino mass bound on the various parameters involved.

In order to determine the absolute maximum of the asymmetry ηmax
B we also have to

find the extremum with respect to m̃1 and, finally, the maximum with respect to m1 or,

equivalently, the absolute neutrino mass scale. Comparison with the observed asymmetry

ηCMB
B then yields the leptogenesis neutrino mass bound. Anticipating again that the

maximum falls in the region of large m̃1, we can use the analytical expression (107) for

κf in the strong washout region. Since j(zB ≫ 1) ≃ 1, one has

zB(m̃1) κf(m̃1) ≃
2

K
=

2m∗

m̃1
. (150)

Further, for large m̃1 the function f(m̃1, m1) can be approximated by

f(m̃1, m1) ≃ 1 − 1

2

(m3 +m1)m1

m̃2
1

. (151)

With this simplified expression it is easy to see that the peak is reached for

m̃peak
1 ≃

√
3

2
m1 (m1 +m3) , (152)

corresponding to f(m̃peak
1 , m1) = 2/3. The peak value of the asymmetry is given by

ηpeak
B (m1)

ηCMB
B

≃ 25/2

33/2

χm∗ ξ

(m1 +m3)3/2m
1/2
1 m2

. (153)

Anticipating (mpeak
1 )2 ≫ m2

atm, one has to zeroth order in (matm/m1)
2,

m0
3 =

m0

√
3
≃ m1 . (154)

Imposing now the CMB constraint ηB ≥ ηCMB
B we find the leptogenesis bound on the

absolute neutrino mass scale (cf. [33, 2]),

mi ≤ m0
peak = σ ξ1/4 eV , (155)

with

σ = 106

(
10 grec asph π

6

39/2 e

)1/4 (
v2

MPL GeV

)1/2

≃ 0.121 . (156)
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In this last equation we used the fact that in a standard thermal history the dilution

factor, contained in d, is given by N rec
γ /N⋆

γ = g∗/grec with grec = 43/11 the number of the

(entropy) degrees of freedom at recombination. Combining Eqs. (154) and (152) one finds

m̃peak
1 ≃ m0

peak ≃ 0.17 eV , (157)

which is consistent with the approximation of strong washout used in Eq. (150). From

Fig. 5 one then reads off zpeak
B ≃ 10. Together with (146) this yields for the peak value of

M1,

Mpeak
1 =

zB(m̃peak
1 )

ω (m0
peak)

2
≃ 2 × 1013 ξ−1/2 GeV . (158)

It is straightforward to go beyond the zeroth order in (matm/m1)
2. In the case of

normal hierarchy the lightest neutrino mass bound is given by

mpeak
1,nor ≃ m0

peak

(
1 − 17

96

m2
atm

(m0
peak)

2

)
, (159)

whereas in the case of inverted hierarchy one has

mpeak
1,inv ≃ m0

peak

(
1 − 25

96

m2
atm

(m0
peak)

2

)
, (160)

which yields mpeak
1,nor ≃ mpeak

1,inv ≃ m0
peak − 0.005 eV. In order to obtain numerical results for

the upper bounds on the light neutrino masses one has to specify the baryon asymmetry

and the neutrino mass squared differences. For ηCMB
B we use the WMAP plus SDSS result

(111), while the value for matm is given by the Eq. (117). Since mpeak ∝ (m2
atm/ηCMB)1/4,

the experimental error on m0
peak is about 5%. Setting all other parameters ξi = 1, one

finds for the central value ξ = ξ2
atm/ξη ≃ 0.95. We then obtain

mpeak
1 = (0.115 ± 0.005) eV . (161)

The corresponding 3σ upper bounds on the neutrino masses are for normal hierarchy,

m1, m2 < 0.13 eV , m3 < 0.14 eV , (162)

and correspondingly in the case of inverted hierarchy,

m1 < 0.13 eV , m2, m3 < 0.14 eV . (163)

These analytical bounds are consistent with the numerical results obtained in [2], if one

accounts for the different parameters, matm = 0.05 eV and ηCMB = 3.6× 10−10 (ξ ≃ 1.7),

and the over-estimate of the washout term W0 by 50%.
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The bound on the maximal CP asymmetry derived in [32] corresponds in the relevant

range of large m1 and m̃1 to the function (cf. (144)),

f(m̃1, m1) ≃
√

1 − m2
1

m̃2
1

. (164)

Repeating the above analysis one finds that the peak of the asymmetry is shifted to

m̃peak
1 =

√
2m1, with fpeak ≃ 1/

√
2. From Eqs. (150), (154) and (157) one then con-

cludes that the neutrino mass bound is relaxed by the factor (33/2/4)1/4 ≃ 1.07, i.e. 7%,

corresponding to an increase of the neutrino mass bound by 0.01 eV .

An important correction arises from the dependence of the neutrino masses on the

renormalization scale µ. The only low energy quantity upon which mpeak
1 depends is the

atmospheric neutrino mass scale matm. Hence, there are two competing effects: the first

one is the running of matm from the Fermi scale µ = mZ to the high scale µ ∼ M1

(∼ 1013 GeV), the second one is the running of mpeak
1 from µ ∼ M1 down to µ = mZ . In

the standard model the light neutrino masses scale uniformly under the renormalization

group. Since mpeak ∝ √
matm, the first effect then gives a correction that is only half of the

second one. Renormalization group effects make the bound more restrictive [34]. In order

to have an upper bound, we have to choose those values of the parameters that produce

the smallest effect. This corresponds to choosing the lowest Higgs mass compatible with

positive Higgs self-coupling at ∼ 1013 GeV, which is about 150 GeV. The atmospheric

neutrino mass scale is then increased by about 40% [34] and the bound gets 20% weaker

at µ ∼ M1, but 20% more restrictive at µ = mZ . Combining the effect of radiative

corrections and the larger CP asymmetry (Eq. (164)), we finally obtain from Eq. (162)

and (163) at 3σ,

mi < 0.12 eV , (165)

which, thanks to cancellations among different corrections, agrees with the bound obtained

in [2].

It is important to realize, however, that there are corrections of the same order as

those discussed above which cannot be treated within the present framework. It is usu-

ally assumed that in leptogenesis first a lepton asymmetry is produced, which is then

partially transformed into a baryon asymmetry by sphaleron processes. However, this

picture is incorrect [35]. The duration of leptogenesis is about two orders of magnitude

larger than the inverse Hubble parameter when it starts. Since many processes in the

plasma, in particular the sphaleron processes, are much faster, the generated asymmetry

is ‘instantaneously’ distributed among quarks and leptons. Hence, the chemical potentials

of quarks and leptons are changed already during the process of leptogenesis. A complete

40



analysis has to take into account how the contributing ‘spectator processes’, which are in

thermal equilibrium, change with decreasing temperature (cf., e.g., [36]). In [35] is has

been estimated that spectator processes reduce the generated baryon asymmetry by about

a factor of two. Hence, there is presently a theoretical uncertainty of at least 0.02 eV on

the neutrino mass bound.

Finally, it has to be kept in mind that our whole analysis is based on the simplest

version of the seesaw mechanism with hierarchical heavy Majorana neutrinos. The lepto-

genesis neutrino mass bound can be relaxed if the heavy Majorana neutrinos are, at least

partially, quasi-degenerate in mass. In this case the CP asymmetry can be much larger

[29, 30] than the upper bound used in the above discussion. This possibility has to be

discussed in the context of realistic models of neutrino masses. Further, if Higgs triplets

contribute significantly to neutrino masses the connection between baryon asymmetry

and neutrino masses disappears entirely. Different relations between neutrino masses and

baryon asymmetry are also obtained in non-thermal leptogenesis [37, 22].

5 Towards the theory of thermal leptogenesis

The goal of leptogenesis is the prediction of the baryon asymmetry, given neutrino masses

and mixings. The consistency of present calculations with observations is impressive, but

so far it is not possible to quote a rigorous theoretical error on the predicted asymmetry,

which is a necessary requirement for a ‘theory of leptogenesis’.

The generation of a baryon asymmetry is a non-equilibrium process which is generally

treated by means of Boltzmann equations. This procedure has a basic conceptual problem:

the Boltzmann equations are classical equations for the time evolution of phase space

distribution functions; the involved collision terms, however, are zero temperature S-

matrix elements which involve quantum interferences in a crucial manner. Clearly, a full

quantum mechanical treatment is necessary to understand the range of validity of the

Boltzmann equations and to determine the size of corrections.

A first step in this direction has been made in [38] where a perturbative solution of the

exact Kadanoff-Baym equations has been constructed. To zeroth order, for non-relativistic

heavy neutrinos, the non-equilibrium Green functions have been obtained in terms of

distribution functions satisfying Boltzmann equations. Note that in the favoured strong

washout regime the decaying heavy neutrinos are indeed non-relativistic. It is instructive

to recall the various corrections. There are off-shell contributions, ‘memory effects’ related

to the derivative expansion of the Wigner transforms, relativistic corrections and higher-

order loop corrections. All these correction terms are known explicitly, but their size
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during the process of baryogenesis and, in particular, their effect on the final baryon

asymmetry have not yet been worked out.

Recently, thermal corrections have been studied [12]. They correspond to loop cor-

rections involving gauge bosons and the top quark. At large temperatures, T > M1, the

processes in the plasma and the CP asymmetries change significantly if thermal masses

are treated as kinematical masses in the evaluation of scattering matrix elements [12]. On

the contrary, thermal corrections are small if they are only included as propagator effects

[14]. To clarify this issue is of general importance for the treatment of non-equilibrium

processes at high temperatures.

The effect of all these corrections on the final baryon asymmetry depends crucially on

the value of the neutrino masses. Large thermal corrections would modify the asymmetry

at temperatures above M1. This affects the final baryon asymmetry only in the case of

small washout, i.e. m̃1 < m∗. In the strong washout regime, m̃1 > m∗, which appears to

be favored by the current evidence for neutrino masses, the baryon asymmetry is generated

at a temperature TB < M1. In this case thermal corrections are small. Correspondingly,

the recently obtained bounds on light and heavy neutrino masses [2, 12, 32] are all very

similar.

The final value of the baryon asymmetry is significantly affected by ‘spectator pro-

cesses’ [35] which cannot be treated based on the simple Boltzmann equations discussed

in this paper. It has been estimated that this effect changes the baryon asymmetry by a

factor of about two, leading to a theoretical uncertainty of the leptogenesis neutrino mass

bound of about 0.02 eV. Clearly, to obtain a more accurate prediction for the baryon

asymmetry requires a considerable increase in the complexity of the calculation.

An important step towards the theory of leptogenesis would be a systematic evalua-

tion of all corrections to the simple Boltzmann equations in the ‘easy regime’ of strong

washout where m̃1 > m∗. One could then see where this approach breaks down as m̃1

decreases and TB approaches M1. On the experimental side, information on the absolute

neutrino mass scale m, and therefore on m̃1 > m1, is of crucial importance. Maybe, we

are lucky, and nature has chosen neutrino masses in the strong washout regime where

leptogenesis works best.
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Appendix A

A crucial and delicate point in setting up the Boltzmann equations for leptogenesis is the

subtraction of the real intermediate state contribution (RIS) from the 2 → 2 scattering

processes [4]. Without this subtraction, decays and inverse decays lead to the generation

of a lepton asymmetry in thermal equilibrium, in contradiction with general theorems.

In order to explicitly split the 2 → 2 scattering processes into RIS and remainder

one has to calculate the ∆L = 2 processes, including one-loop self-energy and vertex

corrections in the resonance region. This calculation has been carried out in [39] where

the relevant results are given in Eqs. (68) - (85).

Let us consider for simplicity the case s,M2
1 ≪ M2

2 ,M
2
3 (s, t and u are the usual

Mandelstam variables). For our purposes it is sufficient to study the averaged matrix

element squared,

|M(l̄φ̄→ lφ)|2av =

∫ 0

−s

du|M(l̄φ̄→ lφ)|2 , (166)

where the integral over u corresponds to the integral over the final state lepton angle, i.e.

a partial phase space integration.

In order to study the resonance region the diagonal part of the self-energy was re-

summed in [39] whereas the off-diagonal part was treated as perturbation in the Yukawa

couplings h. In the 2 → 2 scattering amplitude the free propagator is then replaced by a

Breit-Wigner propagator,

1

s−M2
1 + iM1Γ1

=
1

M2
1

(
1

D1(x)
− i

1

R1(x)

)
, (167)

where

1

D1(x)
=

x− 1

(x− 1)2 + c2
,

1

R1(x)
=

c

(x− 1)2 + c2
, (168)

and

1

D1(x)2
+

1

R1(x)2
=

1

c

1

R1(x)
, (169)

with

x =
s

M2
1

, c =
Γ1

M1
=

1

8π
K11 , Kij = (h†h)ij ; (170)

here hkj is the Yukawa coupling of Nj to lkφ.

43



The averaged matrix elements are then given by the following expression [39],

|M(l̄φ̄→ lφ)|2av = 2s2
∑

ij

(
Aij − Bij − Cij − 4s

∑

k

(
Dijk + Eijk

)
)
, (171)

|M(lφ→ l̄φ̄)|2av = 2s2
∑

ij

(
Aij + Bij + Cij + 4s

∑

k

(
Dijk + Eijk

)
)
, (172)

where we have only shown terms contributing to the subtraction of the RIS part as well

as the leading order off-shell part, e.g. CP conserving one-loop corrections have not been

included. Aij and Bij represent the various Ni-Nj s-channel interference terms. Up to

terms O(h6) they are (i, j = 2, 3)

A11 = K2
11

1

M2
1

(
1

D2
1

+
1

R2
1

)
, (173)

A1i + Ai1 = −2 Re{K2
1i}

1

M1Mi

1

D1

, (174)

Aij = Re{K2
ij}

1

MiMj

, (175)

B11 = Bij +Bji = 0 , (176)

B1i +Bi1 = 2 Im{K2
1i}

1

M1Mi

1

R1
; (177)

the N1-N1 s-channel terms with self-energy and vertex corrections, respectively, read

(k = 2, 3)

C1k = −2x Im{K2
1k}

c

M1Mk

(
1

D2
1

+
1

R2
1

)
, (178)

D11k =
1

2
Im{K2

1k}
c√
xM4

1

f

(
M2

k

s

)(
1

D2
1

+
1

R2
1

)
, (179)

where

f(y) =
√
y

(
1 − (1 + y) ln

(
1 + y

y

))

= − 1

2
√
y

+ O
(

1

y

)
; (180)

finally, the s-u-channel interference term is

E11k = −D11k . (181)

From these equations one reads off

D11k + E11k = 0 , (182)
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and, for s = M2
1 ,

B1i +Bi1 + C1i = 0 . (183)

Hence, the CP asymmetry of the full 2 → 2 cross section vanishes to O(h4). The ‘pole

terms’, corresponding to N1-N1 s-channel contributions, are cancelled by on-/off-shell

s-channel interferences (self-energy) and s-channel/u-channel interference (vertex correc-

tion). Off-shell, the corresponding cancellations take place to O(h6) [40].

As an unstable particle the heavy neutrino N1 is defined as pole in the 2 → 2 scattering

amplitude

M(l̄φ̄→ lφ) ≃ 〈lφ|N1〉
i

s−M2
1 + iM1Γ1

〈N1|l̄φ̄〉 . (184)

The residue yields the decay amplitude and, in particular, the CP asymmetry. The RIS

term can then be identified as the squared matrix element in the zero-width limit,

|M(l̄φ̄→ lφ)|2RIS = lim
Γ1→0

2s2

(
A11 −

∑

k

(C1k + 4sD11k)

)

= 16π2K11M
2
1

(
1 + 2εM1 + 2εV1

)
δ(x− 1) , (185)

where εM1 and εV1 are the familiar CP asymmetries due to mixing and vertex correction,

respectively (M1 ≪M2,M3),

εM1 =
1

8π

∑

k

Im{K2
1k}

K11

M1

Mk

, (186)

εV1 = − 1

8π

∑

k

Im{K2
1k}

K11

f

(
M2

k

M2
1

)
. (187)

In [4] it has been shown that the subtraction of the RIS term, which corresponds to

the replacement (1/D2
1 + 1/R2

1) → (1/D2
1 + 1/R2

1) − (π/c)δ(x − 1), leads to Boltzmann

equations with the expected properties, which have the equilibrium solution N1 = N eq
1 ,

NB−L = 0.

It is now straightforward to write down the subtracted matrix element squared. Keep-

ing only terms O(h4), where the zero-width limit can be taken for B1i and E11k, one

obtains the simple expressions (i, j = 2, 3),

|M(l̄φ̄→ lφ)|2sub = |M∆L=2|2+ + |M∆L=2|2− , (188)

|M(lφ→ l̄φ̄)|2sub = |M∆L=2|2+ − |M∆L=2|2− , (189)
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with

|M∆L=2|2+ = 2s2

{
K2

11

M2
1

[
1

D2
1

+
1

R2
1

− π

c
δ(x− 1)

+
2

x
− 2

x2

(
1 +

x+ 1

D1

)
ln(x+ 1) +

2

xD1

]

−6
∑

i

Re
(
K2

1i

) 1

M1Mi

[
1

x
+

1

2D1
− (x+ 1)

x2
ln(x+ 1)

]

+ 3
∑

i,j

Re
(
K2
ij

) 1

MiMj

}
, (190)

|M∆L=2|2− =
1

2

(
|M(l̄φ̄→ lφ)|2av − |M(lφ→ l̄φ̄)|2av

)

= −32π2K11M
2
1 (εM1 + εV1 )δ(x− 1) . (191)

Note that the subtracted squared matrix element, contrary to the unsubtracted one,

violates CP . To leading order in the coupling this part contributes only on-shell, and

it is O(h2) suppressed with respect to the leading Born term. Away from the pole, for

s≪M2
1 , one has

|M(l̄φ̄→ lφ)|2sub = |M(lφ→ l̄φ̄)|2sub
= 6s2

∑

ij

Re{K2
ij}

1

MiMj

=
6s2

v4
tr(m†

νmν) , (192)

which is the crucial term leading to the upper bound on the neutrino masses [10].

We also have to take into account the ∆L = 2 process ll → φ̄φ̄. The corresponding

matrix elements reads

|M∆L=2,t|2 = 2s2

{
K2

11

M2
1

[
2

x+ 1
+

2

x(x+ 2)
ln(x+ 1)

]

+6
∑

i

Re
(
K2

1i

) 1

M1Mi

1

x
ln(x+ 1) + 3

∑

i,j

Re
(
K2
ij

) 1

MiMj

}
. (193)

For small center of mass energies one again obtains

|M∆L=2,t|2 =
6s2

v4
tr(m†

νmν) . (194)
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For the derivation of the upper bound on the light neutrino masses one needs the

maximal CP asymmetry for given M1, m̃1 and m. In this case also the complete ∆L = 2

matrix element depends just on these three variables. This is easily seen in the flavor

basis where the Yukawa matrix h̃ connects light and heavy neutrino mass eigenstates.

The matrix

Ωij =
v√
miMj

h̃ij , (195)

is then orthogonal, ΩΩT = ΩTΩ = I [41], which implies

∑

k

h̃ikh̃jk
1

Mk
=

√
mimj

v2
δij . (196)

Using Re{K2
1i} = Re{K2

i1}, this implies for the interference term appearing in Eq. (190),

∑

i6=1

Re{K2
1i}

1

Mi
= −K

2
11

M1
+

3∑

j=1

mj

v2
Re{h̃2

j1} . (197)

The conditions

Re{h̃2
21} = Re{h̃2

31} = 0 , Re{h̃2
11} =

m1M1

v2
, (198)

yield a good approximation for the maximal CP asymmetry [2]. The difference to the

maximal CP asymmetry [32] can then be treated as a perturbation, as discussed in sect. 4.

Eq. (198) then implies for the interference term

∑

i6=1

Re{K2
1i}

1

Mi

= −M1

v4

(
m̃2

1 −m2
1

)
. (199)

Inserting this expression in Eq. (190) one obtains for the ∆L = 2 matrix element in the

case of maximal CP asymmetry,

|M∆L=2|2+ =
2s2

v4

{
m̃2

1

[
1

D2
1

+
1

R2
1

− π

c
δ(x− 1) +

2

x

(
1 +

1

D1

)
− 3 (200)

− 2

x2

(
1 +

x+ 1

D1

)
ln(x+ 1)

]

+6
(
m̃2

1 −m2
1

) [x+ 1

x
+

1

2D1
− (x+ 1)

x2
ln(x+ 1)

]
+ 3m2

}
.

For the process ll → φ̄φ̄ one obtains in the case of maximal CP asymmetry,

|M∆L=2,t|2 =
2s2

v4

{
m̃2

1

[
2

x+ 1
− 3 +

2

x(x+ 2)
ln(x+ 1)

]

+6
(
m̃2

1 −m2
1

) [
1 − 1

x
ln(x+ 1)

]
+ 3m2

}
. (201)
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For small energies, s≪M2
1 , these matrix elements again reduce to

|M∆L=2|2+ = |M∆L=2,t|2 =
6s2

v4
m2 , (202)

whereas for intermediate energies M2
1 ≪ s≪M2

2,3 one finds

|M∆L=2|2+ = |M∆L=2,t|2 =
6s2

v4

(
m̃2

1 +m2 − 2m2
1

)
. (203)

Following [4, 5], it has been standard practice [6]-[11] to determine |M|2sub by comput-

ing the Born diagrams for the 2 → 2 process with Breit-Wigner propagator and dropping

1/R1, the imaginary part of the propagator, since in the zero width limit

1

s−M2
1 + iM1Γ1

=
1

M2
1

(
1

D1(x)
− i

1

R1(x)

)

Γ1→0−→ −iπδ(s−M2
1 ) . (204)

Recently, it has been pointed out that this procedure is not correct [12]. In a toy model,

the same conclusion has been reached in [42]. Indeed, the described procedure leads to a

subtracted squared matrix element which contains terms ∝ 1/D2
1 [5], implying |M|2sub =

O(h2) on-shell, in contradiction with Eq. (190). The zero-width limits of the squared

amplitude and the squared imaginary part are different. This was overlooked in the past,

leading to an overestimate of the washout rate due to inverse decays by 50% [12]. The

RIS term has to be subtracted from the full 2 → 2 cross section, not just from the Born

cross section, in order to obtain the crucial CP violating contribution proportional to ε1
5.

Let us now consider the Boltzmann equation for the density of lepton doublets, as-

suming kinetic equilibrium,

dnl
dt

+ 3Hnl =
nN1

neq
N1

γeq(N1 → lφ) − nl
neq
l

γeq(lφ→ N1) (205)

+
nl̄
neq
l

γeq
sub(l̄φ̄→ lφ) − nl

neq
l

γeq
sub(lφ→ l̄φ̄)

+ γeq(φ̄φ̄→ ll) −
(
nl
neq
l

)2

γeq(ll → φ̄φ̄) .

5Note that in Ref. [12] γon−shell

Ns

(LH → L̄H̄) is CP violating, using a given CP asymmetry ǫN1
not

determined by the 2 → 2 processes. It is different from the on-shell part of γNs
(LH → L̄H̄) which, as a

tree-level rate, conserves CP . As discussed above, the correct subtraction term is obtained from the full

reaction rate including vertex and self-energy corrections to O(h4) by separating the on-shell part from

the interference terms. This procedure automatically yields the correct CP asymmetry ǫN1
.
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Here, γeq are the usual reaction densities in thermal equilibrium and we have assumed

that the Higgs doublets φ are in thermal equilibrium, neglecting their chemical potential.

The CP asymmetry ε1 is defined in such a way that

γeq(N1 → lφ) = γeq(l̄φ̄→ N1) =
1 + ε1

2
γN1

, (206)

γeq(N1 → l̄φ̄) = γeq(lφ→ N1) =
1 − ε1

2
γN1

. (207)

Further, for the 2 → 2 processes we have

γeq
sub(l̄φ̄→ lφ) = γeq

∆L=2,+ − 1

2
ε1γN1

, (208)

γeq
sub(lφ→ l̄φ̄) = γeq

∆L=2,+ +
1

2
ε1γN1

, (209)

γeq(φ̄φ̄↔ ll) = γeq(l̄l̄ ↔ φφ) = γeq
∆L=2,t . (210)

Introducing a lepton, or B − L asymmetry,

nl = neq
l − 1

2
nB−L , nl̄ = neq

l +
1

2
nB−L , (211)

assuming nB−L = nl̄ − nl = O(ε1), and keeping only terms O(ε1), one obtains the kinetic

equation for the B − L asymmetry

dnB−L

dt
+ 3HnB−L = −ε1

(
nN1

neq
N1

− 1

)
γN1

− nB−L

neq
l

(
1

2
γN1

+ γ∆L=2

)
, (212)

where

γ∆L=2 = 2 γeq
∆L=2,+ + 2 γeq

∆L=2,t . (213)

The CP violating part of γeq
sub yields the term +ε1γN1

which guarantees that for nN1
= neq

N1

no asymmetry is generated. Note that the old procedure for subtracting the RIS part of

the 2 → 2 process would have led to a contribution 3
4
γN1

in the washout term rather than
1
2
γN1

[12]. Neglecting the off-shell contribution γ∆L=2, using the relation

γN1
= neq

N1
z H D = 2 neq

l z H WID , (214)

and changing variables from t to z = M1/T and from number densities to particle numbers

in a comoving volume (cf. [10]), one obtains the Boltzmann equation (13).

In order to obtain the kinetic equation (212) the correct identification of the RIS term

is essential. It is therefore of crucial importance to derive this equation from first prin-

ciples. In the case of non-relativistic heavy neutrinos, i.e. T < M1, this has been done

49



in [38]. Note that in the strong washout regime, where TB < M1, the decaying neutrinos

are indeed non-relativistic. Eq. (49) of [38] gives the analogue of (212) for Boltzmann

distribution functions rather than the integrated number densities. The starting point

of this derivation are the Kadanoff-Baym equations which describe the full quantum me-

chanical problem. Leptogenesis is then studied as a process close to thermal equilibrium.

As a consequence, the deviations of distribution functions from equilibrium distribution

functions, δfN(t, p) and δfl(t, k) appear from the beginning6. For simplicity, in Eq. (49)

of ref. [38] the contribution to the washout term from interferences with the heavy neu-

trinos N2 and N3 has been neglected. Otherwise the result is identical to Eq. (212). In

particular, the relative size of the driving term for the asymmetry, which is proportional

to ε1, and the washout term due to inverse decays agrees with (212). It is important to

derive the Boltzmann equations and the reaction densities within a full quantum mechan-

ical treatment also for relativistic heavy neutrinos, in particular in the resonance region

T ∼M1.

It is instructive to discuss the different contributions to γ∆L=2, the reaction density

corresponding to the averaged matrix element squared

|M∆L=2|2 = 2 |M∆L=2|2+ + 2 |M∆L=2,t|2

=
4s2

v4

{
m̃2

1

(
1

D2
1

+
1

R2
1

)
− 32π2 m̃1v

2

M1

1

x2
δ(x− 1) + 24m2 (215)

+ m̃2
1

[
6 +

8

x
+

2

x+ 1
+

1

D1

(
3 +

2

x

)

− 2

x2

(
6x+ 3 +

2

x+ 2
+
x+ 1

D1

)
ln(x+ 1)

]

− 6m2
1

[
2 +

1

x
+

1

2D1
− (2x+ 1)

x2
ln(x+ 1)

]}
,

where we have again assumed the relation (199). The different contributions to the

washout term W are shown in Fig. 13. The term proportional to m2, as well as the

contributions from the last three lines at high temperatures, M1 ≪ T ≪ M2,3, give a

simple power law behavior, corresponding to Eqs. (202) and (203). At low temperatures,

the term proportional to m2
1 rapidly approaches zero and becomes negligible.

It can be seen clearly that for z . 30 the contributions from the first two terms in

Eq. (215) cancel each other to a very good approximation, corresponding to the subtrac-
6The part of the Lagrangian involving left- and right-handed neutrinos has a U(1) symmetry which

implies δfl(t, k) = −δfφ(t, k). Here we have assumed that due to the other interactions in the standard

model δfφ(t, k) = 0.
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Figure 13: Absolute values of the different contributions to the washout term W from

the averaged squared matrix element in eq. (215) for M1 = 1010 GeV, m = 0.05 eV,

m1 = m/
√

3 and m̃1 = 0.03 eV. The solid line is the term proportional to 1/D2
1 + 1/R2

1,

the black squares the contribution from the delta function, the dotted line the term

proportional to m̃2
1 in the second and third lines of eq. (215), the dashed line the term

proportional to m2
1, and the dashed-dotted line is the term proportional to m2.

tion of RIS contributions. However, the term proportional to 1/D2
1 +1/R2

1 has a different

low temperature limit than the delta function and cancels against the term in the second

and third lines of Eq. (215) for z & 30.

Finally, this discussion is only applicable if off-shell and RIS contributions can be

separated. This is related to the usual approximation that the right handed neutrinos

can be considered as asymptotic free states, i.e. that one can write down a Boltzmann

equation for them, which is the case if their width is small, i.e.,

c =
Γ1

M1
< δ , (216)

where δ is some constant smaller than one. This translates into the following condition

for m̃1:

m̃1 < δ 0.76 eV

(
1015 GeV

M1

)
. (217)
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We have checked numerically that the separation of on-shell and off-shell contributions

works well, as long as Eq. (217) with δ = 0.1 is fulfilled.

Appendix B

The scattering rates are expressed through the reaction densities rates and these, in turn,

through the reduced cross sections,

Γ
(N1)
φ,t(s) =

γφ,t(s)
neq
N1

=
M1

32 gN1
π2

Iφ,t(s)(z)
K2(z) z3

, (218)

where we introduced the following integrals

Iφ,t(s)(z) =

∫ ∞

z2
dψ σ̂φ,t(s)(ψ)

√
ψK1(

√
ψ) . (219)

The reduced cross sections can be written in the following form [8]:

σ̂φ,t(s) =
3αµ
4 π

M1 m̃1

v2
fφ,t(s)(x) (220)

with x ≡ ψ/z2, αµ = m2
t/v

2 and where we defined the following functions:

fφ,t(x) =
x− 1

x

[
x− 2 + 2ah
x− 1 + ah

+
1 − 2ah
x− 1

ln

(
x− 1 + ah

ah

)]
, (221)

fφ,s(x) =

(
x− 1

x

)2

. (222)

with ah = (Mh/M1)
2. The functions fφ,t(s)(z) are then defined as:

fφ,t(s)(z) =

∫∞

z2
dψ fφ,t(s)(ψ/z

2)
√
ψK1(

√
ψ)

z2K2(z)
, (223)

and in this way the Eq. (73) for St follows.

Similarly to the Eq. (25) for K2(z), the modified Bessel function K3(z) can be ap-

proximated by the analytical expression

K3(z) ≃
1

z3

√
1 +

π

2
z e−z

(
945

128
+

35

8
z + z2

)
. (224)

For Mh/M1 = 10−5 and small K, zeq is well described by

zeq = 0.4 + 1.3 ln(1 +K−0.88) . (225)
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