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ABSTRACT

It has been shown that QED in (1 + 4)-dimensional space-time, with the fifth dimension

compactified on a circle, leads to CP violation (CPV). Depending on fermionic boundary

conditions, CPV may be either explicit (through the Scherk–Schwarz mechanism), or spon-

taneous (via the Hosotani mechanism). The fifth component of the gauge field acquires (at

the one-loop level) a non-zero vacuum expectation value. In the presence of two fermionic

fields, this leads to spontaneous CPV in the case of CP-symmetric boundary conditions.

Phenomenological consequences are illustrated by a calculation of the electric dipole mo-

ment for the fermionic zero-modes.
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I. INTRODUCTION

The physics of grand unified theories has been plagued by fundamental difficulties to

accommodate different mass scales within a single theory, the so-called hierarchy problem.

For a long time supersymmetric models had the commendable feature of being able to

solve this problem. More recently, non-supersymmetric higher-dimensional models were

proposed [1], [2], which solve the hierarchy problem provided that an appropriate space-

time geometry is realized. Though in the original models only gravity was present outside

a 4-dimensional slice of the compactified space, this is not an inescapable restriction. In

fact, models where all fields propagate throughout the compactified space-time are natural

and phenomenologically viable [3], [4]. In this letter we consider quantum electrodynamics

(QED) in 5 dimensions (5D) focusing on the possibility that it naturally generates small but

non-trivial CP-violating effects♯1.

II. THE MODEL

We will consider an Abelian model in 5D, with coordinates xM , M = 0, . . . , 4 and x4 = y

compactified to a circle of radius L. We assume the presence of two fermionic fields (ψ1,2)

interacting with the U(1) gauge field AM according to the Lagrangian

LQED = −1

4
F 2
MN +

∑

i=1,2

ψ̄i
(

iγMDM −Mi

)

ψi + Lgf , (1)

where FMN = ∂MAN − ∂NAM , the covariant derivative is given by DM = ∂M + ie5qiAM ,

where qi denotes the charge of ψi in units of e5, and Lgf stands for a gauge-fixing term. We

will assume that the gauge fields are periodic in y, but we will allow the fermions to obey

“twisted” boundary conditions (BCs):

ψi(x
µ, y + L) = T [ψi(x

µ, y)] ≡ eiαiψi(x
µ, y) , (2)

where xµ, µ = 0, . . . , 3 denote the coordinates of the 4D Minkowski space-time (M4) and

T is the twist operator. We will also assume that the fermionic mass parameters Mi are

♯1 For earlier attempts to obtain CP violation within extra-dimensional extensions of the Standard Model

(SM) of electroweak interactions, see Refs. [5], [6].
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positive and choose a convention where the Dirac matrices γM in 5D are the usual ones for

M 6= 4 while γM=4 = iγ5; we will also use the metric diag(1,−1,−1,−1,−1).

The action is invariant under the local U(1) transformation

ψi(x, y) → e−ie5qiΛ(x,y)ψi(x, y), AM(x, y) → AM(x, y) + ∂MΛ(x, y) . (3)

In addition, the Lagrangian is symmetric under the 5D CP transformations [7]

xM → ǫMxM , AM → −ǫMAM , ψi → ηiγ
0γ2ψ⋆i , |ηi| = 1 , (4)

where ǫ0,4 = −ǫ1,2,3 = +1 and there is no summation over M .

It is straightforward to expand the fields in Fourier series, leading to an infinite tower of

fields propagating in M4,

ψi(x, y) =
1√
L

∞
∑

n=−∞

ψi, n(x) e
iω̄i, ny, AM(x, y) =

1√
L

[

∞
∑

n=−∞

AMn (x) eiωny + aδM4

]

, (5)

where ωn = 2πn/L and ω̄i, n = ωn +αi/L. The fields associated with the M = 4 component

of the gauge field become 4D scalars, which raises the interesting possibility that AM=4 may

acquire a non-zero vacuum expectation value; this, in fact, is known to occur [8]. In this case

(4) suggests that this is also a sign of spontaneous CPV ♯2, an expectation that is indeed

confirmed, as we will see in the following section.

It should also be emphasized that the BCs (2) are not symmetric under CP (unless

αi = 0,±π), and this is an additional source of explicit♯3 CPV, present even if 〈A4〉 = 0.

Note that the twist operator T [9] does not commute with CP (which is a symmetry of

(1)), therefore the CP violation by the boundary terms is an example of the Scherk–Schwarz

breaking mechanism [9].

Let us first focus on the fermionic piece of the Lagrangian (1). Integrating over the y

coordinate we find

Lψ =
∑

in

ψ̄i, n [iγµ∂µ −Mi + iγ5µi, n]ψi, n − e
∑

i,l,n

qiψ̄i, l
(

6Al−n + iA4
l−nγ5

)

ψi, n , (6)

♯2 An attempt to generate CPV in a similar spirit has also been considered in Refs. [6].
♯3 In order to see that the BCs generate explicit CPV, it is sufficient to reformulate the theory in terms of

the periodic field ψ
′

(y) ≡ e−iαy/Lψ(y). Then the BCs preserve CP but CP-violating interactions appear

explicitly in the 5D Lagrangian.
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where µi, n ≡ [2πn + (αi + eqiLa)] /L, with e ≡ e5/
√
L the 4D gauge coupling. In order to

diagonalize the fermion mass term we define the angles θi, n by

tan(2θi, n) =
µi, n
Mi

; |θi, n| ≤ π/4 (7)

and replace♯4 ψi, n → exp(iγ5θi, n)ψi, n. From this we find that the physical fermion masses

are mi, n =
√

M2
i + µ2

i, n, while the interactions with the gauge fields read

LAψ = −e
∑

i

qi
{

Aµ
∑

k

ψ̄i, kγ
µψi, k +

∑

k 6=l

Aµ k−lψ̄i, kΓ
(v)
i, klγ

µψi, l
}

, (8)

Lϕψ = −e
∑

i

qi
{

ϕ
∑

k

ψ̄i, kΓ
(ϕ)
i, kψi, k +

∑

k 6=l

A4 k−lψ̄i, kΓ
(s)
i, klψi, l

}

, (9)

where ϕ ≡ A4 0, Aµ ≡ Aµ 0 and

Γ
(ϕ)
i, k ≡ −iγ5e

2iγ5θi, k , Γ
(s)
i, kl ≡ −iγ5e

iγ5(θi, k+θi, l), Γ
(v)
i, kl ≡ eiγ5(θi, k−θi, l) . (10)

It is evident that Aµ corresponds to the 4D photon. However, the field ϕ is a new,

physical, low-energy degree of freedom whose Yukawa couplings appear to be CP-violating.

As we will show shortly, this naive conclusion is incorrect in general. The couplings of A4 n

and Aµ n also appear to violate CP.

The 5D gauge transformation (3) in terms of KK modes implies A4
k → A4

k+ iωkΛk, where

Λ(x, y) = L−1/2∑+∞
n=−∞ Λn(x)e

iωny, which shows that, while A4
k 6=0 can be removed by an

appropriate gauge choice, ϕ = A4 0 is a gauge singlet♯5. Because of this, even though the ϕ

mass mϕ vanishes at tree level (see (13) below), it will receive calculable finite corrections

at higher orders in perturbation theory.

It is worth noting that even if A4(x, y) = ϕ(x) by a choice of gauge, there still remains a

residual y-dependent discrete gauge freedom

A4 → A4 +
2πni
e5qiL

, ψi → e−i
2πni

L
yψi , ni = 0,±1, · · · , (11)

♯4 The chiral rotation of the fermions induces an ǫµνσρFµνF
σρ term in the Lagrangian; however, in the

Abelian case considered here, this is a total derivative and it can be dropped.
♯5 This is a consequence of the compactification of the x4 direction; in an uncompactified space one could

always choose the A4(x, y) = 0 gauge. Note also that in the case of compactification on the orbifold

S1/Z2, ϕ disappears as a consequence of the requirement of the antisymmetry of A4 under Z2: y → −y.
Therefore CP cannot be violated spontaneously; however, if BCs are not symmetric under CP, Aµ n and

A4 n would still have CP-violating couplings with fermions.
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provided q1/q2 is a rational number. In this case there exist some discrete constant values of

ϕ (= 2πni/(e5qiL)) that can be removed completely. Note also that αi + e5qiA4 is invariant

under (11); this will be relevant when we discuss the one-loop effective potential for 〈ϕ〉.
The physical content of KK excitations for A4 can be easily revealed by adopting the

following generalization of the 4D Rξ gauge [10]:

Lgf = − 1

2ξ
(∂µAµ − ξ∂yA4)

2 . (12)

Decomposing into KK modes, one can write the kinetic part of the Lagrangian density in

the following form

LA + Lgf =
1

2

∑

n

{

Aµn
[

( + ω2
n)gµν − (1 − ξ−1)∂µ∂ν

]

Aν−n − A4
n( + ξω2

n)A
4
−n

}

. (13)

It is then clear that A4
n (n 6= 0) are the would-be Goldstone bosons that become a lon-

gitudinal component of Aµn, while ϕ = A4 0 is a physical massless scalar. Note that even

for 〈A4〉 6= 0, the 4D U(1) gauge symmetry remains unbroken, so that the 4D photon Aµ 0

remains massless.

III. THE EFFECTIVE POTENTIAL

The above discussion raises the possibility that ϕ will acquire a non-vanishing vacuum

expectation value a ≡ 〈ϕ〉. In order to determine the conditions under which this occurs,

we evaluate the corresponding effective potential to one loop. We will adopt dimensional

regularization for the d4p integral together with a summation over the infinite tower of KK

modes.

After dropping an irrelevant constant contribution, and using dimensional regularization

for the d4p integral, we find

V (M ;ω) =
1

32π6L4

[

x2Li3(re
−x) + 3xLi4(re

−x) + 3Li5(re
−x) + H.c.

]

, (14)

where x ≡ LM , ω = (α+eqψLa)/L, r = exp(iLω), and Lin(x) is the standard polylogarithm

function. Note that, as a consequence of the hermiticity, the potential is a symmetric

function of ω: V (M ;ω) = V (M ;−ω). We will consider a theory that contains two fermionic

fields, so the total effective potential reads

Veff(a) =
∑

i=1,2

V (Mi;ωi) . (15)
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The total effective potential is not periodic in a unless q1/q2 is a rational number n1/n2,

in which case the period is T = 2πn1/(eq1L) = 2πn2/(eq2L). This property is a consequence

of the residual gauge invariance (11) present when q1/q2 is rational.

It is worth discussing what would happen if we had just one fermionic field ψ. In this

case the minimum of V is at Lω = π(2l + 1) for integer l, but since α is defined modulo

2π we can choose the minimum α + eqψLa = π. We can also eliminate α from (2) by the

following field redefinition:

ψ′(x, y) = e−iαy/Lψ(x, y), e5qψA
′
M(x, y) = e5qψAM(x, y) + αδM,4 , (16)

so that ψ′ and A′ are periodic in y with period L. We then expand around the vacuum

e5qψ〈A′
M〉 = (π/L)δM4 by shifting the gauge field e5qψA

′
M(x, y) → e5qψA

′
M(x, y)+(π/L)δM4,

and again redefine the fermion fields, so that the effect of this shift disappears from the

Lagrangian density:

χ(x, y) = eiπy/Rψ′(x, y) , (17)

which is antiperiodic in y, χ(x, y + L) = −χ(x, y).

Through this series of field redefinitions, we have shown that the original theory is equiv-

alent to one where the gauge field has a vanishing vacuum expectation value (hence, no

spontaneous CPV) and also the fermionic field has CP-invariant BCs; consequently the

theory predicts no CP-violating effects. However, in Eqs. (8) and (9) we have noted the

presence of CP-violating couplings of ϕ, Aµ n and A4 n even if only one fermion is present;

this therefore deserves further explanation.

At the minimum of V , µn = π(2n + 1)/L and mn = m−n−1, so that any unitary trans-

formation U acting on the (ψn, ψ−n−1) subspace will leave the corresponding kinetic terms

invariant. This allows for a generalized definition of the CP transformation:

ψi
CP−→ UijC(γ0ψj)

T
, i, j = n,−n− 1 , (18)

where CγµC
−1 = −γTµ . Choosing U = σ1 (the usual Pauli matrix) one can easily see that

in fact, the couplings of ψn, ψ−n−1 are invariant under CP as defined in (18).

The situation can be different if a second fermion is present. Then, following the steps

described above for the case of a single fermion, it can be shown that without losing any

generality we can adopt the BCs ψ1(y+L) = ψ1(y), ψ2(y+L) = exp(iα)ψ2(y). The condition
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for an extremum is
∂Veff
∂a

= e
∑

i=1,2

qi
∂V (Mi;ωi)

∂ωi
= 0 (19)

and leads to a CP-conserving vacuum when the minimum of Veff is at ωi = 0, π/L. In

general, however, the minimum is located elsewhere, opening a possibility for spontaneous

CPV. As we have seen, at least two fermions are necessary to observe CPV in 5D QED

compactified on a circle. In this case the KK modes of both fermions will have CP-violating

Yukawa couplings to ϕ, Aµ n and A4 n. In Fig. 1 we plot the effective potential for various

choices of the twist angle α as a function of e a. Note that Veff is a symmetric function

of e a when α = 0, π (technically this is a consequence of the symmetry of V (L)(Mi;ω)

under ω → −ω). This is the case of CP-symmetric BCs (2) ♯6, since the Lagrangian is

invariant under CP; therefore the whole theory is CP-symmetric. Under CP, a → −a, and

therefore the observed symmetry of the effective potential is precisely a consequence of CP

invariance. Consequently, choosing any of the two degenerate vacuum leads to spontaneous

CP violation. For other (i.e. CP-asymmetric) choices of α, the effective potential is not

invariant with respect to a → −a; therefore, even though a 6= 0 at the minimum, CP is

explicitly violated in those cases.

In the case of two fermionic fields there are two observable CP-violating parameters, α

and 〈A4〉. In general, for Nf fermions there will be Nf CP-violating parameters: Nf − 1

twist angles and 〈A4〉. If, for instance, all the fermions are periodic in y (αi = 0), only 〈A4〉
will parametrize all CP-violating effects.

IV. PHENOMENOLOGY

The most striking consequence of CPV in our model will be a prediction for a non-zero

fermionic electric dipole moment (EDM) d defined through the following effective γψ̄ψ vertex

〈p′|jµEM |p〉 = −(d/e)ū(p′)σµνγ5(p
′ − p)νu(p) where p, p′ are on shell and the limit p′ → p is

assumed. In our model a non-zero EDM is generated already at the one-loop level (in the

♯6 While it is trivial for α = 0, one can, adopting similar arguments as above, show that also for α = π there

are no CP-non-invariant interactions in the effective theory.
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FIG. 1: The effective potential Veff in units of 10−6 TeV4 for L−1 = 0.3 TeV, M1 = 0.2 TeV,

M2 = 0.005 TeV, q1 = 2/3, q2 = −1/3 and four choices of the twist angle α = 0, π/2, π, 3π/2

(staring from the upper left plot and moving clockwise) is plotted as a function of e a in units of

TeV.

SM at least three loops are required). For the fermion ψi, the diagram involving ϕ yields♯7

di 0 = −(eqi)
3c

(+)
i, 0

16π2mi, 0
J (s)(m2

ϕ/m
2
i, 0, 1) , (20)

while the contributions from the n-th modes circulating in the loop equal

d
(v)
i, n =

(eqi)
3c

(−)
i, n

4π2

mi, n

m2
i, 0

J (v)(xi, n, yi n) from Aµn exchange ,

d
(s)
i, 0 = −(eqi)

3c
(+)
i, n

16π2

mi, n

m2
i, 0

J (s)(xi, n, yi n) from A4
n exchange , (21)

where c
(±)
i, n = ±Mi(µi, n ± µi, 0)/(mi, nmi, 0), xi n = (ωn/mi, 0)

2, yi n = (mi, n/mi, 0)
2, and

J (s)(x, y) = 1 +
x− y + 1

2
ln
(

y

x

)

+

(

2x

ρ
− ρ

)

Θ ,

J (v)(x, y) = −1 +
y − x

2
ln
(

y

x

)

+ (ρ− cot Θ)Θ , (22)

with ρ2 ≡ 4xy − (x+ y − 1)2 and tanΘ ≡ ρ/(x+ y − 1).

♯7 An analogous contribution appears within the Two Higgs Doublet Model (2HDM), see Refs. [11, 12].
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The total EDM of the i-th zero-mode fermion is then

di = di, 0 +
(eqi)

3

16π2m2
i, 0

∑

n 6=0

mi, n

[

4c
(−)
i, nJ

(v)(xi, n, yi n) − c
(+)
i, nJ

(s)(xi, n, yi n)
]

. (23)

Note that for large n, c(±)J (s/v)(xi, n, yi n) ∼ 1/n + O(1/n2), so that di will be finite after

symmetric summation over n. It follows that the EDM is finite and therefore insensitive to

the cut off of the 5D theory.

In Fig. 2 we plot the fermionic EDM as a function of the compactification scale L. The

parameters have been adjusted in such a way that the model has the mass scales and the

coupling constants of the same order as those that are present in the SM. We have chosen

for illustration to plot the EDM of the zero-mode of the i = 1 fermion. Note that the

mass of the zero-mode depends on L; for parameters adopted here (with α = 0, i.e. for the

case of spontaneous CP), it varies from ∼ 37 TeV for L = 0.1 TeV−1, to ∼ 1.5 TeV when

L = 2.5 TeV−1; for these values, mϕ ranges from ∼ 88 GeV to ∼ 3.5 GeV. The leading

contribution to di comes from the ϕ exchange; the contribution of the non-zero modes is of

opposite sign and smaller by a factor O(5).

In Fig. 2 the positive vacuum expectation value of A4 was chosen (see Fig. 1) for α = 0.

It is worth noticing that EDM, as a CP-odd quantity, would be of the opposite sign if the

other (negative) vacuum expectation value was chosen.

V. CONCLUSIONS

We have shown that QED in (1 + 4)-dimensional space-time, with the fifth dimension

compactified on a circle, leads to CP violation. Depending on fermionic boundary condi-

tions, CPV may be either explicit, or spontaneous via the Hosotani mechanism. The new

possibility of CP breaking by fermionic, twisted boundary conditions has been emphasized

and demonstrated explicitly by derivation of CP-violating effective couplings. The fifth

component of the gauge field acquires (at the one-loop level) a non-zero vacuum expectation

value. We have shown that in the presence of two fermionic fields, this leads to spontaneous

CPV in the case of CP-symmetric boundary conditions. The one-loop effective potential for

A4 0 has been calculated and its features have been discussed in the presence of two fermionic

fields.
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FIG. 2: Left: The fermionic EDM, d1, in units of 10−22 e cm for the zero-mode of the fermion

i = 1 as a function of the compactification length L in units of TeV−1 for α = 0. Right: Same,

as a function of α for L = 1.5 TeV−1. The curves from the bottom to the top correspond to the

number of modes included in (23) varying from |n| = 1 to |n| = 4; the fast convergence of the series

is evident. Note that the mass of the zero-mode also varies with L. We used e =
√

4παQED and

the same parameters as in Fig. 1.

The most striking feature of the model considered here is the presence of the light scalar

ϕ, which has CP-violating Yukawa couplings similar to those present in the scalar sector of

the 2HDM model. The presence of CP-violating couplings leads to a non-zero EDM, which

was calculated at the one-loop level for a zero-mode fermion. This effect can be used to test

the mechanism for CPV present in our model.

There are several other observables, originally developed to investigate extended Higgs

sectors, which can also be used to detect the presence of a light scalar (regardless of whether

its couplings conserve or violate CP) such as ϕ. For example, aside from the fermionic electric

and magnetic dipole moments, one also has Γ[Υ → ϕγ] and BR[b → ϕs]. Experimental

constraints on all such quantities would impose some restrictions on the parameters of the

model. We will present the results of such an investigation in a separate publication, where

we will consider a more realistic non-Abelian theory.
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