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Abstract: We study decoupling in FRW spacetimes, emphasizing a lagrangian descrip-

tion throughout. To account for the vacuum choice ambiguity in cosmological settings,

we introduce an arbitrary boundary action representing the initial conditions. RG flow

in these spacetimes naturally affects the boundary interactions. As a consequence the

boundary conditions are sensitive to high-energy physics through irrelevant terms in the

boundary action. Using scalar field theory as an example, we derive the leading dimension

four irrelevant boundary operators. We discuss how the known vacuum choices, e.g. the

Bunch-Davies vacuum, appear in the lagrangian description and square with decoupling.

For all choices of boundary conditions encoded by relevant boundary operators, of which the

known ones are a subset, backreaction is under control. All, moreover, will generically feel

the influence of high-energy physics through irrelevant (dimension four) boundary correc-

tions. Having established a coherent effective field theory framework including the vacuum

choice ambiguity, we derive an explicit expression for the power spectrum of inflationary

density perturbations including the leading high energy corrections. In accordance with

the dimensionality of the leading irrelevant operators, the effect of high energy physics is

linearly proportional to the Hubble radius H and the scale of new physics ` = 1/M .
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1. Introduction

String theory provides a fundamental framework to describe physics at the highest energy

scales. Yet, the details of transplanckian physics have completely eluded us so far. For-

tunately, the notion of decoupling allows us to understand low energy phenomena despite

our ignorance of physics at very high energies. Renormalization Group (RG) flow teaches

us that the effects of high energy physics can be captured by only a finite number of rel-

evant couplings in the low energy theory. In flat spacetime, the decoupling between high

and low energy physics is well established. However, for quantum field theories in curved

space and in FRW universes in particular, decoupling is not so clearcut. In cosmological

spacetimes high energy scales are redshifted to low energy scales via cosmic expansion.

This connects high and low energy physics through unitary time evolution in addition to

the dynamics. Decoupling, specifically in the inflationary context, is of great importance

to upcoming cosmological precision experiments. All current physical scales would origi-

nate from transplanckian scales at the onset of inflation, if inflation lasted longer than the

minimal number of e-folds. Conceivably, then, signatures of Planck scale physics (stringy

or other) could show up in cosmological measurements [1]–[7]. This possibility whether

glimpses of transplanckian physics can be observed in the cosmic microwave background

(CMB) radiation [8] is determined by the strength with which transplanckian physics de-

couples. Remarkably, such effects are potentially observable, but only if the transplanckian

physics selects a non-standard initial state [2, 6].1 Other high energy effects are generically

too small [4] (with the exception of the higher dimensional operators identified in [3]).

More recently, explicit examples were presented to illustrate that the integrating out of a

massive field could result in a non-trivial initial state, offering both a proof of principle that

transplanckian physics may be observable, and suggesting that decoupling is more subtle

in expanding universes [7].

In this article we would like to clarify the connections between vacuum/initial state

selection and decoupling in a fixed FRW background (we ignore gravitational dynamics

throughout). In cosmological settings, i.e. in a spatially homogeneous and isotropic uni-

verse, the size of the scale factor yields a preferred time coordinate, and as a consequence

a hamiltonian approach has become standard [9]. In contrast to the hamiltonian point of

view which emphasizes the dynamical evolution, a lagrangian point of view emphasizes the

symmetries and scaling behaviour relevant to physical processes (see e.g. [4, 7, 10]). It is

therefore the natural framework for a wilsonian RG understanding of decoupling of energy

scales and relevant degrees of freedom determined by symmetries.2 However, a lagrangian

or an action by itself is insufficient to determine the full kinematic and dynamic behaviour

of quantum fields. One must in addition specify the boundary conditions. This corresponds

1The nomenclature ‘non-standard vacuum’ state is also used. Strictly speaking there is no clear vacuum

state in an FRW universe. In an abuse of language, we use vacuum and initial state interchangeably.
2Wilsonian RG in effect explains why (non-gravitational) physics works. Its success strongly suggests

that the same principles are at work in quantum gravity and that general relativity is the low energy

effective action relevant at scales below MPlanck (for a nice review on general relativity as an effective field

theory see [11]). String theory, in particular, is an explicit manifestation of this idea.
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to the choice of initial or vacuum state in the hamiltonian language. The question directly

relevant to the window on transplanckian physics provided by inflation is therefore which

boundary conditions to impose on the fields. To preserve the symmetries of the lagrangian

a subset of all possible boundary conditions is often only allowed. With enough symmetry,

e.g. Minkowski QFT, the choice may in fact be unique. FRW spacetimes have less sym-

metry and it is a priori not clear, what the natural or correct boundary conditions are.

What we will explain in section 2 is that no matter which choice of boundary conditions is

made in the full quantum theory, RG-flow in the effective low energy action will generically

change these conditions. In particular high-energy physics will affect the boundary condi-

tions through irrelevant corrections, which we derive. We apply these results in section 4 to

the computation of the power spectrum of inflationary density perturbations. The leading

irrelevant correction to the boundary conditions is of dimension four, and we therefore

find that the power spectrum is subject to corrections of order H/M with M the scale of

new physics. This is in accordance with earlier predictions that transplanckian effects are

potentially observable [2, 6]. Importantly, we are able to derive this result purely within

the framework of wilsonian effective field theory. This makes our answer predictive both

in the sense that the parametric dependence of inflationary physics on high-energy is now

manifest, and that the strength is computable in any theory where the high energy physics

is explicitly known. Because our results are derived within the context of effective field

theory, they provide a settlement to the debate [2, 4, 6, 12] whether H/M corrections are

consistent with decoupling arguments. We conclude with an outlook where we will briefly

comment on the relation of our results to consistency issues regarding (non-trivial) de Sit-

ter invariant vacua known as α-states. We will, however, begin with a summary, lest the

trees obscure the forest.

1.1 Summary of our results

Any boundary conditions one wishes to impose can be encoded in a boundary action. This

is even true for the Minkowski vacuum (section 2.3). It has long been known that the

couplings in such a boundary action are renormalized at the quantum level. Equivalently,

a wilsonian approach to the effective action ought to result not only in a renormalization

of the boundary couplings, but also in the generation of irrelevant boundary operators.

Consider, for example, a two scalar field model with a mass separation Mχ À mφ and

boundary and bulk interactions S int = −
∫
gχφ −

∮
γχφ. This is exactly solvable, and

upon integrating out χ, permitted when the cut-off scale Λ ¿ Mχ, one generates the

boundary interactions

Seff =

∮
gγ

M2
χ

φ
¤n

M2n
χ

φ . (1.1)

We will describe and review the wilsonian effective action for theories with a boundary,

including this example, in section 2.

The issue of (boundary) wilsonian decoupling is relevant to our understanding of cos-

mology. In an expanding universe, there is no unique vacuum state. In the lagrangian

language, this translates to a lack of knowledge of the appropriate boundary conditions.

Recall that any boundary conditions, including the ‘Minkowski’ ones, can be encoded in
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a boundary action. Wishing to emphasize the lagrangian viewpoint, where the study of

decoupling is most natural, we add a boundary action with free parameters at a fixed but

arbitrary time t0.

Our limited understanding of high-energy physics in the very early universe can thus be

accounted for by the inclusion of a boundary action in a cosmological effective lagrangian.

Whichever boundary conditions we choose this boundary action to encode, they will be

subject to renormalization. In particular, the details of the high-energy physics, which has

been integrated out, will be encoded in irrelevant corrections to the boundary action. For

Z2 symmetric scalar field theory the leading irrelevant boundary operators (that respect

the homogeneity and isotropy of FRW cosmologies) are

Sirr.op.
bound =

∮
d3x

[
−
β‖
2M

∂iφ∂iφ−
β⊥
2M

∂nφ∂nφ−
βc
2M

φ∂n∂nφ−
β4
2M

φ4
]
, (1.2)

where ∂n is the normal derivative. These operators are of dimension four — one di-

mension higher than the boundary measure — and describe corrections of order |~k|/M
plus a boundary four-point interaction. For the momentum range of interest to the CMB,

|~k| ∼ H, where H is the Hubble parameter, the quadratic operators scale as H/M and they

are therefore the primary candidates for witnessing consequences of high-energy physics in

cosmological data. The leading bulk operator is of order H 2/M2 and is generically beyond

observational reach [4]. Computing the inflationary perturbation spectrum in a de Sitter

background, including the corrections to Bunch-Davies boundary conditions due to the

irrelevant operators (1.2), we find

P dS
BD+
irr.op.

= P dS
BD

(
1− π

4H

[
H

2
ν(y0)

i

[
~k21(β‖ − βc)

a20M
+
κ2BDβ⊥
M

− βcm
2

M
− κBD

3βcH

M

]
+ c.c.

])
,

(1.3)

with

κBD =
d− 1 + 2ν

2
H − |

~k|
a0

Hν+1(y0)

Hν(y0)
, (1.4)

where Hν(y0) are Hankel functions at y0 = |~k|/a(η0)H whose index ν(m2) depends on the

massm2. Crucial in our exposition will be the proof (section 2.2) that, despite appearances,

this expression does not depend on the location of the boundary action y0. Only the

meaning of the initial conditions matters, not where they are imposed.

Eq. (1.3) is our main result. Having translated the cosmological vacuum choice am-

biguity into an arbitrary boundary action, we conclude based on wilsonian decoupling

that the leading irrelevant operators in FRW field theory are boundary operators at order

H/M . Using optimistic but not untypical estimates of H ∼ 1014 GeV and M ∼ 1016 GeV

(string scale), new (transplanckian) physics will generically affect the standard predictions

of inflationary cosmology at the one-percent level. Conversely, CMB observations with an

accuracy of one percent or better can potentially measure effects of transplanckian physics.

Only for very special choices of initial conditions and transplanckian physics will this cor-

rection be absent.
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We further identify the boundary conditions corresponding to several cosmological vac-

uum choices including the generalization of the “Minkowski-space” boundary conditions

(sections 2.3 and 3.1). In the wilsonian effective lagrangian description it is clear that no

vacuum is preselected by a consistency condition. Any boundary condition encoded by

relevant operators is consistent, in the sense that the Minkowski space stress tensor coun-

terterm generated with the appropriate boundary conditions will render the cosmological

stress tensor finite as well (section 3). Backreaction is always under control. Which cos-

mological boundary conditions are the right ones to impose, requires just physical input,

as it should be.

2. Decoupling in theories with a boundary: a review

The study of field theories is primarily concerned with Minkowski backgrounds, with the

symmetry-compatible boundary conditions that the fields vanish at infinity.3 Actions which

contain explicit boundary interactions, however, have been studied in the past [13, 14, 15,

16], and are receiving renewed attention (see e.g. [17, 18, 19, 20, 21, 22]). One can use such

boundary interactions to enforce whichever boundary conditions one wishes. Consider, for

example, scalar λφ4 theory on a semi-infinite space4

Sbulk =

∫

y0≤y<∞
d3xdy − 1

2
(∂µφ)

2 − m2

2
φ2 − λ

4!
φ4 , (2.1)

with the following boundary interactions added

Sboundary =

∮
d3x− µ

2
φ∂nφ−

κ

2
φ2 . (2.2)

Here ∂n = ∂y is the derivative normal to the boundary. Expanding the action to first order

in φ+ δφ, we find the usual equation of motion

δSbulk =

∫
d3xdy δφ

(
¤φ−m2φ− λ

3!
φ3
)
, (2.3)

plus the boundary conditions

δSbound =

∮
d3x − δφ

(
µ+ 2

2
∂nφ+ κφ

)
− µ

2
φ∂nδφ . (2.4)

If we insist that the variations δφ are arbitrary and do not vanish on the boundary (which

would correspond to imposing Dirichlet boundary conditions), it appears that µ must van-

ish for consistency. As we will see shortly, however, renormalization can produce countert-

erms proportional to µ and a more correct point of view is that φ can be discontinuously

3One may alternatively think of Minkowski space field theory as defined on a (infinite volume) torus

(“putting it in a box”), which has no boundary at all.
4We choose lorentzian + + +− signature throughout the paper. Working with effective actions, we

implicitly assume that all results can be obtained by a Wick rotation from euclidean space. Depending

on whether the boundary under consideration is spacelike or timelike relative signs and factors of i will

appear. Our focus will be on spacelike boundaries in particular since those have a natural interpretation

as initial states in a hamiltonian description. We discuss details relating to the signature of time and the

Wick rotation of timelike to spacelike boundaries in appendix B.
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redefined on the boundary [23], together with a redefinition of the couplings which ab-

sorbs µ:5

φ(x, y) → φ(x, y) + αθ(y0 − y)φ(x, y0) ,

κ′ ≡ κ+ κ

(
α+

α2

4

)
+ δ(0)

(
α2

2
− µα− µα2

2

)
, α =

2µ

(2− µ) . (2.5)

This field redefinition can be interpreted as a shift of the boundary value of φ to the correct

saddlepoint.6 That this is the correct interpretation follows from the fact that we can also

treat µ perturbatively as an interaction. A Feynman diagram computation will then yield

an effective action with coupling κ′.7 After this ‘renormalization’ the boundary term from

partial integration is canonical

δSbound =

∮
d3x− δφ∂nφ− κ′δφφ (2.6)

which vanishes when

∂nφ = −κ′φ . (2.7)

We see that the (renormalized) value of κ determines the boundary condition. For κ = 0

we have Neumann boundary conditions, for κ = ±∞ the (particular) Dirichlet boundary

condition φ(x, y0) = 0, and for finite κ a mixture of the two. All possible (linear) boundary

conditions are recovered. This is comforting as there are no other terms of order φ2

compatible with the symmetries. In fact, the boundary action Sbound is the most general

one we can write down, if we limit our attention to relevant operators8 and require (for the

sake of simplicity) that the action is also invariant under the bulk Z2 symmetry φ↔ −φ. Of

course, for a second order PDE one needs two boundary conditions. The other comes from

the second boundary of integration. In the example above this is y =∞. See appendix A

for details.

RG arguments then tell us, that in a bounded space the terms in the boundary action,

even if they were not present at the outset, would be generated as counterterms. They are

necessary for the consistency of the theory. Let us show this explicitly. Suppose we start

with Neumann boundary conditions: κ initially vanishes. By the method of images, the

5Here θ(y) is the step function, with θ(0) = 1/2 and ∂yθ(y) = δ(y). Recall that this distribution is of

measure zero, i.e.
∫∞
y0

dyθ(y0 − y)f(y) = 0. Of the bulk terms only the kinetic term is therefore affected by

the shift. Also note that
∫∞
y0

δ(y − y0)f(y) =
1
2
f(y0).

One can also find a redefinition of the type φ′(y) = φ(y) + αθ(y0 − y)φ(y), which is the correct one from

the point of view of coarse graining and the distributional definitions for θ(y) and δ(y). Interestingly, the

redefinitions required are the same.
6When counterterms of the form φ∂nφ are required for renormalization, this shift of the background

value for φ is thus a boundary analogue of the Coleman-Weinberg phenomenon.
7A perturbative comparison with Feynman diagrams, which we perform in appendix D, also explains the

delta function at zero argument. It serves to make all distributions conform to the bare boundary condition

∂nφ = −κφ.
8We assume that the initial state encoded by the boundary action Sbound has no intrinsic size, i.e.

a dimensionful scale. We are ultimately interested in vacuum-like initial conditions in cosmology. This

restriction to scale-less initial states is therefore a natural one.
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Neumann propagator equals9

GN (x1, y1;x2, y2) = −i
∫

d3kxdky
(2π)4

eikx(x1−x2)
(
eiky(y1−y2) + eiky(−y1−y2+2y0)

)

k2x + k2y +m2
. (2.8)

We will choose to regulate our theory by multiplying the propagator by a regulating func-

tion F(¤/Λ2) = exp(−k2/Λ2) [24]. This makes the path integral well defined and cleanly

separates out the ultraviolet divergences. The one-loop seagull graph then evaluates to

= 〈φ(x1, y1)φ(x2, y2)〉1-loop

=
−iλ
4
GN (x1, y1;x1, y1)δ

3(x1 − x2)δ(y1 − y2)

=
−λδ3x;1,2δy;1,2

4(2π)4



∫
d4k

e−
k2

Λ2

k2 +m2
+

∫
d3kxdky

eiky(−2y+2y0)− k2

Λ2

k2x + k2y +m2


 . (2.9)

The first term is the usual bulk λφ4 divergence of the two-point function. The second

term, however, is a newly divergent term, and quite obviously a direct consequence of the

boundary conditions. Evaluating this term in more detail, we find

〈φφ〉1-loop =
λδ3x;1,2δy;1,2

4(2π)4

(
π5/2Λe

m2

Λ2

)(
Λ√
π

∫ 1

0
dse−sΛ

2(y0−y)2− m2

Λ2s

)

∼ λΛδ3xδ(y1 − y2)δ(y1 − y0)
∣∣
Λ2Àm2 . (2.10)

Note that the new divergence is entirely located on the boundary. The last step utilizes one

of the more common distributional definitions of the Dirac-delta function (before doing the

finite integral over s). Recalling the coarse-graining steps underlying RG-flow, it should

come as no surprise that the delta-function localization appears in a distributional limit.

This simply reflects that our spatial resolution decreases under RG-flow, and the precise

location of the boundary becomes fuzzy.

That the divergence is concentrated solely on the boundary (in this distributional

sense) is reassuring. Bulk UV-physics should be unaffected by the presence of a boundary.

It is precisely the breaking of Lorentz invariance due to the presence of the boundary that

is responsible for the new divergence. By necessity it must then appear in the same sector

of the theory that was responsible for the symmetry-violation in the first place.

To make the theory finite, we therefore need to add a boundary counterterm of the

type10

Scount
bound =

∮

y=y0

d3x ξ2
(
m2

Λ2

)(
λΛ

π3/2

)
φ2 . (2.11)

with ξ(m2/Λ2) chosen such that it cancels the divergence in eq. (2.10). This result is of

course expected (in part) purely on dimensional grounds.

9Our domain of interest y ∈ [y0,∞) is semi-infinite. Hence ky is a continuous variable.
10Since the ‘bare’ boundary conditions are Neumann, this is the only type we can add.
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The necessity of this counterterm has serious implications, however. Recalling the

results from the first half of this section, we see that the boundary conditions change

under RG-flow. In order to reproduce the same physics in a theory with a different cut-off,

we not only need to change the vertices, but also the boundary conditions. (More precisely,

to maintain a given physical renormalized boundary condition κren we need to change the

bare coupling κ.) Of course, this counterterm is scheme-dependent. The beta-functions

at one loop on the other hand are scheme-independent, and we can extract the generic

behaviour of the boundary conditions from them. We find that as we change the scale, the

boundary conditions change under RG-flow as

βκ ≡ Λ
∂κ

∂Λ

∣∣∣∣
m2/Λ2fixed

= ξ2Λ
λ

π3/2
+O(λ2) . (2.12)

with ξ2 > 0. This may seem surprising, but it does not go against the lore that boundary

conditions are determined by physical conditions, and not by dynamics. It is worthwhile

to repeat that what the RG-scaling of the boundary conditions says, is that in a cut-off

theory, under a change of the cut-off, one reproduces the same physics when one changes

the boundary conditions according to eq. (2.12).

2.1 Boundary RG fixed points and ‘vacua’

A natural question to ask is what the endpoints of boundary RG-flow are. The explicit

dimensionality of the coupling κ already betrays the answer. In the deep IR, when |p| ¿ Λ

(Λ→∞ effectively; m = µΛ), κ blows up, and the boundary conditions tend to the special

Dirichlet boundary condition φ(x, y0) = 0. Physically this is easily understood in wilsonian

RG language. The moment the cut-off restricts the momentum scales |p| to be smaller than

m (Λ ∼ m), all modes freeze out and the theory ceases to be dynamical. Hence the field φ

‘vanishes’, and must be Dirichlet.

Dirichlet conditions thus form a trivial fixed point of RG-flow. This is easily visible.

When φ strictly vanishes on the boundary, simply no counterterms are possible. Both

terms
∮
φ∂nφ and

∮
φ2 vanish. For completeness, were one to repeat the computation

eq. (2.9) for Dirichlet conditions, the difference is that the propagator now has a relative

minus sign. As a consequence, the bulk divergence cancels the boundary divergence at

y = y0. Eq. (2.9) shows this clearly. In effective field theory the distinction between the

fuzzy boundary and the bulk disappears in the deep IR limit, which explains why we can

no longer treat bulk and boundary singularities separately when the boundary conditions

become Dirichlet.

When the boundary is spacelike and represents initial conditions in time, the induced

changes in the boundary conditions due to RG-flow have a natural description in the

hamiltonian language of states. Under coarse graining the original state gets screened

by vacuum polarization. In the low-energy effective theory, the correct state to use is

a dressed version of the original state. If we take this picture further, we can deduce

the boundary conditions which correspond to the vacuum. If the vacuum is the ‘empty’

state, then it ought not to become dressed under coarse graining. Translating back to the

– 8 –
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lagrangian language, this means that the corresponding boundary conditions will not suffer

from renormalization. Hence a vacuum in the hamiltonian language should correspond to

a fixed point of boundary RG-flow.11

2.2 Freedom of choice for the boundary location

What will be of fundamental importance to us, is that the location of the boundary is

arbitrary. The introduction of a boundary action at y0 is a way to encode the initial

conditions at the level of the action, but it does not necessarily mean that there is a

physical object or obstruction at y = y0. It is simply a translation of the statement that a

second order PDE needs two boundary conditions, but at what location one imposes those

conditions is irrelevant. Of course, if one imposes the boundary conditions at a different

location, they will not in general be of the same form as the original initial conditions. If

one changes the location y0 one must change the value of κ to keep the physics unchanged.

A symmetry is therefore present between the location y0 and κ.12 To show this explicitly,

choose a basis ϕ+(~k, y), ϕ−(~k, y) = ϕ∗+(~k, y) for the two independent solutions of the

kinetic operator. In terms of this basis, the linear combination which obeys the boundary

condition ∂nϕ(y0) = −κϕ(y0) is

ϕbκ(
~k, y) ≡ ϕ+(~k, y) + bκ(~k)ϕ−(~k, y) , bκ(~k) = −

κϕ+,0 + ∂nϕ+,0

κϕ−,0 + ∂nϕ−,0
. (2.13)

Here the subscript 0 means that the quantity is evaluated at the boundary y0. Obviously

if bκ stays the same, physics stays the same. This allows us to derive a symmetry relation

between the value κ and the location y0. Under a constant shift of the boundary δϕ =

ξ∂nϕ = ξ∂yϕ and a simultaneous change δκ, bκ changes as13

δbκ = −ξ
[
κ∂nϕ+,0 + ∂2nϕ+,0

κϕ−,0 + ∂ϕ−,0
− κϕ+,0 + ∂nϕ+,0

(κϕ−,0 + ∂nϕ−,0)2
(κ∂nϕ−,0 + ∂2nϕ−,0)

]
−

−δκ
[

ϕ+,0

κϕ−,0 + ∂nϕ−,0
− κϕ+,0 + ∂nϕ+,0

(κϕ−,0 + ∂nϕ−,0)2
(ϕ−,0)

]
. (2.14)

Demanding that δbκ vanishes, one finds the change in κ necessary to keep physics unchanged

under a change of the location of the boundary. This shows explicitly that this location is

arbitrary.

2.3 Minkowski space boundary conditions

Minkowski space formally does not have a boundary of course. The arbitrariness of the

location of the boundary, however, suggests that we should be able to treat it in a similar

11Presumably this is a UV-fixed point. Exciting the vacuum to a state, i.e. deforming away from the

fixed point, reinstates RG-flow. The excitation, however, should not disappear in the deep IR. Hence the

dressing of the state due to coarse graining leads one away from the vacuum. Of course to study boundary

RG-flow, one needs an interacting theory. Any state in a free theory is a trivial fixed point of boundary

RG-flow.
12This is not a true symmetry of the action. Because the coupling constant κ changes, it is an isomorphism

between families of theories. This is analogous to general coordinate invariance of the target space manifold

in non-linear sigma models.
13Note that bκ depends on the basis choice ϕ±, but κ does not.
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way. This is not quite manifest because, to stay within the framework of effective field

theory, κ must remain an analytic dimension one operator in the spatial momenta. The

symmetry (2.14) is subject to this condition. The harmonic oscillator boundary conditions,

constructed here to yield physics equivalent to unbounded Minkowski space physics, will

be consistent with this requirement. To find these conditions suppose the boundary is

a fixed time slice. We can then take a cue from the hamiltonian formalism. Minkowski

boundary conditions should correspond to choosing the standard Minkowski vacuum in the

hamiltonian picture. By definition this is the state annihilated by the lowering operator of

each spatial momentum mode ~kx (in the free theory).

â~k|0〉 = 0 ⇔
(
π̂~k − iω(~k,m)φ̂~k

)
|0〉 = 0 , ω(~k,m) =

√
~k2 +m2 . (2.15)

The canonical momentum conjugate to πk = ∂0φk is precisely the normal derivative to the

fixed time slice. This suggests that we should choose the spatial momentum dependent

boundary conditions [25]

∂nφ|y=y0 = i

√
~k2 +m2 φ|y=y0 −→ κ = −i

√
~k2 +m2 . (2.16)

This boundary condition descends from the ‘higher derivative’ operator
∮
φ
√
∂2i −m2φ.

But, as κ has canonical dimension one, there is no new scale associated with this higher

derivative term. Note that κ is purely imaginary. This is a consequence of imposing the

boundary condition at a fixed time. Wick rotating from a spatial boundary with real κ

generates a factor of i in the boundary condition ∂φ = −κφ. We provide details behind

this naive argument in appendix B. We show there that all correlation functions will be

analytic in the boundary coupling κ, as is usual in effective field theory. We are therefore

instructed to treat κ as real throughout all steps of the calculation, and only substitute its

imaginary value at the end.

This momentum dependent choice of boundary conditions indeed ensures that the

theory reproduces Minkowski space dynamics. For an arbitrary κ the Green’s function is

(see eq. (2.13), and recall that y parametrizes a timelike direction)

Gκ(x1, y1;x2, y2) = −i
∫

d3~kdky
(2π)4

ei
~k(x1−x2)

(
eiky(y1−y2) + iky+κ

iky−κe
ik(−y1−y2+2y0)

)

~k2 − k2y +m2 − iε
, (2.17)

where we have included the iε term. The second term, at first sight, negates equivalence

with the Minkowski propagator

GMink = −i
∫

d3~kdky
(2π)4

ei
~k(x1−x2)+iky(y1−y2)

~k2 − k2y +m2 − iε
, (2.18)

The coefficient κ, however, is precisely chosen such that on shell the second term vanishes.14

By unitarity, the theory with κ = −iω(~k,m) is then the same as the Minkowski space

14The second term only vanishes for the domain θ(y1 + y2 − 2y0). Since our domain of interest is y > y0,

this is always true.

– 10 –



J
H
E
P
0
4
(
2
0
0
4
)
0
7
6

theory. We can see this explicitly by performing the integral over ky. Doing so returns the

standard Minkowski propagator in hamiltonian form

G(x1, y1;x2, y2) =

∫
d3k

(2π)3
ei
~k(~x1−~x2)−iω(~k,m)(y1−y2)

2ω
θ(y1 − y2) + (y2 ↔ y1) , (2.19)

which shows that the second term really is spurious. Indeed, this choice of κ removes the

pole in the second term, which means its contribution to any physical quantity disappears.

We still have an official boundary at y0 of course, even though the specific boundary

conditions (2.16) ensure that it has no effect on physical amplitudes. The situation de-

scribed here, is familiar from electrodynamics.15 We have chosen an interface at y0 where

the dielectric properties happen to be the same for both materials. The transmission coef-

ficient is therefore 100% and the wavefunction behaves as if the interface is not there, i.e.

the interface is completely transparent.

2.3.1 Minkowski boundary conditions and RG-flow

Classical physics is indeed insensitive to a completely transparent interface. Is the quantum

physics as well? In other words does the fact that the off-shell propagators appear to differ

become relevant at the loop level? The answer is obviously no in perturbation theory. The

cancellation of the pole by the specific ‘Minkowski’ choice for κ means that in any integral

the contribution of the second term vanishes. Hence the Minkowski boundary conditions

do not get renormalized. They are a fixed point of boundary RG-flow exactly as befits the

boundary conditions corresponding to a true vacuum. The reason why this is so is clear.

The choice κMink = −iω(~k,m) is precisely the one that restores the Lorentz symmetry

naively broken by the introduction of a boundary. Counterterms are forbidden to appear

for they would break the reinstated Lorentz symmetry.

2.4 Wilsonian RG-flow and irrelevant operators

Quite generically therefore the boundary conditions of a quantum field theory are affected

by RG flow, unless they are protected by a symmetry. Integrating out high energy degrees

of freedom necessitates a change in boundary conditions to reproduce the same physics in a

low-energy effective description of the theory. Decoupling then ensures that the low-energy

theory remains predictive: the effects of high-energy physics are primarily encoded in a

small set of relevant operators with universal scaling behaviour independent of the details

of the high-energy theory. Subleading corrections of an energy expansion are by definition

captured by irrelevant operators. These encode the specifics of the high-energy completion

of the theory.

One of our best hopes to detect the properties of high energy physics beyond the

Planck scale is in a cosmological setting. The tremendous cosmological redshift during

inflation may bring the consequences of such irrelevant operators within reach of experi-

mental measurements. This exciting opportunity has been a preeminent question in recent

literature. In section 4 we shall show that the irrelevant boundary operators discussed in

15Except that this boundary is spacelike, which is why we can in fact relate it to a choice of initial state.
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this subsection are responsible for the leading effects of high-energy physics in cosmology,

appearing generically at order H/MPlanck. The leading irrelevant operators for the bulk

theory have long been known and their consequences for cosmological measurements are

discussed in [4]. However, it is well known that quantum field theory in cosmological set-

tings suffers from a vacuum choice ambiguity. In the lagrangian language this corresponds

to a choice of boundary conditions. As we have just seen, we can parametrize this ambi-

guity in the cosmological vacuum choice by adding an arbitrary boundary action
∮
κφ2.

Whichever the value of κ may be, the influence of high-energy physics will be encoded in

the irrelevant corrections to the boundary action. For that reason, we devote this section

to a determination of the leading irrelevant operators on the boundary. Earlier studies

have indeed indicated it is only (irrelevant) changes in the boundary condition which can

have observable effects in measurements. Due to the symmetry constraints on the action

the consequences of bulk irrelevant operators are just too small to be detectable. Our aim

here is to provide a solid foundation for these earlier results.

One can make a straightforward guess as to what the leading boundary irrelevant op-

erators are, insisting on locality, compatibility with the Z2 symmetry, and SO(3) rotational

invariance on the boundary.16 They are the dimension four operators:
∮

y=y0

d3xφ4 ,

∮

y=y0

d3x ∂iφ∂iφ ,

∮

y=y0

d3x ∂nφ∂nφ ,

∮

y=y0

d3xφ∂n∂nφ .

(2.20)

Note that the breaking of Lorentz invariance on the boundary distinguishes normal and

tangential derivatives, and that normal derivatives cannot be integrated by parts. Varying

φ infinitesimally, the latter two will generate normal derivatives on the variation ∂nδφ. To

restore the applicability of the calculus of variations, one needs to perform a discontinuous

field redefinition and adjustment of the couplings similar to (2.5). (We do so in appendix C.)

In this sense, all physics can be captured by the first two irrelevant operators. However,

for tractability we will treat all four operators perturbatively and on the same footing. We

will see in section 4 that these operators will lead to corrections of order H/MPlanck to

inflationary density perturbations, as predicted by the studies [2]. Here we will give an

explicit example where high-energy physics induces two of these dimension four irrelevant

boundary operators.

Tree-level diagrams exchanging a heavy field are the natural candidates for producing

higher derivative corrections under RG-flow. We therefore add a scalar χ to the theory

with mass Mχ ≥ Λ, to represent the high energy sector whose influence we will deduce.

The only communication between the field χ and φ will be through the ‘flavor-mixing’ bulk

and boundary couplings

Sint
high = −

∫
d3xdy gχφ−

∮
d3x γχφ , (2.21)

and χ will have no other bulk or boundary (self)-interactions. Because the mass of χ is

higher than the cut-off, it will not appear as a final state, and in this simple model we

16These symmetry constraints follow from the assumption that the initial state has no intrinsic dimen-

sionful parameter. See footnote 8.
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can integrate it out explicitly. Its influence on the low-energy effective λφ4 theory is only

through tree-level mass oscillation graphs and a boundary reflection. Treating the couplings

g and γ as perturbations — hence the propagator for χ will have Neumann boundary con-

ditions — consider the tree level correction to 〈φφ〉 represented by the following Feynman

diagram and its effective replacement.

=⇒

(2.22)

Here wiggled lines denote the heavy field χ, solid lines the light field φ; the shaded region

denotes the boundary, and the dashed line the insertion of a γ-vertex. This diagram is

easily evaluated to

〈φ(x1, y1)φ(x2, y2)〉χ−effect = −2gγGN (x1, y1;x2, y0)δ(y2 − y0)

=
2igγδ(y2 − y0)

(2π)4



∫
d4k

eikx(x1−x2)+iky(y1−y0)−
k2

Λ2

k2 +M2
χ


 . (2.23)

Approximating the denominator in the standard way by a geometric series valid for

M2
χ À Λ2,

〈φφ〉χ =
2igγδy2−y0
M2

χ(2π)
4

∞∑

n=0

[∫
d4k

(−k2
M2

χ

)n
eikx(x1−x2)+iky(y1−y0)−

k2

Λ2

]
, (2.24)

we extract the ky dependence in the second term as a derivative to find17

〈φφ〉χ =
2igγδy2−y0
M2

χ(2π)
4

∞∑

n=0

[(
¤1

M2
χ

)n ∫
d4keikx(x1−x2)+iky(y1−y0)−

k2

Λ2

]

=
2igγδy2−y0
M2

χ(2π)
4

∞∑

n=0

[(
¤1

M2
χ

)n
Λ4π2e−Λ

2 (x1−x2)
2

4
−Λ2 (y1−y0)

2

4

]
. (2.25)

Now recall that the projection onto the boundary of bulk terms appears as a distribution

with resolution Λ. In this sense the above term contains the delta function Λ
2
√
π
e−Λ

2(y−y0)2/4.

Up to this resolution the above expression is thus equivalent to

〈φφ〉χ =
2igγδy2−y0

M2
χ

∞∑

n=0

[(
¤1

M2
χ

)n
δ3Λ(x1 − x2)δΛ(y1 − y0)

]
. (2.26)

Hence we see explicitly the resultant higher derivative boundary interactions in the φ low-

energy effective action. The above results correspond to the vertices

Seff =

∮
d3x

gγ

M4
χ

[
∂iφ∂

iφ− φ∂n∂nφ
]
+O

((
∂

M

)4
)
. (2.27)

17Note that these results are not inconsistent with our earlier calculation (2.10). There we evaluate the

answer in the approximation Λ À m. Here we approximate Λ ¿ Mχ. The exact intermediate answer

obtained in eq. (2.10) is non-perturbative in Λ/M . This is why we approximate the momentum integral for

Mχ À Λ in the standard way.
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This supports the naive integrating out of χ after a shift χ→ χ− g(¤+M 2)−1φ as argued

in section 1.1. The terms arising from the boundary term
∮
γχφ under this shift precisely

reproduce the higher derivative terms (2.27).

Note the similarity between the expression (2.23) and the image-charge term in the

seagull-graph (2.9). We see therefore that a similar set of higher derivative corrections can

arise from loop-diagrams in a χφ theory with only the bulk interaction

Sint
high =

∫
d3xdy − g̃χ2φ2 . (2.28)

This is the hybrid inflation inspired model, considered before in the context of decoupling in

FRW-spacetimes [7]. The seagull diagram responsible for the higher-derivative corrections

is a direct copy of eq. (2.9) only to be evaluated in the limit Mχ À Λ rather than mφ ¿ Λ.

= 〈φ(x1, y1)φ(x2, y2)〉χ-effect

= −ig̃GN (x1, y1;x1, y1)δ
3(x1 − x2)δ(y1 − y2)

=
−g̃δ3x;1,2δy;1,2

(2π)4



∫
d4k

e−
k2

Λ2

k2 +M2
χ

+

∫
d3kxdky

eiky(−2y+2y0)− k2

Λ2

k2x + k2y +M2
χ


 . (2.29)

Repeating the geometric series expansion in k2/M2
χ,

〈φφ〉χ =
−g̃δ3x;1,2δy;1,2
M2

χ(2π)
4
× (2.30)

×
∞∑

n=0

[∫
d4k

(−k2
M2

χ

)n
e−

k2

Λ2 +

∫
d3kxdky

(
−k2x − k2y
M2

χ

)n
eiky(−2y+2y0)− k2

Λ2

]
.

we see that we can extract the ky dependence in the second term as a derivative. The

x dependence along the boundary and the full bulk term give purely local corrections as

expected from loop graphs. Though this non-local y-dependence is counterintuitive, the

physical reason is easily identified. It is the interaction with the image charge. We find

〈φφ〉χ = bulk +
−g̃δ3x;1,2δy;1,2
M2

χ(2π)
4

[ ∞∑

n=0

n∑

p=0

(
n

p

)(
∂2y
M2

χ

)p∫
d3kxdky

(−k2x
M2

χ

)n−p
eiky(−2y+2y0)− k2

Λ2

]

= bulk +
−g̃δ3x;1,2δy;1,2Λ3

M2
χ(2π)

4



∞∑

n=0

n∑

p=0

αn−p

(
n

p

)(
∂2y
M2

χ

)p ∫
dkye

iky(−2y+2y0)−
k2y

Λ2




= bulk +
−g̃δ3x;1,2δy;1,2Λ3π1/2

M2
χ(2π)

4



∞∑

n=0

n∑

p=0

αn−p

(
n

p

)(
∂2y
M2

χ

)p
Λe−Λ

2(y−y0)2

 . (2.31)

where αn = 2π3/2(−2)n+1(2n+ 1)!!. In the distributional sense this is therefore equal to

〈φφ〉χ = bulk +
−g̃Λ3

M2
χ



∞∑

p=0

ζp
∂2py

M2p
χ

δ(y − y0)


 . (2.32)
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where ζp can be read off from (2.31). The bulk one-loop χ-diagrams therefore gives rise to

the higher-derivative irrelevant corrections on the boundary

Seff =
∑

p

∮
d3x

g̃βpΛ
3

M2
χ

φ

(
∂2pn

M2p
χ

)
φ . (2.33)

This result shows that the boundary irrelevant operators will generically not appear in the

combination
∮
∂iφ∂iφ− φ∂2nφ. This is a direct consequence of the fact that the boundary

breaks Lorentz invariance. Examples which generate the other two irrelevant operators are

easily found. The model just discussed will also generate
∮
φ4 terms. A non-linear sigma

model will naturally have
∮
∂nφ∂nφ corrections.

2.4.1 Minkowski space boundary conditions and irrelevant operators

An important question therefore is how generic the occurrence of irrelevant corrections is.

In particular do fixed points of boundary RG-flow, e.g. the Minkowski boundary conditions

or other ‘vacua’, still receive irrelevant corrections? RG principles tell us that we should

expect them. Just because we are at a fixed point of RG-flow, does not mean that irrelevant

operators encoding a high-energy sector are forbidden. In the context of boundary RG-flow,

the connection between boundary conditions and ‘vacua’, makes this statement somewhat

surprising. In Minkowski space in particular we do not expect that integrating out a high-

energy sector would change the vacuum state in the low-energy effective theory even at the

irrelevant level.18 Both the general RG principles and the intuition that in Minkowski space

high energy physics should not change the low-energy boundary conditions are true, as we

will now illustrate. The first point is evident from the two scalar theory at the beginning

of this section with the interactions given in (2.21). Integrating out the χ field exactly,

clearly gives rise to the following irrelevant contributions to the low-energy effective theory

for φ.

Sint
low−energy =

1

2

∫
d3xdy − φ(g + γδ(y − y0))(¤bcχ −M2

χ)
−1(g + γδ(y − y0))φ

= bulk +

∞∑

n=0

1

2

∮
2γg

M2
χ

φ

(
¤bcχ
M2

χ

)n
φ+

γ2

M2
χ

φ

(
¤bcχ
M2

χ

)n
δ(0)φ . (2.34)

Here ¤bcχ should be interpreted as acting on a complete set of eigenfunctions with the

boundary conditions ∂nχ = −κχ that belong to the massive field χ. To address the

formal divergence of the delta function at its origin, δ(0), recall first that in a cut-off

theory, as we are considering, all distributions become smeared on the scale of the cut-

off. The δ(0) in the second term is therefore proportional to Mχ purely on dimensional

grounds. Our cut-off scheme eq. (2.10) indicates that δ(x) = limΛ→∞ π−1/2Λe−Λ
2x2 , δ(0) =

Mπ−1/2. This regularization only postpones the problem, however. In appendix D we

perform a computation, which indicates that the δ(0) term arising from discontinuous field

redefinitions does not explicitly appear in bulk correlation funcions. Its sole function is to

generalize all distributions so that they obey the correct boundary conditions ∂nf(y) =

−κf(y).
18We thank Jim Cline for emphasizing this point.
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Consistent with the principles of decoupling, we see that whatever boundary conditions

we choose for φ including fixed points of RG flow, the boundary action will receive irrelevant

corrections. How can this possibly square with the idea that Minkowski space high energy

physics should not correct the vacuum choice, i.e. the Minkowski space boundary conditions

of φ? In this simple model it is fairly easy to see that the boundary conditions of φ change,

because the massive field χ does not have Minkowski space boundary conditions. When

χ is integrated out, this reverberates in the low energy effective boundary action for φ. A

naive way to see that χ is not at a fixed point of boundary RG-flow, is to note that the full

boundary condition for χ reads ∂nχ = −κχ− γφ. The explicit dependence on φ perturbs

one away from a χ-sector fixed point κfixed. To consider a fixed point in the χ-sector alone

is inconsistent of course; the full χ-φ dynamics needs to be taken into account. But an

exact answer, possible because the theory is exactly solvable, shows that this naive guess

is qualitatively correct. The exact answer is obtained by diagonalizing the theory to two

fields Φ1 and Φ2 with action

Sbulk =
1

2

∫
d3xdyΦ1

(
¤−M 2

χ +
g2

4M2
∆

)
Φ1 +Φ2

(
¤−m2

φ +
g2

4M2
∆

)
Φ2 +O(g3) ,

Sbound =
1

2

∮
d3xΦ1

(
2gγ

M2
∆

+
γ2δ(0)

M2
∆

)
Φ1 − Φ2

(
2gγ

M2
∆

+
γ2δ(0)

M2
∆

)
Φ2 +O(γ3, gγ2, g2γ) ,

M2
∆ = M2

χ −m2
φ . (2.35)

If we tune γ and g such that one of the two fields has Minkowski boundary conditions

κΦ2 = −iω(~k,MΦ2), we see that the difference in masses MΦ1 ∼ Mχ and MΦ2 ∼ mφ

prevents the other from obeying Minkowski boundary conditions.

At a very fundamental level these results are easily understood. Recall that the

Minkowski boundary conditions are the only boundary conditions respecting Lorentz in-

variance; this is what guarantees that the values of the boundary couplings correspond

to a fixed point. The explicit boundary interaction
∮
−γχφ ' − 1

2

∫
δ(y − y0)γχφ breaks

Lorentz invariance, however. In the diagonal system with Φ1, Φ2, the Lorentz invariance

is broken because one of the two fields does not obey Minkowski boundary conditions.

We have only shown that irrelevant operators will generically appear in a situation

where a field in the high energy sector is not in the Minkowski vacuum. Lorentz symmetry

should guarantee the converse: that if all massive fields obey Minkowski boundary con-

ditions, no boundary RG-flow or boundary irrelevant operators can appear. Importantly,

in the setting of interest to us, FRW cosmology, Lorentz invariance is absent. It is there-

fore not clear that cosmological boundary conditions, to which we turn now, are similarly

protected from RG-flow and irrelevant contributions from high energy physics. Strictly

applying the RG principles, we should not expect them to be protected.

3. Boundary conditions in cosmological effective lagrangians

We have seen that:

1. a boundary action can encode the boundary conditions one wishes to impose on the

fields.
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2. This holds in full generality. The boundary need not correspond to a physical ob-

struction or object. Completely transparent boundary conditions exist that mimick

the situation as if there is no boundary. Introducing a boundary action to account

for initial conditions therefore places no additional constraints on the theory.

3. Generically the boundary conditions will be affected by RG flow, and suffer irrelevant

corrections that are controlled by the high energy physics.

We now use this knowledge to describe FRW cosmologies from a lagrangian point of view.

The main issue in the hamiltonian description of FRW cosmologies is that of vacuum

selection. In the absence of a global time-like Killing vector or asymptotic flatness, there

is no unique vacuum state. There are two preferred candidates, the Bunch-Davies and

the set of adiabatic vacuum states, which we review below, but some uncertainty remains.

Whichever state is the true one, points (1) and (2) above tell us that we can account for

this state by the introduction of a specific boundary condition at an arbitrary time t0.

Our lack of knowledge of the specifics of the very early universe and the high energy

degrees of freedom dominating at that time rather suggests to encode the initial state

uncertainty in a ‘past boundary’ for any cosmological theory. With the boundary comes

the lagrangian translation of the vacuum choice ambiguity: what boundary conditions to

impose? We will not give an answer to this long-standing question. We will show, however,

that whatever (local relevant) boundary conditions one chooses, they are consistent in the

sense that the backreaction is under control. The counterterms appropriate to the boundary

conditions specified that are necessary to render the Minkowski stress-tensor finite, do so

in cosmological setting as well. This confirms the intuition that the boundary conditions

do not affect UV-physics. And this continues to hold for any choice of cosmological initial

conditions. This may come as a surprise. The Hadamard condition — that at short dis-

tances the two-point correlation function is the appropriate power of the geodesic distance

σ(x1, x2)
d−2 — has long been thought to be a consistency requirement for cosmological

boundary conditions. Only these correlation functions permit ‘renormalization’ by the

standard Minkowski stress tensor. The lesson from section 2, however, is that other short

distance behavior does not necessarily signal an inconsistency, but instead implies that the

‘boundary conditions’ need to be renormalized as well. This returns to the front the ques-

tion which boundary conditions describe the physics of the real world, but none that can

be deduced from local relevant boundary interactions are intrinsically inconsistent. This is

the power of the effective lagrangian point of view.

Suppose for now that all choices for boundary conditions on the initial surface of

an FRW universe are indeed consistent. Compared to Minkowski spacetime there is a

new ingredient. The boundary condition needs to be covariantized. This is done by the

introduction of a unit vector nµ normal to the boundary.

∂nφ ≡ nµ∂µφ = 0 , |gµνnµnν | = 1 . (3.1)

In the conformal frame,

ds2FRW = a2(η)(−dη2 + dx2d−1) , (3.2)
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the unit normal vector to the boundary scales as a−1. Hence the boundary condition reads

1

a
∂ηφ|η=η0 = −κφ|η=η0 . (3.3)

The explicit dependence on the scale factor a simply reflects that momenta redshift under

cosmic expansion.19 To construct the two-point correlation function for a massive scalar φ

that satisfies this boundary condition, we need the equation of motion in an FRW back-

ground. For simplicity we will assume that this background is pure de Sitter; the results

below generalize straightforwardly to power-law inflation and are therefore truly generic.

The equation of motion is

1√−g ∂µ
√−ggµν∂νφ(x, η) −m2φ(x, η) = 0 ,

⇒
(

1

a2
∂2η + (d− 2)

a′

a3
∂η +

~k2

a2
+m2

)
φ(~k, η) = 0 . (3.4)

In the second step we Fourier transformed the spatial directions. Substituting the constant

de Sitter Hubble radius a−2a′ = H, the explicit scale factor a = −1/Hη and making the

conventional redefinition η = −y/~k, we have a Bessel equation for φ̃ ≡ y−(d−1)/2φ:
(
y2∂2y + y∂y + y2 +

m2

H2
− (d− 1)2

4

)
φ̃(~k, y) = 0 . (3.5)

The most general solution to the field equation is therefore

ϕbκ(
~k, η) = ϕdS,+ + bκϕdS,−

ϕdS,+ ≡ (−~kη)(d−1)/2
√

π

4~k

(
H

~k

) d−2
2

Hν(−~kη) , ν =

√
(d− 1)2

4
− m2

H2
, (3.6)

with Hν(y) the Hankel function satisfying eq. (3.5). The normalization and convention is

such that in the limit ~k → ∞ we recover the Minkowski space solutions. The boundary

conditions (3.3) determine b, as in eq. (2.13).

By construction the Green’s function is given by (see appendix A for details)20

Gκf ,κ(
~k1, η1;~k2, η2) = (2π)3δ3(~k1 + ~k2)Nκf ,κ

(
ϕbκf

(~k1, η1)ϕbκ(
~k2, η2)θ(η1 − η2) +

+ ϕbκ(
~k1, η1)ϕbκf

(~k2, η2)θ(η2 − η1)
)
, (3.7)

19Realizing that cosmological scaling induces RG-flow we manifestly see the previous claim that Dirichlet

conditions are trivial IR-fixed points.
20A ‘covariant’ Green’s function is given by

Gκf ,κ(
~k1, η1;~k2, η2) = (2π)

3δ3(~k1 + ~k2)

trunc(κf )∑

n

µ(n)
φbκ,n(η1)φbκ,n(η2)

H2n2 −m2 +H2(d− 1)2/4
.

where κf characterizes the future boundary condition at η =∞ and µ(n) is an easily determined measure.

From this expression it is clear that the delta function therefore also obeys the boundary condition. Indeed

the delta function is best viewed as a completeness relation for eigenfunctions of the laplacian ¤ϕk = −k
2ϕ

obeying a−10 ∂ηϕk|η0 = −κϕk|η0 , i.e.

δκ(η1 − η2) =
∑

n

µ(n)φb,n(η1)ϕb,n(η2)
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where κf characterizes the future boundary conditions at y =∞. The normalization Nκf ,κ

is chosen such that (¤−m2)G = iδd/
√−g. This requires that

Nκf ,κϕbκ(~k, η)
↔
∂η ϕbκf

(~k, η) = −ia2−d(η) = −i(−Hη)d−2 . (3.8)

We find that

Nκf ,κ =
1

(1− bκf bκ)
. (3.9)

From here on we will again restrict our attention to d = 4 spacetime dimensions.

3.1 Harmonic oscillator and shortest length boundary conditions

A special set of boundary conditions are the covariantization of the completely transparent

“Minkowski” boundary conditions of eq. (2.15). We will call these “harmonic oscillator”

boundary conditions. Recall that these correspond to the boundary action
∮
φ
√
∂2i −m2φ.

Covariance requires that the scale factor should enter here as well. We thus find that the

cosmological harmonic oscillator boundary condition is characterized by

κHO = −i
√
~k2

a20
+m2 . (3.10)

For the specific momentum dependent choice of boundary location ηSL0 (~k) = −Λ/H|~k|
or equivalently a0 = |~k|/Λ, these boundary conditions correspond to a constant value for

the physical parameter b. They are therefore the boundary conditions proposed in [2, 6].

Underlying this inspired choice is the thought that in a cosmological theory there is an

‘earliest time’, where a physical momentum p ≡ ~k/a(η) reaches the cut-off scale (the

shortest length). Whether there is truly an earliest time in cosmological theories is an

interesting question in its own right. It would be the natural location for the boundary

action, but as a consequence of the symmetry between boundary location η0 and coupling

κ exposed in section 2.2, it is not directly relevant to us. Indeed it is easy to see that a

momentum-independent coupling κHO at ηSL0 (~k) = −Λ/H|~k| is equivalent to a boundary

action on a standard time-slice η′0 with momentum-dependent coupling κSL

κSL = −∂φ+(η
′
0) + bSL∂φ−(η′0)

φ+(η′0) + bSLφ−(η′0)
, bSL = −κHOφ+(η

SL
0 ) + ∂φ+(η

SL
0 )

κHOφ−(ηSL0 ) + ∂φ−(ηSL0 )
. (3.11)

In the limit Λ → ∞ we recover the harmonic oscillator vacuum at η = −∞. The

coupling κ′ encodes these harmonic oscillator boundary conditions at η0 = −∞ in terms of

conditions at η′0 plus corrections that vanish as Λ → ∞. As we have seen in the previous

section and will discuss in detail in the next, these corrections therefore correspond to the

introduction of specific irrelevant boundary operators.

3.2 The Bunch-Davies and adiabatic boundary conditions

In universes without a global timelike Killing vector, there is no clear concept of the vacuum

as a lowest energy state. Particle number is also not conserved and one cannot unambigu-

ously define an ‘empty’ state either. Instead one must specify a particular in-state charac-

terizing the initial conditions. Two solutions to this vacuum choice ambiguity have become
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preferred. One is the Bunch-Davies vacuum, which is indirectly constructed by requiring

that for high momenta ~k/aÀ H the Green’s function reduces to the Minkowski one. The

second corresponds to the set of (n-th order) adiabatic vacua, which is constructed by the

requirement that the number operator on the vacuum changes as slowly as possible [9, 26].

For de Sitter space the infinite order vacuum and the Bunch-Davies one are the same; we

shall therefore only discuss the latter.

The boundary conditions corresponding to the Bunch-Davies vacuum are readily found.

In the basis (3.6) we have chosen, the Bunch-Davies-state corresponds to choosing b = 0,

and hence

κBD = −∂nϕdS,+,0

ϕdS,+,0
. (3.12)

Note that the Bunch-Davies boundary conditions are the analogues of the Minkowski

boundary conditions in a mathematical sense only. The flat space Minkowski boundary

conditions in eq. (2.16) are easily recognized as κflat-spaceMink = −∂nϕMink,+,0/ϕMink,+,0 with

ϕMink,± ' e±iωt. Using the Bessel function recursion relation

∂yHν(y) =
ν

y
Hν(y)−Hν+1 , (3.13)

and the chain rule ∂η = −~k∂y (recall that ∂n = a−1∂η) a straightforward calculation yields

κBD = −
~k

a0

(
Hν+1(−~kη0)
Hν(−~kη0)

+
(d− 1) + 2ν

2~kη0

)

= −
~k

a0

(
Hν+1(−~kη0)
Hν(−~kη0)

)
+H

(d− 1) + 2ν

2
. (3.14)

Knowing the asymptotes of the Hankel functions

z → 0 : Hν(z) ∼ −i
1

sin(νπ)Γ(1 − ν)

(
2

z

)ν
= −iΓ(ν)

π

(
2

z

)ν
, (3.15)

z →∞ : Hν(z) ∼
√

2

πz
ei(z−

1
2
νπ− 1

4
π) , (3.16)

we see that for η0 → −∞ the Bunch-Davies boundary condition reduces to harmonic

oscillator boundary conditions

κBD ' −
|~k|
a0

(
e
iπ
2

)
+H

(d− 1) + 2ν

2

' −i |
~k|
a0

(3.17)

of a massless field. (One cannot say that the boundary conditions tend to Dirichlet, the

diverging a0 is compensated by the normal vector, see eq. (3.3).) The mass correction is

subleading in this limit. We should keep in mind though that this is a formal expression.

At η0 = −∞ the induced boundary volume vanishes, and boundary conditions cannot

easily be accounted for in terms of a boundary action.
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3.3 Transparent, thermal, adiabatic boundary conditions; fixed points of

boundary RG flow?

The most natural choice for the boundary conditions are arguably the ones which are

transparent. If there is no real interface at the boundary location y0, no physical effects

of its location should be noticeable. To define transparency we need a notion of incoming

and outgoing waves. A clean definition of such waves only exists in asymptotically flat

spaces. Suppose one establishes these and let us call the incoming wave (from the past) ϕ−
and the outgoing ϕ+. The transparent boundary conditions are then those with bκ = 0.

Of course de Sitter space is not asymptotically flat, but based on the asymptotic behavior

of the Bessel functions, one can argue that the basis functions ϕdS,− and ϕdS,+ defined

in (3.6) correspond to in- and out-going waves respectively. In that sense the Bunch-Davies

boundary conditions are the transparent ones.

A definition which is more intrinsic to de Sitter is that the Bunch-Davies boundary

conditions are the thermal boundary conditions. This emphasizes the existence of a cos-

mological horizon, and is probably tied to the notion of transparency. From the lagrangian

point of view the true vacuum should be a (UV) fixed point of boundary RG-flow. In the

presence of a global timelike Killing vector with a conserved quantum number ∂tφ = iEφ

such a fixed point is easily constructed following the Minkowski space example in sec-

tion 2.3. In cosmological spacetimes it is not clear what the fixed points of boundary

RG-flow are or whether there are any. The absence of a unique vacuum suggests that there

may be none. If we recall that cosmological expansion induces RG-flow, the definition of

the adiabatic vacuum, i.e. that the number operator on the vacuum change as slowly as

possible, becomes very interesting. It would be worthwhile to investigate these connections

between the transparent (i.e. Bunch-Davies), the thermal, and the adiabatic vacuum in

FRW backgrounds and fixed points of boundary RG-flow further.

3.4 Backreaction and renormalizability for arbitrary boundary conditions

We shall now make a crucial point. Any cosmological boundary condition κ, provided

it is a dimension-one analytic function of the spatial momenta, is consistent in the sense

that backreaction is under control. The divergences appearing in the stress tensor must,

of course, be regulated by the flat space counterterms of the same theory. This includes

the boundary counterterms for
∮
κφ2 and

∮
µφ∂nφ. Our review in section 2 has made

this clear. In a rather coarse fashion we can also see this directly from the FRW Green’s

function in the limit of high (spatial) momentum — in as far as this limit exists in a cut-off

theory. Using the asymptotic values of the Hankel functions, the basis functions φ±,dS(~k, η)
tend to massless Minkowski ones (the mass is negligible in the high momentum limit)

~k →∞ : φ±,dS(~k, η) '
1√
2~k

e±i
~kη

a
=
φ±,Mink(~k, η)

a
. (3.18)

The coefficient b encoding the effective boundary conditions for high-momentum modes

therefore does not vanish, but reads

b = −κφ+,Mink,0 + a−10 ∂ηφ+,Mink,0 −Hφ+,Mink,0

κφ−,Mink,0 + a−10 ∂ηφ−,Mink,0 −Hφ−,Mink,0
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= −a0κ+ i|~k|+ a0H

a0κ− i|~k|+ a0H
e2i|

~k|η0 . (3.19)

The last terms in the numerator and the denominator are negligible in this limit |~k| À
aH. They are remnants of the fact that the background breaks Lorentz invariance. The

coefficient b thus does not vanish in the high momentum limit. Because a non-zero b means

that there will be divergences in the theory aside from the ‘Minkowski’-space divergences,

it appears that any choice of boundary conditions with b 6= 0 is in trouble. In section 2

we reviewed, however, that this is not so. The additional divergences are localized on the

boundary surface where the boundary conditions are imposed, and can be reabsorbed in

a redefinition of the boundary couplings. Any choice for b (descending from a boundary

coupling κ that is dimension one and analytic in the spatial momenta) is consistent.

One is tempted to conclude that for any boundary condition imposed at η0 = −∞, the

high spatial momentum limit of b vanishes. This is true in the sense that if we keep κ fixed

our flat space intuition, that boundary effects vanish when the boundary is moved off to

infinity, continues to hold. However, this goes against the principles behind the framework

we advocate here. In the sense of the symmetry between boundary location and boundary

coupling κ, as explained in section 2.2, it is only the specific combination bκ which matters.

At what location η0 one imposes the boundary conditions κ is immaterial to the physics.

The conclusion is that the answer to the question “what boundary conditions should

we impose on quantum fields in FRW backgrounds” requires physics input rather than

internal consistency. The Bunch-Davies vacuum certainly seems the closest analogue of

Minkowski boundary conditions, even though it is not the naive covariantization of them.

The similarity suggests that the Bunch-Davies boundary conditions may correspond to a

fixed point of boundary RG-flow. At the same time Lorentz symmetry is still broken. If

they are renormalized, it would suggest that they are not special in any sense.

4. Transplanckian effects in Inflation

Inflationary cosmologies are the leading candidates to solve the horizon and flatness prob-

lems of the Standard Model of Cosmology. Consistency with the observed spectrum of

temperature fluctuations in the Cosmic Microwave Background (CMB) provides an esti-

mate of the Hubble parameter H during inflation. Depending on the model, H can be

as high as 1014 GeV. With the string scale Mstring = 1016 GeV as the scale of new physics,

this means that the suppression factor H/M of irrelevant operators could optimistically

be at the one-percent level. This opens a window of opportunity to experimentally witness

effects of Planck scale physics [1]. Besides its theoretical appeal, inflation is also the leading

candidate for early universe cosmology on experimental grounds. The most precise cosmo-

logical measurements to date, the temperature fluctuations in the CMB, advocate inflation.

The CMB measurements are therefore also the most promising arena where remnants of

transplanckian physics could show up. In inflationary cosmologies the CMB temperature

fluctuations originate in quantum fluctuations during the inflationary era. The issue of

vacuum selection in cosmological settings thus has immediate consequences for CMB pre-

dictions. At the classical level the Bunch-Davies choice is, for reasons reviewed in the
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previous section, the preferred one; it is the closest analogue to the Minkowski boundary

conditions. Previous investigations into effects of Planck scale physics suggest that the

CMB fluctuation spectrum is affected at leading order in H/MPlanck and that this effect is

precisely due to the choice of vacuum [2, 6]. Due to our ignorance of the details of Planck

scale physics (i.e. our lack of understanding of string theory in time-dependent settings),

decoupling in effective field theory is arguably the framework in which transplanckian cor-

rections must ultimately be understood [4]. By the addition of an arbitrary boundary

action encoding the boundary conditions, we have put the issue of vacuum selection on a

consistent footing with the ideas of effective field theory. In this comprehensive formula-

tion, we can deduce systematically what the effect of Planck scale physics is on boundary

conditions (vacuum selection) and whether its effect on CMB predictions is indeed leading

compared to bulk corrections.21

The Planck scale physics is encoded in irrelevant operators. The leading bulk irrelevant

operator 1
M2

∫
φ¤2φ consistent with the symmetries is dimension six. In section 2.4 we

constructed and derived the four leading irrelevant boundary operators in flat space

1

M

∮

y=y0

d3xφ4 ,
1

M

∮

y=y0

d3x ∂iφ∂iφ ,
1

M

∮

y=y0

d3x ∂nφ∂nφ ,
1

M

∮

y=y0

d3xφ∂n∂nφ .

(4.1)

compatible with unbroken ISO(3) symmetry. In a cosmological setting this is the require-

ment of homogeneity and isotropy. These operators are all dimension four and as the

explicit scaling shows, they are expected to be dominant over the leading bulk irrelevant

operator. In curved space these operators are covariantized. For a scalar field φ covarianti-

zation has only a significant effect on the last operator in (4.1). A new coupling is needed

which provides the connection for the covariant normal derivative

1

M

∮ √
hnµnν

(
φ∂µ∂νφ− φΓρµν∂ρ(g)φ

)
=

1

M

∮ √
hnµnνDµ∂νφ . (4.2)

Here hij = gµν∂ix
µ∂jx

ν is the induced metric on the boundary, and nµ its unit normal

vector. In FRW cosmology with the metric in the conformal gauge,

ds2FRW = a2(η)(−dη2 + dx23) , (4.3)

and an initial timeslice η = η0 as boundary, the induced metric, connection coefficients,

and normal vector are

hij = a20(δij) ,

nµ = a−10 δµη ,

Γηij = a0H0δij , Γiηj = a0H0δ
i
j , Γηηη = a0H0 . (4.4)

21The object of our study is an external scalar field in a fixed FRW background. Strictly speaking only

the gravitational tensor fluctuations are effectively described by such a model. However, our arguments

should apply to the scalar-metric fluctuations as well, since these only differ by an amplification factor of

the inverse slow-roll parameter.
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Here a0 ≡ a(η0) and H0 = H(η0) is the Hubble radius H = a−2∂ηa at η = η0. Substituting

these values we obtain the FRW version of the irrelevant operator

1

M

∮
a30φ (∂n −H) ∂nφ . (4.5)

We shall compute the effect of the leading irrelevant operators on the two-point corre-

lator of φ. In inflationary cosmologies, the latter determines the power spectrum of CMB

density perturbations. We will assume we can treat the four-point bulk λφ4 and (irrelevant)

boundary interaction
∮
φ4 perturbatively and will ignore them to first order. Combining

the remaining irrelevant boundary operators in a correction to the FRW boundary action,

one obtains

Sirr.op.
bound =

∮

η=η0

d3xa0

[
− β⊥
2M

∂iφ∂iφ−
β‖
2M

∂ηφ∂ηφ−
βc
2M

φDη∂ηφ

]
. (4.6)

The precise value of a coupling constants βi is determined by two parts. (1) It is determined

by the details of the transplanckian physics; e.g. if transplanckian physics is a free sector,

decoupling is exact and β = 0 (for dynamical gravity the sectors are never decoupled of

course), but (2) the couplings βi are also covariant under the symmetry between boundary

location and coupling. If we would have computed the irrelevant corrections to a boundary

condition at a different location y′0, we would have found different values βi which upheld

that all physical quantities only depend on the choice of boundary location through a

specific combination bκ,βi .

Two of the operators in eq. (4.6) contain normal derivatives. As discussed in section 2,

such operators can be removed by a discontinuous field redefinition and a change of the

remaining boundary couplings. We do so in appendix C. To lowest order in βi/M , eq. (4.6)

is equivalent to a boundary interaction (if the boundary coupling µ=0)

Sirr, leading =

∮
a30d

3x − φ2

2

[
~k21(β‖ − βc)

a20M
+
κ2β⊥
M
− βcm

2

M
− κ3βcH

M

]
, (4.7)

where m2 is the mass of the scalar field. Fourier transforming along the boundary, the

leading irrelevant correction thus amounts to a change in the boundary condition κ by22

κeff = κ0 +
~k21(β‖ − βc)

a20M
+
κ20β⊥
M
− βcm

2

M
− κ0

3βcH

M
. (4.8)

We clearly see that the leading correction to the low-energy effective action occurs at order

|~k|/a0M and H/M . For CMB physics the momentum scale of interest is |~k|/apresent ∼ H,

22Because the coupling κ is subject to renormalization, its value is fixed by a renormalization condition

and an experimental measurement. An important question therefore is, whether the effects of irrelevant

operators are experimentally measurable. The standard story, that (1) measured couplings always include

all relevant and irrelevant corrections, and that (2) the contribution of each coupling βi is an independent

contribution to the precise running of coupling κeff(βi) under RG-flow, should apply. A very precise

measurement of the scaling behaviour of κ should reveal the contributions of high energy physics encoded

in the irrelevant operators.
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and both are of the same order. The conclusion that the |~k| dependent operators are

suppressed by a factor a0/apresent is incorrect, when we recall that the location of the

boundary is arbitrary.

For a given FRW universe the Green’s function, including the H/M correction to

the boundary condition, can now simply be read off from eqs. (3.6)–(3.7). We can thus

straightforwardly compute the leading transplanckian effect on the power spectrum of

inflationary perturbations. The latter is related to the equal time Green’s function with

κf = κ̄ (see appendix E)

P (~k)κ = lim
η→0

~k3

2π2
Gκf=κ̄,κ(

~k, η;−~k, η)

= lim
η→0

~k3

2π2
|ϕbκ(~k, η)|2
(1− |bκ|2)

, (4.9)

where ϕbκ(
~k, η) is a solution to the (free) equation of motion, normalized according to

the inner product (3.8), and with boundary condition ∂nϕ| = −κϕ|. Note that the basis

functions ϕbκ only depend on the location of the boundary through the physical combination

bκ. This ‘independence’ of the location of the boundary guarantees that the power-spectrum

— a physical quantity — is so as well. For an infinitesimal change in the boundary

condition κ, we can treat the vertex
∮
−1

2δκφ
2 perturbatively, and the change in the power

spectrum simply amounts to computing the following Feynman diagram.

(4.10)

This immediately illustrates that if δκ is of order H/M , the change in the power spectrum

will be of order H/M . For completeness, we compute the power spectrum by de Sitter

Feynman diagrams in appendix E. With the effective change in κ corresponding to the

contributions of the irrelevant operators βi known, we can also simply expand the exact

solution for the power spectrum for any κ. Choosing the Hankel functions as basis as in

eq. (3.6), the solutions ϕbκ are given by

ϕbκ = ϕ+ + bκϕ− , bκ = −κϕ+,0 + ∂nϕ+,0

κφ−,0 + ∂nφ−,0
. (4.11)

For an infinitesimal shift δκ the power spectrum is thus

P (~k)κ+δκ = P (~k)κ + lim
η→0

~k3

2π2

[
δb

(1− |b|2)2ϕ
2
bκ + c.c.

]
+O(δb2) . (4.12)

Substituting the de Sitter values computed in the previous section, and using that asymp-

totically (see (3.16))

lim
η→0

ϕbκ,dS =
(1− b)
(b− 1)

lim
η→0

ϕbκ,dS , (4.13)

we find that

P (~k)κ+δκ = Pκ

(
1 +

1

(1− |b|2)2
[
δb

(1 − b)
(b− 1)

+ c.c.

])
. (4.14)
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Recall from eq. (2.14) that

δb = − δκϕ+,0

κϕ−,0 + ∂nϕ−,0
+
δκϕ−,0(κϕ+,0 + ∂ϕ+,0)

(κϕ−,0 + ∂nϕ−,0)2
. (4.15)

We see explicitly that the change in the power spectrum is also linear in H/M .

For the preferred Bunch-Davies vacuum choice, where b = 0, the corrections thus

become

PBD+δκ(~k) = PBD

(
1 +

[
δκ

ϕ2
+,0

−φ−,0∂nφ+,0 + φ+,0∂nφ−,0
+ c.c.

])
. (4.16)

It appears we have introduced a dependence on the boundary location, but we should

not forget that δκ intrinsically depends on y0 as well. The combination above is guaran-

teed to be independent of the boundary location. We recognize in the denominator the

normalization condition (3.8) (with ∂n = a−1∂η). The expression therefore simplifies to

PBD+δκ = PBD

(
1 +

[
δκ

φ2+,0

−ia−30

+ c.c.

]
+O(δκ2)

)
. (4.17)

Restricting our attention to de Sitter space, we insert the explicit expressions for the basis

functions φ+ from eq. (3.6), and obtain, using that a0 = ~k/Hy0,

P dS
BD+δκ = P dS

BD

(
1−

( π

4H

)[δκH2
ν(y0)

i
+ c.c

])
. (4.18)

Substituting the irrelevant operator induced δκ from eq. (4.8), we compute the following

corrections to the power spectrum

P dS
BD+δκ = P dS

BD

(
1− π

4H

[
H

2
ν(y0)

i

[
~k21(β‖ − βc)

a20M
+
κ2BDβ⊥
M

− βcm
2

M
− κBD

3βcH

M

]
+ c.c.

])
,

(4.19)

with (eq. (3.14))

κBD =
d− 1 + 2ν

2
H −

~k

a0

Hν+1(y0)

Hν(y0)
. (4.20)

This is our final result. Let us stress again, that the apparent dependence on the bound-

ary location is only that. The boundary couplings βi by construction compensate the y0
dependence and the whole expression is independent of y0.

5. Conclusion and outlook

The recent successes in CMB measurements exemplified by [8], have made the computation

of inflationary density perturbations a focal point of research. The computation of these

density perturbations suffers from a fundamental deficiency, however, that is at the same

time a wondrous opportunity. The enormous cosmological redshifts push the energy levels

beyond the bound of validity of general relativity, the framework in which these compu-

tations are done. From a field theoretic point of view general relativity can be viewed
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as the low energy effective action of a more fundamental consistent theory of quantum

gravity. This effective action has higher order corrections which when re-included increase

its range of validity. These higher order corrections encode the physics that is specific to

quantum gravity. Hence understanding the way these higher order corrections affect the

computation of inflationary density perturbations is both needed to restore consistency to

the computation, and provides an opportunity to witness glimpses of Planck scale physics

in a measurable quantity.

However, an action by itself is not sufficient to extract the physics of quantum fields.

One must in addition specify a set of boundary conditions. Which boundary conditions to

impose is always a physical question. In the hamiltonian language boundary conditions cor-

respond to a choice of vacuum state. In cosmological settings, due to the lack of symmetries

the correct choice of vacuum, i.e. boundary conditions, is ambiguous. A number of propos-

als, though, exist for the correct state. What we have discussed here, is that this vacuum

choice ambiguity can be framed in terms of the arbitrariness of a boundary action. This

puts the full physics in the form of a naturally coherent effective action. Deriving the power

spectrum of inflationary density perturbations within this framework, the lowest order cor-

rections are irrelevant boundary operators of order H/MPlanck. Because we are able to use

the language of effective field theory, not only is the parametric dependence of the inflation-

ary perturbation spectrum on high-energy physics known, the coefficients are also in prin-

ciple computable from the high-energy sector that has been integrated out. RG-principles

tell us that generically this coefficient will be non-zero, except for very special choices of

initial conditions and high energy completions of the low energy theory. In cosmological

spacetimes in particular the Lorentz symmetry which forbids the appearance of such correc-

tions in flat Minkowski space is absent. This makes the prediction that we can potentially

observe Planck scale physics in the cosmic sky quite strong, or equivalently the absence of

these effects would constrain the possible high energy completions, i.e. string theory.

Several earlier investigations have shown that the effects related to a choice of initial

conditions are not the only way in which high-energy physics can show up in cosmological

measurements. Effects due to a non-vanishing classical expectation value of high- [7] or

low-energy [3] fields, or a modified dispersion relation (see, e.g. [1]) can be of the same or-

der. The former two should fit into our framework by the explicit introduction of sources.

The latter presumes an all-order effective action, which is finite and therefore has a specific

kinetic term F(¤/Λ). The subleading effects in Λ obviously change the two-point corre-

lation function and hence the power spectrum. In RG-terms a specific choice of regulator

function F(¤/Λ) corresponds to a specific choice of UV-completion of the theory. The rel-

evant behaviour is universal and independent of the choice of F(¤/Λ), but the irrelevant

corrections are not, of course.

The introduction of a boundary action to account for the initial conditions, and its

behaviour under RG-flow including irrelevant corrections begs for a comparison with the

idea of holography. The latter suggests that (gravitational) theories in d-dimensional de

Sitter space have a dual formulation as a (euclidean boundary) conformal field theory of

dimension d− 1 [27, 28]. The cosmological implications of this conjectured correspondence

underline the universality and robustness of predictions for inflationary density perturba-
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tions precisely because they are related to RG characteristics in the dual d−1 dimensional

theory [10, 29, 30]. These qualitative similarities are striking, but there are crucial differ-

ences with the approach put forth here. Holography interchanges the IR and UV properties

of the dual theories. The UV physics of a three-dimensional euclidean field theory corre-

sponds to the IR of the four-dimensional de Sitter gravity and vice versa. The holographic

screen where the dual field theory lives corresponds to a boundary action in the de Sitter

future. Its precise position defines the UV cut-off in the euclidean field theory that should

completely describe the infinite interior (i.e. the past) of the de Sitter bulk gravity theory.

Time evolution in the bulk is then interpreted as RG-flow in the boundary field theory, and

so the IR physics in the field theory corresponds to the infinite past in the bulk. Instead

the boundary actions considered in this paper are introduced only to encode the initial

conditions in the past of the four dimensional de Sitter gravity theory. They are not dual

descriptions of the bulk de Sitter theory, but are merely introduced as effective tools to

describe the initial conditions in the bulk. Nevertheless, it would be very interesting to

study how the results described in this paper should be interpreted from the point of view

of a putative dual three-dimensional euclidean field theory.

That early times in cosmological theories are dominated by UV physics leads to a final

open question. Do cut-off theories in a cosmological setting cease to be valid beyond an

earliest time? Naively this is so, and that time would be a natural location for our boundary

action. The freedom, however, to impose initial conditions where-ever one wishes, means

that we do not need to answer this question to address the issue of boundary conditions

in FRW universes. This fact is made manifest in the symmetry (2.14) between boundary

location y0 and boundary coupling κ. Physics depends only on the invariant combination

bκ(y0). With the effective field theory description in mind, and the idea that ‘vacua’ are

boundary RG fixed points, a truly interesting question is whether such boundary conditions

exist, and if so, how they are related to the known cosmological vacuum choices.

5.1 A comparison with previous results and the discussion on α-states

Much discussion has taken place in the recent literature on the consistency of so-called

α-states in de Sitter space [4, 31]. Initial investigations into the sensitivity of inflationary

perturbations to high energy physics found that in pure de Sitter the leading H/M correc-

tions to the power spectrum can be interpreted as choosing the harmonic oscillator vacuum

(section 3.1) at the naive earliest time η0(~k) = −Λ/H|~k| where the theory makes sense,

rather than the Bunch-Davies choice [2, 6]. Imposing such boundary conditions in pure de

Sitter can equivalently be interpreted as selecting a non-trivial de Sitter invariant vacuum

state called an α-state [6]. Strictly speaking, the Shortest Length (SL) boundary conditions

are only imposed on momentum modes below the cut-off scale Λ of the theory, and they

are not true de Sitter α-states. Subject to this distinction, the purported inconsistency of

α-states, particularly with respect to the decoupling of Planck scale physics [31], therefore

would have major consequences. If α-states and other boundary conditions are all incon-

sistent, all high-energy physics would have to be encoded in bulk irrelevant operators. This

would put transplanckian effects in the CMB perturbation spectrum beyond observational

reach.
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Let us put first, that our results form solid evidence for the presence of H/M effects

affecting inflationary predictions for the CMB perturbation spectrum. As the explicit

expression (4.19) we derive for the power spectrum shows, our results, though qualitatively

similar, are quantitatively far more general from having ‘chosen’ an (cut-off) α-state. The

coherent effective lagrangian approach followed here gives a precise answer which differs in

general from the (earliest-time) α-state approach, but upholds the qualitative validity. One

can certainly ask to what choice of ‘vacuum state’ our results correspond; given the physical

parameter bκ this is straigtforward to work out. The answer may be interesting from

the point of view of hamiltonian dynamics, but as we have shown here, in the lagrangian

language of boundary conditions, any initial state which can be described by a local relevant

boundary coupling κ is consistent. There is no need to know whether α-states are consistent

to study transplanckian corrections to inflationary perturbations.

At the same time, vacuum choices, α-states included, do correspond to boundary

conditions.23 And boundary conditions should not spoil decoupling, although there will

be new effects, as we reviewed in section 2. Taking this lesson to heart, it is hard to see

how (earliest-time) α-states could be inconsistent. A recent article [32] arguing for the

consistency of α-vacua does not exactly follow the approach outlined here, but is very

much in the spirit of introducing boundary counterterms. An answer, however, is provided

by pursuing the discussion in section 3.1 further. The (cut-off) α-vacua correspond to

choosing earliest-time boundary conditions in an effective theory below scale M with the

physical parameter bSL a constant number. The precise relation is that bSL = eα. One

then readily derives that an α-vacuum corresponds to a boundary coupling (see eq. (3.11))

κSL = −∂nφ+(η
′
0) + bSL∂nφ−(η′0)

φ+(η′0) + bSLφ−(η′0)
. (5.1)

Recall that bSL is constant. To analyze the high spatial momentum behavior, we may

therefore approximate the modefunctions φ±(η′0) by their Minkowski counterparts. In this

limit the boundary coupling κSL encoding α-states becomes

|~k| → ∞, κSL ' −i
|~k|
a0

ei|
~k|η′0 − bSLe−i|~k|η′0

ei|~k|η
′
0 + bSLe−i|

~k|η′0
. (5.2)

The boundary coupling κSL therefore has an infinite set of poles

|~k| = −1
2η′0

((2n+ 1)π + i ln(bSL)) , n ∈ Z , (5.3)

in the momentum plane. Clearly this boundary coupling corresponds to a non-local action.

Cut-off α-states, i.e. shortest length boundary conditions, therefore fall outside the class

of local relevant boundary conditions we study here. But are they inconsistent? Recall

that the original studies [2, 6] argue that α-vacua should encode (first order) effects of

high-energy physics in the spectrum of inflationary density perturbations. This point of

23We are grateful to Brian Greene both for emphasizing the importance in explicitly discussing the

consistency of α-vacua and his help in resolving the issue.
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view therefore states that by construction the boundary coupling κSL includes the effects of

irrelevant boundary operators. We are therefore instructed to treat the non-local nature of

the boundary coupling κSL in the low-energy effective action in the usual way. One expands

around the origin |~k| = 0 in the momentum plane generating a series of higher derivative

irrelevant boundary operators with specific leading coefficients βi.
24 This expansion is

valid as long as we limit the range of our effective action to the location of the first pole

|~k| = 1
2|η′0|

√
|π + i ln bSL|2, i.e. physical momenta are constrained to the range |p0| = | ~ka0 | .

H
2 | ln bSL|. (Eq. (3.19) gives us bSL ' H/2Me−2iM/H−iπ/2 , and we recover the cut-off

|p| < M .) The fact that the complicated pole structure of boundary couplings of alpha-

vacua is highly specific (they ensure that (non-cut-off) α-vacua are invariant under de Sitter

isometries) is not to the point in this perspective. It is then also clear why α-vacua are

not renormalizable, in particular in the sense that the bare backreaction, the divergence in

the stress tensor, is to leading order not identical to that in Minkowski space. Irrelevant

operators correspond to non-renormalizable terms in the action. Because the pole structure

of the boundary coupling κ reveals that α-states are correctly to be interpreted as encoding

specific contributions from irrelevant operators, any correlation function computed with

respect to the α-vacuum, includes the contribution from these irrelevant operators. It is

therefore expected to be non-renormalizable. Obviously this does not mean that the α-

vacua are inconsistent. As always in effective actions one must ‘neglect’ any contributions

of irrelevant operators for the purposes of renormalization. They only make sense in a

theory with a manifest cut-off [24]. Removing the cut-off, removes the irrelevant operators.

Indeed the α-states proposed in [2, 6] with bSL ' H/2M are naturally in accordance with

this precept.

In this sense, the (cut-off) α-vacua are therefore manifestly consistent in the framework

put forth here. They simply correspond to a specific choice of leading and higher irrelevant

boundary operators. Whatever they are is not very interesting from the perspective of

effective field theory.25 A specific choice for the irrelevant operators means having chosen

a specific form for the high-energy transplanckian completion of the theory. But what this

physics is, is precisely the knowledge we are after.
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A. Green’s functions and boundary conditions

By definition the (real scalar) Green’s function is the inverse of the (real scalar) kinetic

operator26

(¤x − ω2)G(x, x′) = i
δd(x− x′)√−g = (¤x′ − ω2)G(x, x′) , G(x, x′) = G(x′, x) . (A.1)

For simplicity we reduce the spacetime to one timelike direction.
(
d2

dt2
+ ω2

)
G(t, t′) = −iδ(t− t

′)√
−g(t)

. (A.2)

The Green’s function is thus a solution to a inhomogeneous second order differential equa-

tion. The solution to (A.2) is therefore not unique; we can always add a combination of

the two linearly independent homogeneous solutions (denoted by the superscript (h)),
(
d2

dt2
+ ω2

)
φ
(h)
1 (t) = 0 ,

(
d2

dt2
+ ω2

)
φ
(h)
2 (t) = 0 , φ

(h)
1 (t) 6= φ

(h)
2 (t) , (A.3)

to a Green’s function and obtain another Green’s function. This ambiguity is resolved by

imposing a set of boundary conditions on the Green’s function. Consistency then requires

that the delta function appearing in eq. (A.2) obey these boundary conditions as well. Let

the Green’s function obey the boundary condition

∂tG(t, t′)|t=t0 = −κ0G(t0, t
′) . (A.4)

Acting with ∂t′ + κ0 on G(t, t′) in eq. (A.2), which clearly commutes with d2

dt2
+ ω2, we are

forced to conclude that

(∂t′ + κ0)

(
d2

dt2
+ ω2

)
G(t, t′)|t′=t0 = −i(∂t′ + κ0)

δ(t − t′)√
−g(t)

|t′=t0 = 0 . (A.5)

The delta function on the r.h.s. of eq. (A.2) is therefore not the naive Dirac delta-function,

but contains extra correction terms which contribute only on the boundary.

Limiting our attention to boundary conditions of the type eq. (A.4), i.e.

(∂t + κf )Gκf ,κ0(t, t
′)|t=tf = 0 ,

(∂t + κ0)Gκf ,κ0(t, t
′)|t=t0 = 0 , (A.6)

26Recall that we are using the + ++− convention; i.e. in Minkowski space ¤x = −∂
2
t + ∂2~x.
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at the two boundaries at tf and t0, we solve the ambiguity in the Green’s function in

this appendix. We do so because this subset of possible boundary conditions is a very

interesting one. It contains both the canonical Neumann and Dirichlet cases, and for Z2

symmetric scalars in effective field theory the boundary condition derived from all relevant

boundary interactions are of this form.

There are two standard ways to solve for the Green’s function. The hamiltonian

way picks the timelike direction t as a the preferred one. In multiple dimensions the

frequency ω is given by the eigenvalue of the remaining spatial component of the laplacian

−ω2Φω(~x, t) = ¤~xΦω(~x, t). For the timelike direction, however, the hamiltonian Green’s

function uses as building blocks the two independent homogeneous solutions to the kinetic

operator of eq. (A.3) multiplying stepfunctions θ(t− t′) and θ(t′ − t). With some insight

the boundary conditions are readily imposed. Realize that for the past boundary condition

only the part with θ(t′ − t0) will contribute; while for the future boundary condition only

the part with θ(tf − t′) will contribute. Write the Green’s function as

GHam
κf ,κ0

(t, t′) = NH
R
(
φ
(h)
bf

(t)φ
(h)
b0

(t′)θ(t− t′) + φ
(h)
b0

(t)φ
(h)
bf

(t′)θ(t′ − t)
)

≡ NH
R
(
(φ1(t) + bfφ2(t))(φ1(t

′) + b0φ1(t
′))θ(t− t′) +

+ (φ1(t) + b0φ2(t))(φ1(t
′) + bfφ2(t

′))θ(t′ − t)
)

= NH
R
(
(b0 − bf )

[
φ1(t)φ2(t

′)θ(t− t′) + φ2(t)φ1(t
′)θ(t′ − t)

]
+

+ (b0 − bf )bfφ2(t)φ2(t′) + φbf (t)φbf (t
′)
)
. (A.7)

Imposing the boundary conditions tells us that

NH
R φ

(h)
bf

(t′)
[
(∂x + κ0)(φ

(h)
1 (t) + b

(h)
0 φ

(h)
2 (t))t=t0

]
= 0 ,

NH
R φ

(h)
b0

(t′)
[
(∂x + κf )(φ

(h)
1 (t) + b

(h)
f φ

(h)
2 (t))t=tf

]
= 0 . (A.8)

Hence if the linear combination of modes φ
(h)
b0
≡ φ

(h)
1 + b

(h)
0 φ

(h)
2 satisfies the boundary

condition (∂t + κ0)φ
(h)
b0

(t)|t=t0 = 0 at t = t0, i.e.

b
(h)
0 = −κ0φ

(h)
1 (t0) + ∂tφ

(h)
1 (t0)

κ0φ
(h)
2 (t0) + ∂tφ

(h)
2 (t0)

, (A.9)

and similarly for tf , the boundary conditions are obeyed. Finally NH
R is determined by the

normalization condition ( d
2

dt2 + ω2)G = −iδ.

NH
R =

i

(b
(h)
0 − b

(h)
f )

(
φ
(h)
1 ∂φ

(h)
2 − φ

(h)
2 ∂φ

(h)
1

) . (A.10)

It is a standard exercise to show that the Wronskian (the Klein-Gordon inner product) is

independent of t.

The lagrangian way treats all directions on the same footing. Recall that the frequency

ω is determined in terms of the eigenmodes of the spatial component of the laplacian.
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The lagrangian Green’s function similarly uses eigenfunctions of the temporal laplacian as

building blocks,
d2

dt2
φ(n)(t) = −σ2(n)φ(n)(t) . (A.11)

We assume that σ(0) = 0 for simplicity. For each n there will be two real solutions to

the eigenfunction equation φ
(n)
1 and φ

(n)
2 . Together they form an orthogonal and complete

set over a covering space containing the domain t ∈ [t0, tf ] (in general with the measure√
−g(t))

∫

D
dt
√−gφ(n)i (t)φ

(m)
j (t) =

δm,nδi,j
µ(n)

,

∑

i,n

µ(n)φ
(n)
i (t)φ

(n)
i (t′) =

δ(t− t′)√
−g(t)

. (A.12)

Here µ(n) is the measure on the ‘dual’ space. If the integral over t is over a non-compact

domain, the sum over the eigenfunctions becomes an integral. Contrary to the statement

below (A.3), the boundary conditions for the lagrangian Green’s function are not satisfied

by adding homogeneous terms. This can be traced back to the fact the delta function

appearing in ( d
2

dt2
+ ω2)G = −iδ must obey the boundary conditions as well. This is done

by the introduction of image charges in the covering space outside the domain t ∈ [t0, tf ]

of interest. An immediate consequence of the fact that the covering space is larger than

the domain [t0, tf ] is that one expects the mode sum will be truncated to only those

modes which obey both boundary conditions. Here this is a direct consequence of the

type of boundary conditions we are interested in. The conditions (∂t + κ0,f )φ|t=t0 ,tf = 0

clearly leave the normalization undetermined. For a linear combination which satisfies one

boundary condition, only a subset of the modes will obey the other. Choosing modes which

manifestly obey the boundary condition at t = t0, this subset is of course those modes for

which

∂tφ
(n)
1 (tf ) + b

(n)
0 ∂tφ

(n)
2 (tf ) = −κf

(
φ
(n)
1 (tf ) + b

(n)
0 φ

(n)
2 (tf )

)

⇒ b
(n)
0 = −κfφ

(n)
1 (tf ) + ∂φ

(n)
1 (tf )

κfφ
(n)
2 (tf ) + ∂φ

(n)
2 (tf )

≡ b
(n)
f . (A.13)

The lagrangian Green’s function then equals

GLag
κf ,κ0

(t, t′) = iNL
R

trunc(κf )∑

n6=h

µ(n)
φ
(n)
b0

(t)φ
(n)
b0

(t′)

σ(n)2 − ω2
. (A.14)

The normalization N L
R is determined by the condition ( d

2

dt2
+ ω2)G = −iδ. For this one

needs the explicit form of the eigenmodes.

Because the boundary conditions uniquely determine the solution to a second order

PDE, the lagrangian Green’s function eq. (A.14) and hamiltonian Green’s function (A.7)

are of course equal. In general this is difficult to show, but in specific cases one can do

so. The most straightforward way is to decompose the hamiltonian Green’s function into
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the complete set of modes φ
(ntrunc)
b0

. If the domain x is non-compact and the mode sum in

the lagrangian Green’s function becomes an integral, contour integration is another way to

show equivalence. This contour will reveal multiple step functions, which contribute on the

boundary, but are always constant on the domain [t0, tf ]. This way the lagrangian Green’s

function recovers the statement that homogeneous terms enforce the boundary conditions.

All these Green’s functions can be written in a complex basis of eigenfunctions ϕ± =

φ1± iφ2 (Note the script ϕ notation for complex eigenfunctions). Sometimes this is a more

condensed notation. One easily computes that

φb0 ≡ φ1 + bR0 φ2 , with bR
0 = −κ0φ1(t0) + ∂φ1(t0)

κ0φ2(t0) + ∂φ2(t0)

=
1

2

(
(1− ibR

0 )ϕ+ + (1 + ibR
0 )ϕ−

)
. (A.15)

The combination (1± ibR
0 ) can be related to the complex basis angle bC

0 :

(1 + ibR
0 )

(1− ibR
0 )

= −κ0ϕ+(t0) + ∂ϕ+(t0)

κ0ϕ−(t0) + ∂ϕ−(t0)
= bC0 . (A.16)

Defining the complex analogue ϕb = ϕ+ + bCϕ−, we find the relation between the real and

complex bases,

φb0 = Cκ0(t0)ϕb0
= Cκ0(t0)ϕb0 = Cκ0(t0)bC0ϕb0 ,

C ≡ − (κ0ϕ−(t0) + ∂ϕ−(t0))
κ0ϕ+(t0) + ∂ϕ+(t0)− (κ0ϕ−(t0) + ∂ϕ−(t0))

. (A.17)

Note that for real κ the quantity bC
0 equals the inverse of its complex conjugate bC

0 = 1/b
C
.

Hence ϕb ≡ ϕ− + bϕ+ = 1
b (ϕ+ + bϕ−) = 1

bϕb. In appendix B we shall argue that κ

should be treated as real throughout the calculation. For boundaries at a fixed time, i.e.

initial conditions, κ will be imaginary, but the correct results are only reproduced if one

analytically continues from real κ in the final correlation functions. We shall therefore

treat κ as real always.

In this complex basis the hamiltonian Green’s function equals

GHam
κf ,κ0

(t, t′) = NH
C
(
ϕbf (t)ϕbi(t

′)θ(t− t′) + ϕbi(t)ϕbf (t
′)θ(t′ − t)

)

=
NH

C
bf

(
ϕbf (t)ϕbi(t

′)θ(t− t′) + ϕbi(t)ϕbf (t
′)θ(t′ − t)

)
. (A.18)

The normalization condition gives us that

NH
C =

−i
(1− bibf ) (ϕ+∂ϕ− − ϕ−∂ϕ+)

. (A.19)

The lagrangian Green’s function in the complex basis is

GLag
κf ,κ0

(t, t′) = iNL
C
∑

n6=h

µ(n)
ϕ
(n)
b0

(t)ϕ
(n)
b0

(t′)

σ2(n)− ω2
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= iNL
C
∑

n6=h

µ(n)
1

b
(n)
0

ϕ
(n)
b0

(t)ϕ
(n)
b0

(t′)

σ2(n)− ω2

= iNL
C
∑

n6=h

µ(n)

(
ϕ
(n)
+ (t) + b

(n)
0 ϕ

(n)
− (t)

)(
ϕ
(n)
− (t′) + b

(n)
0 ϕ

(n)
+ (t′)

)

σ2(n)− ω2
. (A.20)

Again to determine N L
C one needs the explicit eigenfunctions: the terms with∑

ϕ(t)−ϕ(t′)−, and
∑
ϕ(t)+ϕ(t

′)+ generically do not vanish. If these terms solely con-

tain contributions from the image charges, then N L
C ∼ 1/(1 + bb).

A.1 Some simple examples

In flat space Rd−1,1 the spatial and temporal components of the kinetic operator sepa-

rate cleanly and the complex mode functions are ϕ
(h)
± = e±iωt; ϕ(n)

+ (t) = eint. Therefore

ϕ+∂ϕ− − ϕ−∂ϕ+ = −2iω,
∫
dtei(n−m)t = 2πδn,m, and

∑
n

1
2πe

in(t−t′) = δ(t − t′). Further-

more

b
(n)
0,f = −κ0,f + in

κ0,f − in
e2int0,f . (A.21)

Thus the hamiltonian Green’s function is

GHam
κf ,κ0

(t, t′) =
1

2ω(1− b0bf )

((
e−iω(t−t

′) − κf − iω
κf + iω

e−iω(2tf−t−t
′) −

− κ0 + iω

κ0 − iω
e−iω(t+t

′−2t0) + (A.22)

+
κf − iω
κf + iω

κ0 + iω

κ0 − iω
e−iω(2tf−2t0−t+t

′)

)
θ(t− t′) + (t↔ t′)

)
.

The lagrangian Green’s function, on the other hand, gives

GLag
κf ,κ0

(t, t′) = iNL
C

trunc,κf∑

n6=ω

1

2π

ein(t−t
′) − κ0+in

κ0−ine
in(2t0−t−t′) − κ0−in

κ0+in
ein(t+t

′−2t0) + ein(t
′−t)

n2 − ω2

= i(2NL
C )

1

2π

trunc,κf∑

n6=ω

ein(t−t
′) − κ0+in

κ0−ine
in(2t0−t−t′)

n2 − ω2
. (A.23)

Recall the admonition below eq. (A.17): κ is assumed to be real. We see that for flat space

NL
C = 1/2. The sum ranges over those modes for which

2i(n2 + κfκ0) sin(2n(tf − t0))− 2in(κf − κ0) cos(2n(tf − t0)) = 0 . (A.24)

For κf = 0 = κi (hence b0,f = e2int0,f ), we indeed recognize the Green’s function with

Neumann boundary conditions at both ends:

GHam
κf ,κ0=0(t, t

′) =
1

2iω sin(ω(tf − t0))
[ (

cos(ω(tf − t0 − t+ t′))θ(t− t′) + (t↔ t′)
)
+

+ cos(ω(t+ t′ − t0 − tf )
]
,

GLag
κf ,κ0=0 = i

1

2π

trunc,κf=0∑

n6=ω

ein(t−t
′) + ein(2t0−t−t

′)

n2 − ω2
, (A.25)
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where the sum is over the modes n = mπ/2(tf − t0), m ∈ Z. If we push the boundary

tf off to infinity, the mode sum becomes an integral. Evaluating this integral by contour

integration we recognize the step functions in the hamiltonian Green’s functions plus terms

proportional to θ(2t0− t− t′) and θ(t+ t′− 2t0), each multiplying homogenous solutions of

the kinetic operator. For the domain of interest t ∈ [t0,∞), only the term with θ(t+t′−2t0)
contributes, and we recover (part of) the homogeneous terms in the hamiltonian Green’s

function. Choosing κf = ∞ = κ0 (hence b0,f = −e2int0,f ) we similarly recover the doubly

Dirichlet Green’s function.

As we will show next (in appendix B) a particularly relevant choice of boundary cou-

plings is κ0 = −κf = −iω (hence b0 = bf = 0). From the expressions (A.22)-(A.23), we

see that this choice reproduces the flat Minkowski space Green’s functions (subject to the

mode selection rule (A.24) reflecting the finiteness of the domain [t0, tf ]). Note that we

obtained this result without an iε precription. This should be no surprise. The primary

purpose of the iε prescription is precisely to ensure that the Green’s function obeys the

right boundary conditions.

B. Initial states in transition amplitudes, path integrals and fixed time-

slice boundaries

A naive Wick-rotation argues that the boundary action coupling constant κ is imaginary

for boundaries in time. For a real scalar field such a boundary condition,

∂tφ = −i|κ|φ , (B.1)

is at first sight inconsistent. We have stated that analyticity in the coupling constants

for correlators computed in perturbation theory provides a resolution. One should treat

κ as real, and only analytically continue the correlation functions (including the Green’s

function) to complex or imaginary κ.

Here we show that this prescription is advocated by the relation of the path-integral

to quantum-mechanical transition amplitudes. Recall that after a spatial Fourier trans-

formation a field can be considered as an infinite set of harmonic oscillators, each with

action

Sbulk =

∫ tf

t0

dt

[
q̇2

2
− ω2q2

2

]
. (B.2)

This action is obtained from the quantum-mechanical transition amplitude
∫
DxeiSbulk = 〈xN , tf |e−iĤ(tf−t0)|x1, t0〉 , Ĥ =

p̂2

2
+ ω2 x̂

2

2
, (B.3)

by splitting the interval tf − t0 into N smaller intervals of length (tf − t0)/N , inserting

N − 1 complete sets of |x〉 and N complete sets of |p〉 states, and taking the continuum

limit N →∞. This derivation makes clear that the action (B.2) has boundary conditions

q(tf ) = xN , q(t0) = x1, and that the endpoints are not integrated over. Also clear is that

temporal boundaries are quantum-mechanically on a very different footing than spatial

boundaries. The latter simply affect the spatial modefunctions. Temporal boundaries,

however, are encoded in the choice of initial and final state.
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For the free theory, a gaussian integral, the exact answer for the transition amplitude is

easily obtained. One substitutes the solution to the field equation with boundary conditions

q(tf ) = xN , q(t0) = x1 into the action. Note that as the endpoints are not integrated over,

the field equation is derived under the condition that the variation δq vanishes on the

boundary, δq(tf ) = 0, δq(ti) = 0. One finds the well-known results (up to normalizations,

which we ignore throughout this appendix)

qsol1(t) = Deiωt + c.c. , D ≡ xNe
−iωt0 − x1e−iωtf

2i sin(ω(tf − t0))∫
Dx eiSbulk = exp

[
−ω

(
D2(e2iωtf − e2iωt0)

2
− c.c.

)]

≡ eiS
bg, bulk(xN ,x1) . (B.4)

Consider now the transition amplitude for a different initial state. In particular let us

choose the harmonic oscillator vacuum |0〉 annihilated by â = 1
2 (ip̂+ ωx̂). This corresponds

to the Minkowski space vacuum for the field mode with frequency ω. The transition

amplitude 〈xN |e−iĤ(tf−t0)|0〉 can be obtained from the standard transition amplitude by

the insertion of a complete set of states

〈xN |e−iĤ(tf−t0)|0〉 =
∫
dx1〈xN |e−iĤ(tf−t0)|x1〉〈x1|0〉 . (B.5)

We can evaluate this expression in two ways. Either we can substitute the harmonic oscil-

lator ground state wave function 〈x1|0〉 ' e−ωx
2
1/2 and the result (B.4) for the propagator.

Performing the remaining gaussian integral over x1,
∫
dx1 e

iSbg,bulk(xN ,x1)e−
ωx21
2 = e−

ωx2N
2 , (B.6)

the result simply states that |0〉 is the zero energy eigenstate of the (normal-ordered)

hamiltonian. Or we can again derive a path-integral by splitting the interval tf − t0 into N

smaller intervals, now inserting N complete sets of |x〉 and N complete sets of |p〉 states,
and taking the continuum limit N → ∞. Doing so yields the bulk action (B.2) plus a

boundary term

Sbulk+bdy =

∫ tf

t0

dt

[
q̇2

2
− ω2q2

2

]
− κ0

q(t0)
2

2
. (B.7)

As is clear from the ground state wave function 〈x1|0〉 the boundary coupling κ0 will

be imaginary and equal to κ0 = −iω. The Wick rotation intuition that the boundary

couplings for spacelike boundaries are imaginary is confirmed. The answer for the transition

amplitude 〈xN |e−iĤ(tf−t0)|0〉 ought then follow from solving the field equations for this

action including the boundary term, and substituting the solution back. The extra insertion∫
dx1|x1〉〈x1| means that the endpoint q(t0) is now integrated over. The fluctuation δq(t0)

therefore no longer vanishes and we obtain the field equations
(
d2

dt2
+ ω2

)
q(t) = 0 , and − d

dt
q(t0)− κ0q(t0) = 0 , (B.8)

plus the implicit boundary condition q(tf ) = xN .
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Because the coordinate q(t) is manifestly real, one has to give a prescription how to

deal with the boundary condition (B.8) for imaginary κ. It is quite obvious that insisting

on q real, i.e. dq/dt(t0) = 0 = q(t0), or insisting that the action remain real, q2 → |q|2, will
not reproduce the known answer (B.6). However, if we simply proceed on the assumption

that κ is real, i.e.

qsol2(t) = A(eiωt + b0e
−iωt) ,

A(eiωtf + b0e
−iωtf ) = xN , b0 = −κ0 + iω

κ0 − iω
e2iωt0 , (B.9)

the answer for the background value of the action,

Sbg, bulk+bdy =
iω

2

(
x2N

(1 + be−2iωtf )2
−A2b2e−2iωtf

)
, (B.10)

precisely reproduces the answer (B.6) for κ0 = −iω (hence b = 0). This is therefore the

prescription for dealing with imaginary boundary couplings: assume κ is real until the final

answer, and only then analytically continue.

In the above example we have, of course, restricted ourselves to free field theory.

One can repeat the whole exercise, however, with the inclusion of a bulk source term

iS → iS +
∫
dtJ(t)q(t) representing interactions. Treating the source perturbatively, we

expand into fluctuations ξ around the background solution, q(t) = qsol(t)+ξ(t). Integrating

the fluctuations out, we obtain for the action

Sbulk+bdyκf ,κ0
(q) =

∫
dt

[
q̇2

2
− ω2 q

2

2
− iJq

]
+ κf

q(tf )
2

2
− κ0

q(t0)
2

2
, (B.11)

the result

Sbg, bulk+bdy
κf ,κ0

(J ; qsol) = Sbg, bulk+bdy
κf ,κ0

(0) − i
∫
dtJ(t)qsol(t)−

− i
2

∫
dtdt′ J(t)Gκf ,κ0(t, t

′)J(t′) . (B.12)

where Gκf ,κ0(t, t
′) is the Green’s function of appendix A. Note that at endpoints where q(t)

is not integrated over, i.e. when δq(tend) is constrained to vanish, ξ(tend) also vanishes. At

these points the Green’s functions for the fluctuations ξ therefore obeys Dirichlet boundary

conditions with κend = ∞. For the transition function 〈xN |e−iĤ(tf−t0)|x1〉 we thus have

κf = ∞ = κ0, whereas for the transition function 〈xN |e−iĤ(tf−t0)|0〉 we have κf = ∞,

κ0 = −iω. Equivalence between the two transistion functions including bulk sources is

thus established if

∫
dx1 exp

[
iSbg, bulk+bdy
κf,0=∞ (J ; qsol1(xN , x1))

]
〈x1|0〉 = exp


iSbg, bulk+bdy

κf=∞,
κ0=−iω

(J ; qsol2(xN ))


 .

(B.13)

The only dependence on x1 is in qsol1(t) (eq. (B.4)). Using the Green’s functions of ap-

pendix A, which are derived with the assumption that κ is analytic, it is an instructive
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exercise to verify that eq. (B.13) is indeed true. The prescription to deal with imaginary

κ by analytic continuation to imaginary values in the final correlation functions, therefore

holds for perturbation theory as well.

This example is an explicit manifestion of the fact that (in perturbation theory) all cor-

relation functions are analytic in the coupling constants. This necessarily includes bound-

ary couplings, which for a fixed time boundary correspond to initial conditions.

C. Boundary field redefinitions in the presence of irrelevant operators

We provide here the details behind the discontinuous shift of the field φ on the bound-

ary which effectively sets the coefficients of the relevant and irrelevant operators
∮
φ∂nφ,∮

(∂nφ)
2 and

∮
φ∂2nφ to zero.

After one integrates out high energy degrees of freedom, the most general form of the

boundary action including the leading irrelevant boundary operators is

Sbound =

∮
d3x− κ

2
φ2 − µ

2
φ∂nφ−

β‖
2M

∂iφ∂iφ−
β⊥
2M

∂nφ∂nφ−
βc
2M

φ∂2nφ . (C.1)

Let us focus on the last operator for a moment. It is well known that in effective

field theories (bulk) irrelevant operators of dimension p containing the factor ∂ 2
t φ can

be removed by a field redefinition at the expense of introducing irrelevant operators of

dimension q > p [33, 34]. The only new element here is that the irrelevant operator is

localized on the boundary. Generalizing, we see that the discontinuous field redefinition

φ(y)→ φ(y) + δ(y0 − y)
βc
M
φ(y) (C.2)

precisely generates a term that cancels the coefficient of
∮
φ∂2nφ to first order in βc. To

this same order the other couplings change as

κ′ = κ+
βc
M

(−m2 + 2κδ(0) + µδ′(0)) ,

µ′ = µ+
βc
M

(2µ− 2)δ(0) ,

β′‖ = β‖ − βc ,
β′⊥ = β⊥ , (C.3)

with primed quantities denoting the effective value after the field redefinition (C.2). Here

m2 is the bulk mass. We have ignored any bulk contributions to the boundary action of

order φ3 and higher, having perturbation theory in mind. In appendix D we show that the

explicit delta functions at zero argument, δ(0), serve to make all distributions conform to

the boundary condition ∂nf(y) = −κf(y).
To account for all couplings conflicting with the calculus of variations, µ, β‖, and βc

we combine the discontinuous field redefinition (C.2) with a discontinuous field redefinition

of the form considered in section 2.

φ(y)→ φ(y) + θ(y0 − y) [α1φ(y) + α2∂nφ(y) + · · ·] + δ(y0 − y) [α̃φ(y) + · · ·] . (C.4)
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We have left the coefficient α̃ arbitrary; as we will see there are additional compensations

necessary beyond α̃ = βc/M . Note that both α̃ and α2 have dimensions ofM−1. Consistent
with the degree of approximation of the effective action, the field redefinition is an expansion

in irrelevant terms to first order in M−1.

Formally we can solve for αi, α̃ in terms of µ, β⊥ and βc, so that the coefficients of

the operators
∮
φ∂nφ,

∮
(∂nφ)

2 and
∮
φ∂2nφ vanish. The initial action Sbound of eq. (C.1) is

therefore equal to an effective boundary action

Seff =

∮
d3x − κeff (αi, ∂i)

2
φ2 (C.5)

with the solutions for αi substituted. (We absorbed the
∮
β‖∂

iφ∂iφ into a momentum

dependent κeff(∂i)). At the end of the day we are only interested in the solution up to

linear order in β⊥, βc. Higher order terms in β⊥ and βc would require the inclusion of

higher order irrelevant operators for consistency. We may therefore linearize the problem

and solve the system order by order in β⊥, βc. Substituting the zeroth and first order terms

α1 = α10 + α12
β⊥
M

+ α13
βc
M

+O
(
β2

M2

)
,

α2 = 0 + α22
β⊥
M

+ α23
βc
M

+O
(
β2

M2

)
,

α̃ = 0 + α̃42
β⊥
M

+ α̃43
βc
M

+O
(
β2

M2

)
, (C.6)

where α10 is the solution given in eq. (2.5), one finds (ignoring the zeroth order term in
β⊥, βc)

Sbound = S−1 + S0 + S11
+ S12

,

S12
=

∮
d3xφ∂2

nφ

[
β⊥
M

(−α10α22

4
− α̃42

2
− α̃42α10

4
− µ

4
α22

(
1 +

α10

2

))
+

+
βc

M

(−α10α23

4
− α̃43

2
− α̃43α10

4
− µ

4
α23

(
1 +

α10

2

)
− 1

2

(
1 +

α10

2

)2
)]

,

S11
=

∮
d3x ∂nφ∂nφ

[
β⊥
M

(−α22

2
− α22α10

4
− µ

4
α22

(
1 +

α10

2

)
− 1

2

(
1 +

α10

2

)2
)
+

+
βc

M

(
−α23

2
− α23α10

4
− µ

4
α23

(
1 +

α10

2

))]
,

S0 =

∮
d3xφ∂nφ

[
β⊥
M

(−α12

2
− α12α10

2
+
α10α22

2
δ(0)− 3Hα̃42

2

(
1 +

α10

2

)
+

+ α̃42

(
1 +

3α10

2

)
δ(0)− κα22

2

(
1 +

α10

2

)
−

− µ

2

(
(α12 + 2α̃42δ(0))

(
1 +

α10

2

)
− α22(1 + α10)

)
+

+ α10

(
1 +

α10

2

)
δ(0)

)
+

+
βc

M

(−α13

2
− α13α10

2
+
α10α23

2
δ(0)− 3Hα̃43

2

(
1 +

α10

2

)
+
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+ α̃43

(
1 +

3α10

2

)
δ(0)− κα23

2

(
1 +

α10

2

)
−

− µ

2

(
(α13 + 2α̃43δ(0))

(
1 +

α10

2

)
− α23(1 + α10)

)
+

+ α10

(
1 +

α10

2

)
δ(0)

)]
,

S−1 =

∮
d3xφ2

[
β⊥
M

(
α12α10

2
δ(0) +

α̃42

2
m̂2

(
1 +

α10

2

)
+
α̃42α10

2
δ′(0)− α̃42α10δ

2(0) +

+
3Hα̃42α10

2
δ(0)− κ

((α12

2
+ α̃42δ(0)

)(
1 +

α10

2

))
−

− µ

2

(
−
(α12

2
+ α̃42δ(0)

)
α10δ(0) + (−α12δ(0) + α̃42δ

′(0))
(
1 +

α10

2

))
−

− α2
10

2
δ2(0)

)
+

+
βc

M

(
α13α10

2
δ(0) +

α̃43

2
m̂2

(
1 +

α10

2

)
+
α̃43α10

2
δ′(0)− α̃43α10δ

2(0) +

+
3Hα̃43α10

2
δ(0)− κ

((α13

2
+ α̃43δ(0)

)(
1 +

α10

2

))
−

− µ

2

(
−
(α13

2
+ α̃43δ(0)

)
α10δ(0) + (−α13δ(0) + α̃43δ

′(0))
(
1 +

α10

2

))
+

+
α10

2

(
1 +

α10

2

)
δ′(0)

)]
. (C.7)

These equations can be explicitly solved (e.g. α23 = 0). For the case µ = 0 (as in Bunch-

Davies for instance), and hence α10 = 0, the solutions are easily found: α23 = 0, α22 = −1,
α̃42 = 0, α̃43 = −1, α13 = (2δ(0) − 3H), α12 = κ, with the answer for S−1:

S−1 =
∮
d3x − φ2

2

[
κ+

β⊥
M

κ2 − βc
M

(
m2 + k2 − 3Hκ

)
+ 4κ

βc
M
δ(0)

]
. (C.8)

As we will show in the next appendix, the term κβcδ(0) solely served to make all distri-

butions consistent with the boundary condition ∂nf(y) = −κf(y). We may therefore drop

this term, as long as we remember this.

D. Distributions, boundary conditions and the equivalence between per-

turbation field theory and field redefinitions

The result (C.8) for the effective boundary action after the field redefinition suggests that

the correction to the two-point function due to irrelevant operators contains delta func-

tions at zero argument. In the perturbative Feynman diagram approach to the two-point

function, which we perform in the next appendix, we shall find no explicit δ(0) terms. Yet

the two approaches are manifestly equivalent, so somehow a further step is needed in the

field redefinition approach to explain why no δ(0) term arises in the two-point correlator.

To understand the equivalence between the two approaches better, consider a matrix

integral simplification of the path integral

〈xkxl〉 =
∫
dxixkxle−

Aijx
ixj

2
−κijx

ixj

2
−βijx

ixj

2 . (D.1)
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Here κij and βij correspond to the boundary interactions; whereas Aij is the kinetic oper-

ator. We will now evaluate this integral in two ways (1) by a saddlepoint approximation,

i.e. a Feynman diagram expansion with βij treated as an interaction, and (2) by a field

redefinition which absorbs βij at the expense of redefining κij. Expanding the answer (2)

to linear order in βij we should reobtain the Feynman diagram result.

The Feynman diagram approach: expanding to linear order in βij we find that

〈xkxl〉 =
∫
dxixkxl

(
1− βijx

ixj

2
+ · · ·

)
e−

(A+κ)ij
2

x2

= N
∂

∂Jk

∂

∂Jl

(
1− βij

2

∂

∂Ji

∂

∂Jj

)
e
1
2
JiG

ij
κ Jj

∣∣∣∣
J=0

. (D.2)

Here N is an unimportant normalization, and we have introduced the Green’s function

Gκ = (A+ κ)−1.27 The gaussian integrals are easily evaluated to

〈xkxl〉 = Gkl
κ − βijGjl

κG
ik
κ +

(
1− βij

2
Gij
κ

)
Glk
κ . (D.3)

We clearly recognize the connected and loop diagrams.

Field redefinitions: the field redefinition is designed such that to first order the contri-

bution from the kinetic part cancels the βij factor. Hence

xi → xi − Gijβjk
2

xk =

(
1− Gβ

2

)
x ≡ Sx , (D.4)

where we have introduced a second Green’s function G ≡ A−1. Note that G 6= Gκ. Under

this field redefinition the integral becomes

〈xkxl〉 = SkpS
l
q

∫
dx |Jac|xpxqe−

x>S>(A+κ+β)Sx
2 . (D.5)

The jacobian |Jac| will contain the loop diagrams. Our interest only extends to connected

diagrams and we may therefore ignore it. Expanding to linear order in βij we get

〈xkxl〉 = SkpS
l
q

∫
dx |Jac|xpxqe

− 1
2
x>
(
A+κ−κGβ

2
−β

>Gκ
2

)
x
. (D.6)

The term proportional to κβ is exactly the problematic one, as we will see. Thus the

two-point function is easily evaluated to

〈xkxl〉 = SkpS
l
q

(
Gκ +Gκ

(
κGβ + β>Gκ

2

)
Gκ

)pq

=

(
Gκ −

GβGκ

2
− Gκβ

>G
2

+Gκ

(
κGβ + β>Gκ

2

)
Gκ

)kl
(D.7)

=

(
Gκ −

Gκ

2

(
(A+ κ)Gβ − κGβ − β>Gκ+ β>G(A + κ)

)
Gκ

)kl

= (Gκ −GκβGκ)
kl . (D.8)

27In the following we will use matrix and index notation interchangeably. It should be clear from the

context which notation is being used.
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In the second to last step we recalled that Gκ = (A + κ)−1. We see that we exactly

reproduce the connected diagrams as expected.

Applying these lessons to field redefinitions on the boundary: as eq. (D.7) shows

field redefinitions which are localized on the boundary ought to have no effect on bulk

correlators. This means that the fourth term in (D.7) ought to reproduce the Feynman

diagram computation. If the κGβ factor contains the δ(0) term, this appears not to be the

case. The resolution follows from repeating the steps (D.7) in detail in the field theory.

If we consider the index i as the location in the y direction, we easily see that in

the (free) field theory of section 2 with boundary interaction (C.1) and β⊥ = β‖ = 0 the

matrices A, κ, β correspond to the differential operators.

Aij = A(y1, y2) = δ(y1 − y2)∂1∂2 ,
κ = κcoδ(y0 − y1)δ(y1 − y2) ,
β = βcoδ(y1 − y2)δ(y0 − y1)¤2 . (D.9)

We have given the couplings a subscript co to distinguish them from the matrix operators.

We easily compute that

A−1(y1, y2) = G(y1, y2) with ¤G = −δ(y1 − y2) and ∂yG = 0

Gβ = βco

∫
dy2G(y1, y2)¤2δ(y2 − y3)δ(y0 − y2)

= −βcoδ(y1 − y3)δ(y0 − y3) . (D.10)

The transformation S is thus indeed the one we consider in eq. (C.2).

∫
dy2S(y1, y2)φ(y2) =

∫
dy2δ(y1 − y2)φ(y2) +

βco
2
δ(y1 − y2)δ(y0 − y2)φ(y2)

= φ(y1) +
βco
2
δ(y0 − y1)φ(y0) . (D.11)

We also see that

κGβ = −κcoβcoδ(y0 − y1)δ(y1 − y2)δ(y0 − y2) (D.12)

and hence that it contains the problematic δ(0) term:

∫
dy1dy2φ(y1)φ(y2) [κGβ] (y1, y2) = −κcoβcoφ(y0)2δ(0) . (D.13)

Because this δ(0) term is present in the action, we expect it to be present in the two-point

correlator as well. Indeed a straightforward computation gives (Note that Â−1κ = Gκ: the

Green’s function obeying the boundary condition ∂yG = −κG.)

〈φ(y1)φ(y2)〉 = Gκ(y1, y2) + δ(y1 − y0)
Gκ(y0, y2)

2
βco + βco

Gκ(y1, y0)

2
δ(y0 − y2)

−Gκ(y1, y0)δ(0)Gκ(y0, y2) . (D.14)
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The Feynman diagram computation, however, has no δ(0). How can this agree? We have

seen the explicit steps we need to do to get the Feynman diagram answer. Surprisingly

when we implement them here, the δ(0) cancels. We will need that

A+ κ = δ(y1 − y2)∂1∂2 + κcoδ(y0 − y1)δ(y1 − y2)
' −δ(y1 − y2)¤1 + δ(y1 − y2)δ(y0 − y1)(∂1 − κ) . (D.15)

Its inverse, the Green’s functionGκ, obeys a slightly different differential equation, however.

As we also discussed in appendix A, acting with the laplacian on Gκ returns the delta

function δκ(y1 − y2) in the space of functions obeying ∂yf(y0) = −κf(y0). There are

additional contributions from image charges which guarantee that on the boundary ∂yδκ =

−κδκ. Now repeating the steps from eq. (D.7)

〈φ(y1)φ(y2)〉 = Gκ(y1, y2)

+

∫
dy3dy4βcoGκ(y1, y3)(−¤3 + κcoδ(y0 − y3))×

× δ(y3 − y4)δ(y4 − y0)
Gκ(y0, y2)

2
βco +

+

∫
dy3dy4βco

Gκ(y1, y0)

2
δ(y0 − y4)(−¤3 + κcoδ(y0 − y3))×

× δ(y4 − y3)Gκ(y3, y2)−Gκ(y1, y0)δ(0)Gκ(y0, y2)

= Gκ(y1, y2)−
βco
2
δκ(y1 − y0)Gκ(y0, y2)−

βco
2
δκ(y2 − y0)Gκ(y1, y0) ,(D.16)

we recognize that the sole function of the δ(0) term in the action is to correctly implement

the boundary conditions for the transformation S = 1 − Gβ/2. Indeed it is clear from

the matrix analogue that had we started with a transformation Sκ = (1 − Gκβ/2) no

distributions at zero argument δ(0) would have been generated at all.

The distribution δκ(y1−y0) with the correct boundary conditions which thus appears,

has no support deep in the bulk, δκ(y1− y0) vanishes for y1 À y0 of course. The lesson we

extract from this exercise is that for bulk correlators we may ignore the δ(0) term in the

action.

Other field redefinitions: if field redefinitions φ(y)→ φ(y)+δ(y−y0)α̃φ(y0) to remove

the irrelevant operator
∮
βcoφ∂

2
nφ leave no trace in bulk correlators, an obvious question is

why the “theta” transformations do contribute. They do, and why follows from repeating

the above steps for that case. Consider for simplicity only the relevant correction µ. In

the above language it corresponds to choosing

βµ = µcoδ(y1 − y0)δ(y1 − y2)∂y1 . (D.17)

Therefore

Gβµ =

∫
dy2∂y2G(y1, y2)δ(y2 − y0)δ(y2 − y3) = ∂y3G(y1, y3)δ(y3 − y0) . (D.18)

Now (in Minkowski space) we can show that this is exactly the step function transformation.

Upon use of the identity

Gβµ = −∂y1G(y1, y2)δ(y2 − y0) , (D.19)
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we can take one more derivative to obtain

−∂21G(y1, y2)δ(y2 − y0) = −δ(y1 − y2)δ(y2 − y0) . (D.20)

Thus Gβµ precisely has the property that it’s derivative is the delta function — it is

therefore proportional to the θ function. G, moreover, is the Neumann Green’s function.

Hence Gβ is zero in the bulk, it is precisely equal to θ(y0 − y1).
Because θ(y0 − y1) is of measure zero, the statement that the second and third terms

GβµG
−1
κ arising from the explicit field redefinition do not contribute to the bulk, is now

manifest. Thus the fourth term — the one that comes directly from the action — ought

to reproduce the Feynman diagram result. Indeed it is easy to see that
∫
dy2dy5Gκ(y1, y2)(−κcoµcoδ(y2 − y0)∂G(y2, y5)δ(y5 − y0))Gκ(y5, y4) (D.21)

precisely reproduces the perturbative Feynman diagram calculation, when we use the just

derived result that ∂G(y0, y0) = θ(0) = 1/2.

E. Power spectrum corrections from perturbation theory

Aside from using field redefinitions on the boundary, one can also use field theory pertur-

bation theory to compute the corrections to the power spectrum. For completeness we give

that calculation here. The answer is, of course, the same as in eq. (4.19) to first order in

βi.

The first order correction to the (connected) two-point correlation function by a gen-

eralized two-point vertex

Sint = −
∫
d4x
√−g λ

2
φ2 = −

∫
d4x3d

4x4
√
−g(x3)

√
−g(x4)

λ(x3, x4)

2
φ(x3)φ(x4) (E.1)

is

κf 〈φ(x1)φ(x2)〉κ = −i
∫
d4x3d

4x4
√
−g(x3)

√
−g(x4)λ(x3, x4)Gκ(x1, x3)Gκ(x2, x4) .

(E.2)

Here κf , κ denote the future-out and past-in state and Gκ(x1, x2) is therefore the Green’s

function satisfying (¤1−m2)Gκ(x1, x2) = iδ4κ(x1−x2)/
√−g with the boundary conditions

a−10 ∂η1Gκ(x1, x2)|η1=η0 = −κGκ(x1, x2)|η1=η0
lim

ηf→∞
a−1f ∂η1Gκ(x1, x2)|η1=ηf = −κfGκ(x1, x2)|η1=ηf . (E.3)

For the boundary interaction due to the leading boundary irrelevant operators (4.6), the

(spacetime dependent) coupling λ(x3, x4) considered as a derivative operator equals

λ(x3, x4) = 2

(
δ(η3 − η0)
a(η3)

δ3(x3 − x4)
a3(η3)

δ(η3 − η4)
a(η3)

)
×

×
[

β‖
a2(η3)M

∂x3,i∂x4i +
β⊥

a2(η3)M
∂η3∂η4 +

+
βc

2a2(η3)M
(Dη4∂η4 +Dη3∂η3) +

µ

2a(η3)
(∂η3 + ∂η4)

]
. (E.4)
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(We purposely avoid integrating by parts, because λ(x3, x4) arises from a boundary action

rewritten as bulk interactions. Integration by parts would make this origin less clear.)

Inserting this expression and the appropriate FRW quantities in eq. (E.2), we obtain after

a spatial Fourier transform

κf 〈φ(η1, ~k1)φ(η2, ~k2)〉κ =

= −2i
∮

η3=η4=η0

d3x3d
3x1d

3x2 a
3
0e
−i~k1x1−i~k2x2

∫
d3~k3d

3~k4
(2π)6

×

×
[
−~k3 · ~k4

β‖
a20M

+
β⊥
a20M

∂η3∂η4 +
βc
2M

(
−¤3 −¤4 −

3H

a
(∂η3+∂η4)−

~k23 +
~k24

a20

)
+

+
µ

2a0
(∂η3 + ∂η4)

]
Gκ(~k3, η1, η3)Gκ(~k4, η2, η4)e

i~k3(x1−x3)+i~k4(x2−x3)

= −2i(2π)3δ3(~k1 + ~k2)a
3
0 ×

×
[
~k21β‖
a20M

+
β⊥
a20M

∂η3∂η4 +
βc
M

(
−1

2
¤3 −

1

2
¤4 −

3H

2a0
(∂η3 + ∂η4)−

~k21
a20

)
+

+
µ

2a0
(∂η3 + ∂η4)

]
Gκ(~k1, η1, η3)Gκ(~k1, η2, η4)

∣∣∣
η3=η4=η0

= −2i(2π)3δ3(~k1 + ~k2)a
3
0 ×

×
[
~k21β‖
a20M

+
κ2β⊥
M

+
βc
M

(
−iδκ(η1 − η0) + δκ(η2 − η0)

2a40
−m2 −

~k21
a20

+ 3Hκ

)
−

− µκ
]
Gκ(~k1, η1, η0)Gκ(~k1, η2, η0) . (E.5)

In the first step we related the double normal derivative Dn∂n to the laplacian. In the

second step we used both defining property of the Green’s function (¤−m2)Gκ = iδ4κ/a
4

and the boundary condition ∂ηGκ = −a0κGκ. Recall the expression for Gκ(~k1, η1, η2) from

eq. (3.7) in terms of the basis functions φdS,±. For the power spectrum we are interested

in the equal time two-point correlator for η1 = η2 → 0. In that limit the Green’s function

only retains the retarded contribution

Gκ(~k1, η1, η0)η1Àη0 = ϕbκf
(η1)ϕbκ(η0) . (E.6)

Below we shall see that for the inflationary power spectrum, we should choose κf = κ̄. The

equal-time correlator at η1 = η2 → 0 therefore equals

lim
η1→0

κ〈φ(η1, ~k1)φ(η1, ~k2)〉κ = −2i(2π)3δ3(~k1 + ~k2)a
3
0ϕ

2
bκ(η1)ϕ

2
bκ(η0)×

×
[
~k21(β‖ − βc)

a20M
+
κ2β⊥
M
− βcm

2

M
− κ(µ− 3βcH

M
)

]
. (E.7)

Using the proportionality relation (4.13) between the basis-functions ϕb and ϕb as η → 0,
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plus the expression for the zeroth order two-point correlator we obtain

lim
η1→0

κ〈φ(η1, ~k1)φ(η1, ~k2)〉κ = 〈φ2〉0
((

1− b
b− 1

)
(−2ia30)ϕbκ(η0)2 × (E.8)

×
[
~k21(β‖ − βc)

a20M
+
κ2β⊥
M
− βcm

2

M
− κ
(
µ− 3βcH

M

)])
.

Finally substituting the explicit expressions for ϕbκ ,

lim
η1→0

κ〈φ(η1, ~k1)φ(η1, ~k2)〉κ = 〈φ2〉0
((

1− b
b− 1

)−2iπ
4H

H
2
b,ν(−~kη0)× (E.9)

×
[
~k21(β‖ − βc)

a20M
+
κ2β⊥
M
− βcm

2

M
− κ
(
µ− 3βcH

M

)])
.

with the obvious shorthand Hb,ν = Hν + bHν .

The power spectrum of inflationary density perturbations due to spontaneous pair

production in a gravitational background is obtained by the optical theorem from the

two-particle cut of the one-loop vacuum amplitude 〈κ|κ〉.

P (~k)
d|~k|
|~k|

=
(4π)|~k|3
(2π)3

lim
η1→0

Im

(
κ〈φ(η1, ~k1)φ(η1, ~k2)〉κ

−i

)
d|~k|
|~k|

. (E.10)

This shows that κf = κ̄. (Note the factor of i; this is a consequence of our normalization

for the Green’s function.) The imaginary part of the (Feynman time-ordered) Green’s

function is also known as the Wightman function. In contrast to the Green’s function, the

latter is a homogeneous solution to the field equation. We thus find

Pκ+δβ = Pκ

(
π

4H

[(
1− b
b− 1

)
H

2
b,ν(−~kη0)

i

[
~k21(β‖ − βc)

a20M
+
κ2β⊥
M

− βcm
2

M
− κ

(
µ− 3βcH

M

)]
+ c.c.

])
(E.11)

which agrees with eq. (4.19).
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