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A bstract: W e combine and exploit ideas from Coset Space D In ensional R eduction
(CSDR ) m ethods and N on-com m utative G eom etry. W e consider the dim ensional reduc—
tion of gauge theories de ned In high din ensions where the com pact directions are a
fuzzy space (matrix manifold). In the CSDR one assum es that the form of spacetin e
isMP =M* S=R with S=R a hom ogeneous space. Then a gauge theory w ith gauge
group G de ned on M P can be din ensionally reduced toM * in an elegant way using the
symm etries of S=R , In particular the resulting four din ensional gauge is a subgroup ofG .
In the present work we show that one can apply the CSDR ideas in the case where the
com pact part of the space+tin e isa nite approxin ation of the hom ogeneous space S=R ,
ie. a fuzzy coset. In particular we study the fuzzy sphere case.

1 Introduction

Coset Space D In ensional R eduction (CSDR) [1, 2] is a uni cation schem e for obtaining
realistic particle m odels from gauge theories on higher D -dim ensional spaces M P . Tt
suggests that a uni cation of the gauge and H iggs sectors of the Standard M odel can
be achieved in higher than four dim ensions. M oreover the addition of ferm ions in the
higherdin ensional gauge theory leads naturally, after CSDR , to Yukawa couplings in
four din ensions.

W e study CSDR in the non-comm utative context and set the rules for constructing
new particle m odels that m ight be phenom enologically relevant. O ne could study CSDR
w ith the whole parent space M P being non-com m utative or w ith just non-com m utative
M inkow ski space or non-comm utative intemal space. W e specialize here to this last

*corresponding author : G eorge.Zoupanos@ cem .ch


http://arxiv.org/abs/hep-th/0401200v1

situation and therefore eventually we obtain Lorentz covariant theories on com m utative
M inkow ski space. W e further specialize to fuzzy non-com m utativity, ie. to m atrix type
non-com m utativity. Thus, follow ing [7], we consider non-com m utative spaces lke those
studied in refs. [3,4,5]and Im plam enting the CSDR principle on these spaces we obtain
new particle m odels.

2 Fuzzy sphere

The fuzzy sphere [6, 5] is a m atrix approxin ation of the usual sphere S2. The algebra
of fiinctions on $? (for exam pl spanned by the spherical ham onics) is truncated at a
given frequency and thus becom es nite dim ensional. T he truncation has to be consis-
tent w ith the associativity of the algebra and this can be nicely achieved relaxing the
com m utativity property of the algebra. T he fuzzy sohere is the \goace" described by this
non-comm utative algebra. T he algebra itself is that of N N m atrices. M ore precisely,
the algebra of functions on the ordinary sphere can be generated by the coordinates of
R° modub the relation J_, xaxs = r’. The fuzzy sphere S? at fuzziness level N 1
is the non-com m utative m anifold whose coordinate fiinctions iX 4 are N N hemm itian
m atrices proportional to tl‘El)e generators of the N -dim ensional representation of SU (2).
T hey satisfy the condition 22 1 XaX s = r? and the com m utation relations

XaiXgl= CupuXe i (1)

where C . = ",o,=r while the proportionality factor goesasN 2 orN lamge. Indeed it
can be proven that forN ! 1 one obtains the usual com m utative sphere.

On the fuzzy sphere there is a natural SU (2) covardant di erential calculus. This
calculus is threedim ensional and the derivations ey along X 4 of a function f are given by
e (f)= K4;f]:Accordingly the action of the Lie derivatives on fiinctions is given by

Laf = Xa;£]15 (2)
these L ie dervatives satisfy the Leibniz rule and the SU (2) Lie algebra relation
LaiLgl= C,ple (3)

IntheN ! 1 Iim itthederivationse, becomeey = C a&xg@é and only in thiscom m utative
Iim it the tangent space becom es two din ensional. T he exterior derivative is given by

of = Xa;f]° (4)
wih 2 the onefom sdualto the vector eldse;, < e; by - ;.Thespaceofone—mms
jsgenerate%by the %’sin the sense thatforany oneform ! = = | f;(dh;)t we can always
write ! = 2:1 ', & with given finctions !, depending on the functions f;, h; and t.
T he action of the Lie derivatives on one-fom s is given by

La(®)= Cup © (5)
and it is easily seen to comm ute w ith the exterior di erentiald. On a general one-form
=1y ®wehaveLgy! = Lo(la #)= Kgilal @ !écaﬁc ¢ and therefore

Lglla= Kgilal !écé}ga ; (6)

this form ula w ill be fiindam ental for form ulating the CSDR principle on fiizzy cosets.



Thedi erentialgeom etry on the product spaceM inkow skitin es fiizzy sphere,M * SF2 ’
is easily obtained from that on M ¢ and on SF2 . For exam ple a one<form A de ned on
M * SZ iswritten as

A=A dx +As° (7)
withA =A (x ;Xaz)andAs=As(x ;X4).

One can also Introduce spinors on the fuizzy sphere and study the Lie derivative on
these gpinors. A lthough here we have sketched the di erential geom etry on the fuzzy
sphere, one can study other (higher dim ensional) flizzy spaces (eg. fuzzy CP™ ) and w ith
sim ilar technigues their di erential geom etry.

3 CSDR over fuzzy coset spaces

First we consder on M ¢ (S=R ) a non-comm utative gauge theory with gauge group
G = U (P ) and exam ine its four din ensional interpretation. T he action is
172
AYM ZZ d4XTrt|fG FMNFMN; (8)

where T r denotes integration over the fuzzy coset (S=R )y described by N N m atrices,
and try; is the gauge group G trace. The higherdin ensional eld strength Fy y decom —
posed In four-din ensional space-tim e and extra-din ensional com ponents reads as follow s
(F F ¢;F.); explicitly the various com ponents of the eld strength are given by

F = @A @A + A ;A J; (9)
Fag = @Ay [XgA ]+ A AL
Fap = KaiBdg]l KgiRalt Baag]l Cohe: (10)
Under an in nitesin alG gauge transform ation = (x ;X 4) we have
Ay= [Kg; 1+ [ Aal; (11)
thus Fy y 1s covardiant under local G gauge transform ations: Fyy ! Fux + [ ;Fun I

This is an in nitesim al abelian U (1) gauge transform ation if is just an antiherm itian
function of the coordinates x ;X @ while it is an in nitesin al nonabelian U (P ) gauge
transform ation if isvalued in Lie(U (P )),the Liealgebra ofhem itian P P m atrices. Tn
the follow ng we w illalways assum e Lie(U (P )) elam ents to com m ute w ith the coordinates
X #. Tn fuzzy/non-com m utative gauge theory and in Fuzzy-CSDR a findam ental role is
played by the covariant coordinate,

"4 Xat Ag: (12)

This eld transform s indeed covariantly under a gauge transform ation, (‘a)= [ ;" a]:
In temm s of ¥ the eld strength in the non-com m utative directions reads,

Fa = Q@7s+RA ;2a]1=D "4; (13)

Fag = Uai’gl C e (14)

and using these expressions the action reads
z
4 1, 1 2
Ayy = dxTrirg ZF +5(D ) V() (15)



where the potential term V (’ ) is the F,¢ kinetic term  (recallF,p is anttherm itian so that
V (' ) is hemm itian and non-negative)
’ 1 X 1 ’ ’ ra.rb rarbre 272
V()= ZTrtrG FooF .= ZTrtrG a7’ gl 7" 71 4C 40 + 2r
ab

T his action is naturally interpreted as an action in four dim ensions. The in nitesimnalG
gauge transform ation w ith gauge param eter (x ;X @) can indeed be interpreted just as
an M * gauge transform ation. W e w rite

x ;x%= (xxHT = " x)T"T ; (16)

whereT arehem itian generatorsofU (P ), (x ;X 4YareN N antihem itian m atrices
and thusareexpressbleas (x ) #T" with T? anthem itian generatorsofU (N ). Now the
Lie algebra is the tensor product of Lie(U (N )) and Lie(U (P )), it isindeed Lie(U (NP )).
Sin iarly we rewrite thegauge ed A asA (x ;X %)=A (x ;X 4T = AP (x )T"T
and interpret it asa Lie(U (NP )) valued gauge ed on M *. Sin ilarly we treat / 4.

Up to now we have just perform ed a fuzzy KalizaX lein reduction. Tndeed in the
com m utative case the expression (15) corresponds to rew riting the initial Jagrangian on
M %  $?2 usihg sphericalham onicson S2. Here the space of fiinctions is nite din ensional
and therefore the iIn nite tower of m odes reduces to the nite sum given by Tr.

N ext we reduce the num ber of gauge elds and scalars in the action (15) by applying
the CSDR scham e. Since Lie SU (2) acts on the fuzzy sphere (SU (2)=U (1)) ,and m ore in
general the group S acts on the fuzzy coset (S=R ) ,we can state the CSDR principle in
the sam eway as in the continuum case, ie. the elds in the theory m ustbe invariant under
the in nitesim alSU (2), respectively S, action up to an in nitesin algauge transform ation

Ly’ = "8/ =Wy’ ; LA = "sA= DWy; (17)

where A is the oneform gauge potential A = A dx + A, 2, and W s depends only
on the coset coordinates X  and (ke A ;A,) is anthem itian. W e thus write W o =

WeT ; = 1;2:::P?; where T* are hem itian generators of U (P ) and W )Y = W 2,
here ¥ is hemm itian conjuigation on the X @’s. Now in order to sole the constraints (17)
we cannot ollow the strategy adopted in the comm utative case, where the constraints
were studied jast at one point of the coset (say y* = 0). This is due to the intrinsic
nonlocality of the constraints. On the other hand the speci ¢ properties of the fuzzy
case (eg. the fact that partial derivatives are realized via com m utators, the concept of
covariant coordinate) allow to sim plify and eventually solve the constraints. Indeed in
term s of the covariant coordiate ' 4= X 4+ A4 and of

s Xa Wy (18)

the CSDR constraints assum e a particularly sin ple form , nam ely
[lgiA 1= 0; (19)
[gi” g (20)
In addition we have a consistency condition follow ing from the relation [L,;Lgl= CaﬁéLc:

é
Cope’ ™ =
[ailpl= Cup’lei (21)

where !, transformsas !, ! ') = g!ag ':0One proceads in a sin ilar way for the spinor
eds [7].



4 Solving the C SDR constraints for the fuzzy sphere

W econsider (S=R ) = SF2 , le. the fuzzy sphere, and to bede nite at fuzziness levelN 1
(N N matrices). W e study st the basic exam ple where the gaugegroup G = U (1). In
thiscasethe !y = 4 (X E) appearing in the consistency condition (21) areN N antiher-
m itian m atrices and therefore can be interpreted as elem ents of Lie(U (N )). O n the other
hand the !, satisfy the comm utation relations (21) of Lie(SU (2)). T herefore in order to
satisfy the consistency condition (21) we have to embed Lie(SU (2)) In Lie(U (N )). LetTh
withh= 1;:::;N )? be the generators of Lie(U (N )) in the fundam ental representation,
we can always use the convention h = (4;u) with &= 1;2;3 and u = 4;5;:::;N 2 where
the T? satisfy the SU (2) Lie algebra,

m;Th1= c®re (22)
Then we de ne an en bedding by dentifying
!3 = Ta: (23)

The constraint (19), [! ;A ]= 0, then im plies that the four-din ensional gauge group K
is the centralizer of the mage of SU (2) n U (N ), ie.

K =Cyn)(SU2)))=5sUN 2) U@d) U@D);

where the ast U (1) isthe U (1) of U(N ) ¥ SUN ) U (l). The functionsA (x;X ) are
arbitrary functions of x but the X dependence is such that A (x;X ) is Lie(K ) valued
nstead of Lie(U (N )), ie. eventually we have a fourdin ensional gauge potential A (x)
w ith values in Lie(K ). Conceming the constraint (20), it is satis ed by choosing

Ta=1r' (x)a; (24)

ie. the unconstrained degrees of freedom correspond to the scalar eld ' (x) which isa
singlet under the fourdin ensional gauge group K .

The choice (23) de nes one of the possible em bedding of Lie(SU (2)) n Lie(U (N )).
For exam ple we could also enbed Lie(SU (2)) n LieU (N )) using the reduclble N di-
m ensionalrep. of SU (2), ie. we could dentify !4 = X 3. The constraint (19) in this case
In plies that the fourdin ensional gauge group isU (1) so thatA (x) isU (1) valued. The
constraint (20) leads again to the scalar singlket ’ (x).

In general, we start with a U (1) gauge theory on M ¢ SZ. W e solve the CSDR
constraint (21) by embedding SU (2) In U (N ). There exist py aenbeddings, where py is
the num ber of ways one can partition the integer N into a set of non—increasing positive
Integers [6]. Then the constraint (19) gives the surviving four-dimn ensional gauge group.
T he constraint (20) gives the surviving fourdim ensional scalars and eg. (24) isalways a
solution but in generalnot the only one. By setting " 4 = !4 we obtain alwaysam inin um
of the potential. Thism inimum is given by the chosen em bedding of SU (2) In U (N ).

MmtheG = UP)case, la= 'sXP) = IV T'T isan NP NP hem itan matrix
and n order to solve the constraint (21) we have to embed Lie(SU (2)) n Lie(U (NP )).
Allthe resultsof the G = U (1) case holds also here, we just have to replace N with NP .

O ne procesds in a sin ilar way form ore general fuzzy coset (S=R )r (eg. fuzzy CPM =
SUM + 1)=UM )) described by N N matrices. The results are again sim ilar, In
particular one startsw ith a gaugegroup G = U (P )onM * (S=R ) ,and then the CSDR
constraints in ply that the fourdin ensional gauge group K is the centralizer of the In age
Suywp)OfS MUMNP ), K =Cyup)(Sump))-



5 D iscussion and C onclusions

The Fuzzy-C SDR hasdi erent features from the ordinary C SDR leading therefore to new
fourdin ensional particle m odels. Here we have stated the rules for the construction of
such m odels; it m ay well be that Fuzzy-C SDR provides m ore realistic four-din ensional
theories. Having in m ind the construction of realistic m odels one can also com bine the
flizzy and the ordinary CSDR schan e, or exam ple consideringM ¢ S%=R% (S=R )y .

A maprdi erence between flizzy and ordinary C SDR is that in Fuzzy-C SDR the spon—
taneous sym m etry breaking m echanism takes already place by soling the Fuzzy-C SDR
contraints. T he fourdin ensionalH iggs potentialhas the typical \m exican hat" shape, but
it appears already spontaneously broken. T herefore In four din ensions appears only the
physical H ggs eld that survives after a spontaneous symm etry breaking. C orrespond-—
Ingly in the Yukawa sector of the theory [7] we obtain the results of the gpontaneous
symm etry breaking, ie. m assive ferm ions and Yukawa interactions am ong ferm ions and
the physical H iggs eld. W e see that if one would like to describe the spontaneous sym —
m etry breaking of the SM in the present fram ew ork, then one would be naturally led to
large extra din ensions.

A fundam entaldi erence between the ordinary C SDR and its flizzy version is the fact
that a non-abelian gauge group G is not really required in high din ensions. Indeed the
presence ofa U (1) in the higherdin ensional theory is enough to obtain non-abelian gauge
theordes in four din ensions.
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