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ABSTRACT

Consequences of a non-trivial scalar field background for an effective 4D theory were
studied in the context of one compact extra dimension. The periodic background that
appears within the (1+4)-dimensional φ4 theory was found and the excitations above
the background (and their spectrum) were determined analytically. It was shown that
the presence of the non-trivial solution leads to the existence of a minimal size of the
extra dimension that is determined by the mass parameter of the scalar potential. It was
proved that imposing orbifold antisymmetry boundary conditions allows us to eliminate
a negative mass squared Kaluza–Klein ground-state mode that otherwise would cause an
instability of the system. The localization of fermionic modes in the presence of the non-
trivial background was discussed in great detail varying the size of the extra dimension and
the strength of the Yukawa coupling. A simple exact solution for the zero-mode fermionic
states was found and the solution for non-zero modes in terms of trigonometric series was
constructed. The fermionic mass spectrum, which reveals a very interesting structure,
was found numerically. It was shown that the natural size of the extra dimension is twice
as large as the period of the scalar background solution.
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1 Introduction

A typical habit, which has its roots in the (1+3)-dimensional Standard Model (SM) and its

possible 4D alternatives, is to assume that the Higgs boson (or any other scalar) vacuum

expectation value (vev) has a constant value. In 4D theories, this is a consequence of the

requirement of the 4D translational invariance. However, in models of the electroweak

interactions built upon 1 + (3 + d)-dimensional manifolds, the translation invariance is

no longer required, as the extra dimensions must be compact. Here we will consider

the space-time manifold that is M (3,1) × R, where M (3,1) is the usual Minkowski space,

while R is a compact manifold. The vev is no longer forced to be a constant by the (4D)

symmetries that are typically imposed, and therefore it can have a non-trivial profile along

the extra direction: 〈φ(x, y)〉 = φc(y), where x is in an element of M (3,1) Minkowski space-

time, while y is the extra coordinate (hereafter we will restrict ourselves to R = S1/Z2).

Recently, it has been noticed [1, 2] that the non-trivial y-dependence of the vev of a scalar

field could be very useful phenomenologically, since it may lead to a natural localization of

higher-dimensional fermions on lower-dimensional manifolds (“fat brane scenario”). This

is a very attractive approach, since it allows us to control the effective couplings between

4D states by tuning the overlap of their wave function in the extra dimension [4, 5]. In fact

a similar idea had already been explored in the mid-seventies, in the context of domain

walls that separate regions of different vacuum expectation values of a scalar field [6], see

also [7].

The standard approximation adopted in the studies of non-trivial scalar vev’s in ex-

tended compact space-times was to assume that the size of the extra dimension L is much

larger than the typical scale of the scalar field potential m. In this paper we will show

how to construct a low-energy effective theory exactly, including the determination of the

Kaluza–Klein (KK) states of scalars and fermions and their mass spectrum, in the case

of a scalar with a Higgs-like potential in 5D.

First we will consider a 5D model of a free real scalar field φ = φ(x, y) defined by the
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following Lagrangian density:

L(5) =
1

2
∂Mφ(x, y) ∂Mφ(x, y)− V (5)(φ) (1)

with y ≡ x4 and

V (5)(φ) =
λ

4

(
|φ|2 − m2

λ

)2

. (2)

Below we will look for a field configuration φc(x, y) that corresponds to the extrema of

the classical action. Since the fifth dimension is compact we will allow for a non-trivial

dependence of the background solution on the extra coordinate. In addition, we will

restrict ourselves to time-independent solutions, so φc = φc(y).

After a single integration of the Euler–Lagrange equation:

∂M∂
Mφ+

∂V (5)

∂φ
= 0 (3)

we obtain the following equation for the background φc that describes the energy conser-

vation of the system:
1

2
φ

′ 2
c − V (φc) = E = const. , (4)

where
′

denotes a differentiation with respect to y. It is seen that our field theoreti-

cal problem corresponds to a 1D motion of the classical material point in the potential

−V (φc), where φc is the coordinate, y corresponds to the time and E is interpreted as

the total energy. It is easy to see that for E = 0 we obtain a non-trivial solution of (4)

known as the kink and antikink:

φkink
c (y; y0) = ± m√

λ
tanh

[
m√
2
(y − y0)

]
(5)

where the constant y0 is the “kink-location”. The kink solution corresponds to the motion

of the point, starting with zero velocity at the top of one of the hills of the potential

−V (φc) (located at φc = ±m/√λ) and moving down toward the origin, and then, after

an infinite amount of “time” (y), reaching the next hill]1. The above solution assumes

]1There exists also another solution of Eq. (4) such that h(y) ∝ coth
[

m√
2
(y − y0)

]
. This solution

corresponds to a particle that starts, at finite moment y = y0 with an infinite velocity at an infinite
distance. Since it is singular at y = y0 we will not consider it hereafter in the field theoretical model we
will discuss.
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that the integration constant E of Eq. (4) is zero. It is easy to argue that this is really

a necessary choice for a non-compact space]2, however in our case of the compact fifth

dimension there is no reason to assume E = 0. From the mechanical analogy it is also seen

that if the material point starts at y, it will then move toward the origin and eventually,

after a finite time, reach the symmetric position at −y. Obviously the point then returns,

so that the motion will be periodic]3.

The paper is organized as follows. In Sec. 2 we will find a periodic kink-like solution for

the scalar background. The KK modes and their corresponding masses for the free scalar

considered will be determined there. In section 3 we will add a fermion field coupled to the

scalar. We will show how to solve the Schrödinger-like equation for all the fermionic modes

and their corresponding masses, and in this way we find states not considered until now,

which have very interesting implications, both phenomenologically and in model building.

We then summarize our results in the final Section 4.

2 Periodic Kink-Like Background Profile

It is straightforward to integrate Eq. (4) even for E 6= 0:

y − y0 = ± 1

m

∫
dϕ√

ϕ4 − ϕ2 + c
2

, (6)

where y0 and E are constants of integration and we have defined the dimensionless pa-

rameter c = 1
2

+ 2Eλ
m4 , and the field has been rescaled as follows: ϕ = λ/(2m2)φc.

We are interested in solutions φc(y) (or ϕ(y)), which are periodic and continuous. It

is easy to see from the mechanical model that this can only happen when 0 < c < 1/2.

In that case the background solution is bounded by |φc(y)| ≤ m√
λ

and is given by

φc(y) = ± m√
λ

√
2k2

k2 + 1
sn

(
m(y − y0)√
k2 + 1

, k2

)
(7)

]2For a non-zero integration constant there would be a constant contribution to h(y)
′
at infinity, which

would therefore lead to infinite total energy E =
∫ +∞
−∞ T00.

]3For the related discussion of instantons within a single scalar field theory in one time and zero space
dimensions for the double-well anharmonic oscillator, see Refs. [9] and [10]. The periodic background
solutions that we discuss here were also considered in Ref. [11] in the context of 1+1 φ4 scalar field
theory.
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where

k2 =
1−√1− 2c

c
− 1 =

m2 − 2
√|λE|

m2 + 2
√|λE| (8)

and sn(x, k2) is the Jacobi elliptic-sine amplitude of modulus k [12]. These solutions are

parametrized by the modulus k, and since 0 < c < 1/2, we have 0 < k < 1. The function

sn(x, k2) is odd in x, and oscillates between 1 and −1. Its period is 4K where

K(k2) =

∫ π/2

0

dθ

(1− k2 sin2 θ)
= F

(π
2
, k
)

(9)

is the complete elliptic integral of the first kind [12]. The modulus k depends on the con-

stant c, which in turn depends on E, and therefore it is a free parameter that will determine

the size of the extra dimension L through the value of the period ω = 4
√
k2 + 1K(k2)/m ]4.

We see that the size of the extra dimension is not fixed by any dynamics, and therefore

an unknown stabilization mechanism must be assumed.

In Fig. 1 we show the profile of the non-trivial background φc(y) for different values

of k2 (i.e. for different compactification scales). We also show the energy density ε(y)

ε(y) =
1

2
(∂yφc)

2 + V (φc) . (10)

We can now look at two interesting limits:

• k → 0, then φc(y) → ± m√
λ

√
2k sinm(y − y0) +O(k2) → 0. The background thus

vanishes in the limit.

• k → 1, then φc(y) → ± m√
λ

tanhm
√

1
2

(y − y0). Note that in this limit the peri-

odicity of the background is being lost, even though φc(y) is a perfectly periodic

function for any k < 1.

The first limit corresponds to c→ 0. In this case although the non-trivial profile vanishes,

there is a limiting period ω0 ≡ ω |k=0 = 4K(0)/m = 2π/m. This means that there is a

minimum size for the extra dimension, which is fixed by the mass parameter m of the

]4Note that the size of the extra dimension L does not need to be equal to the period of the background
solution, but it must rather be a multiple of the period: L = nω.
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Figure 1: The profiles of the non-trivial background φc(y) (in units of m/
√
λ) and

the “energy density” ε(y) (in units of m4/λ) for k2 = 0.01, 0.4, 0.8 and 0.99 (or
ω = 1.01ω0, 1.34ω0, 1.93ω0 and 3.32ω0, with ω0 = 2π/m). We have chosen y0 = 0;
for y0 6= 0, y should be replaced by y + y0.

potential. This is easy to understand by recalling our mechanical analogue of the field

theoretical problem. Namely, the limit k → 0 (c → 0) corresponds to the total energy

E → −m4/(4λ) that is the bottom of the classical potential (−V (h)). In that region, since

the quartic part of the potential could be neglected, we observe small harmonic oscillations

around the minimum y = 0 ]5. There thus exists a minimal period that is fixed to be

2π/m by the quadratic term (the mass term) of the potential. Consequently, if the scalar

background is non-trivial, then there is a minimal size of the extra dimension that is a

multiple of ω0. Note that we did not to impose the periodicity; whenever 0 < k < 1 the

solution must be periodic for any parameter of the model, no fine-tuning is needed.

The second limit, k → 1 (c → 1/2) corresponds to E → 0, i.e. the motion that

starts exactly at the top of a hill of the classical potential (−V (h)). In this case the total

available time (y) needed to reach the other summit is infinite and therefore so is the

corresponding size of the extra dimension L.

]5Hereafter we will choose y0 = 0.
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2.1 Scalar spectrum

Let us now expand the Lagrangian (1) around the background (7):

φ(x, y) → φc(y) + φ(x, y) , (11)

where φ(x, y) that appears on the right-hand side of → is a fluctuation. Let us separate

contributions to the Lagrangian density that are quadratic in the fluctuations φ(x, y):

L(x, y) =
1

2
∂µφ∂

µφ− 1

2
φ

[
− d2

dy2
+
∂2V (5)

∂φ2

∣∣∣∣
φ=φc

]
φ+ · · · , (12)

where I have integrated by parts and dropped the total derivative because of periodicity.

Let us expand in terms of the KK modes that are defined in such a way that the mass

matrix is diagonal: [
− d2

dy2
+
∂2V (5)

∂φ2

∣∣∣∣
φ=φc

]
φn(y) = M2

nφn(y), (13)

where the expansion φ(x, y) =
∑
φn(y)χn(x) was adopted, and Mn denote diagonal

masses of the KK modes χn(x).

Substituting the background φc(y) from Eq. (7) we obtain the following equation to

determine the right KK basis:

−φ′′n(y) +

[
6m2 k2

k2 + 1
sn2

(
m

√
1

k2 + 1
(y − y0), k

2

)
−m2 −M2

n

]
φn(y) = 0 (14)

n φn
M2

n

m2 φn|k2=1
M2

n

m2

∣∣∣
k2=1

M2
n

m2

∣∣∣
k2=0

Period

0++ sn2(s, k2)− 1+k2+
√

1−k2+k4

3k2 1−
√

1 + 3(1−k2

1+k2 )2 tanh2(s)− 1 0 −1 ω′/2

0+− cn(s, k2) dn(s, k2) 0 sech2(s) 0 0 ω′

1−+ sn(s, k2) dn(s, k2) 3k2

1+k2 sech(s) tanh(s) 3
2

0 ω′

1−− sn(s, k2) cn(s, k2) 3
1+k2 sech(s) tanh(s) 3

2
3 ω′/2

2++ sn2(s, k2)− 1+k2−√1−k2+k4

3k2 1 +
√

1 + 3(1−k2

1+k2 )2 tanh2(s)− 1
3

2 3 ω′/2

Table 1: The first five unnormalized scalar eigenfunctions and the resulting mass spectrum
from Eq. (15). Here, ω′ = 4K(k2) is the “rescaled” period of the background solution
φc(s). The parities are defined with respect to s = 0 and s = ω′/4.
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By a suitable rescaling, s = m√
k2+1

(y − y0) we can get

φ′′n(s) +

[
(k2 + 1)(1 +

M2
n

m2
)− 6k2sn2

(
s, k2

)]
φn(s) = 0 , (15)

which is the Lamé equation (in the Jacobian form)

φ′′n(s) +
[
h− n(n + 1)k2sn2

(
s, k2

)]
φn(s) = 0 , (16)

where n = 2 and h = (k2 + 1)(1 + M2
n

m2 ). It is known that for given n and k, periodic

solutions of the Lamé equation exist for an infinite sequence of characteristic values of h

[12]. Moreover, the periodic solutions will be of period 2K(k2) and 4K(k2), where 2K(k2)

is the period of the Lamé equation (16).

Each of these characteristic values of h will determine the KK mass of the correspond-

ing mode. In the case that n in (16) is integer, the first 2n+1 solutions will be polynomials

in the Jacobi elliptic functions. For the case n = 2 at hand, the first 5 eigenmodes are

simple enough [9, 13] and are given in Table 1, along with their eigenvalues and pari-

ties along the extra-dimension. The rest of the spectrum is given by transcendental Lamé

functions, which can be expanded in infinite series (of trigonometric functions or Legendre

functions).

As is seen from Table 1 the lowest eigenvalue of the quadratic operator −d2/dy2 +

∂2V (5)/∂φ2
|φ=φc

is negative]6; our background solution (7) is therefore unstable in time

evolution[14]. Note, however, that the ground state (which causes the instability problem)

is even under s→ −s (as it should since it must have no nodes). Therefore the problem

could be solved by extending the antisymmetry of the background solution]7 φc, also for

the KK excitations. So, we will require the following orbifold boundary condition]8:

φ(y) = −φ(−y) (17)
]6Since the background solution φc satisfies Eq. (4), its derivative must be a zero-mode wave function;

see Table 1 for the eigenfunction φ0+− ∝ d sn(s, k2)/ds = cn(s, k2) dn(s, k2). The derivative must have
at least one node (as a consequence of the periodicity of φc) so that, on the virtue of Sturm’s theorem,
there must exist a state of lower energy, i.e. negative M2

n. This is what is being observed in Table 1 for
the state n = 0++.

]7Note that the requirement of the antisymmetry explains the issue of the natural existence of the
non-trivial background. Without the antisymmetry, the trivial φc(y) = 0 solution that corresponds to
lower total energy would be preferred energetically and would therefore determine the real ground state
of the system.

]8For y0 6= 0 one should replace (17) with φ(y0 + y) = −φ(y0 − y).
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as they eliminate all the even modes leaving only n = 1−+ and n = 1−− in the first 5

modes. Note that φ(L/2 + y) = −φ(L/2 − y) follows from (17), as a consequence of

periodicity. It is worth emphasizing that the antisymmetry is also essential to develop

Figure 2: The normalized profiles of the first scalar modes for k2 = 0.01, 0.4, 0.8 and
0.99 (or ω = 1.01ω0, 1.34ω0, 1.93ω0 and 3.32ω0, with ω0 = 2π/m). The mass eigenvalues
are given in units of m2. We have chosen y0 = 0; for y0 6= 0, y one should be replaced by
y + y0.

a non-trivial vev: if symmetric solutions were allowed, then the constant vev would be

chosen, as it is energetically more convenient.
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3 Fermion Localization

A non-trivial vacuum of the scalar field will influence the phenomenology of all fields that

couple to the scalar. Here we will consider the simplest scenario of the real scalar field

coupled to fermions defined by the following Lagrangian density:

L = ψ̄(x, y)
[
iΓM∂M − fφ(x, y)−m0

]
ψ(x, y) (18)

+
1

2
∂Mφ(x, y) ∂Mφ(x, y)− λ

4

(
|φ|2 − m2

λ

)2

,

with Γ5 = iγ5. For simplicity, in the following discussion we will consider a massless 5D

fermion, so that at the end we obtain chiral fermionic fields whose masses are generated

exclusively through spontaneous symmetry breaking in the presence of Yukawa couplings.

The absence of the mass term will be guaranteed by requiring the action to be symmetric

under the following transformations:

φ(x, y) → −φ(x, L/2− y) and ψ(x, y) → γ5ψ(x, L/2− y) (19)

We will adopt the following orbifold boundary conditions:

ψ(y) = γ5ψ(−y) and ψ(L/2 + y) = γ5ψ(L/2− y) , (20)

so that right- and left-handed fermions are symmetric and antisymmetric with respect to

y = 0 and y = L/2 (which is identified with y = −L/2) ]9. It is crucial to construct a

chiral theory that disentangles left- and right-handed 4D fermions.

As we will see, once the field φ(x, y) acquires its non-trivial vev φc (see Eq. (7)), the

mass spectrum of the KK modes of the fermion field is altered, from the “usual” tower

of fermions with masses mn = 2πn/L. To find the spectrum and the eigenfunctions (KK

modes) let us first decompose the field ψ(x, y) in chiral components:

ψ = ψL + ψR (21)

]9Note that the second condition of Eq. (20) is a consequence of the first one and of the requirement
of periodicity.
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and let us now write the coupled Weyl equations of motion for these components:

i∂/ ψL(x, y)− (∂5 + fφc(y))ψR(x, y) = 0 (22)

i∂/ ψR(x, y) + (∂5 − fφc(y))ψL(x, y) = 0 . (23)

Now, we want to separate variables for each chiral field

ψL(x, y) = ψL
x (x) ψL

y (y) (24)

ψR(x, y) = ψR
x (x) ψR

y (y) , (25)

which gives

i∂/ ψL
x −mnψ

R
x = 0, (∂y + fφc(y))ψ

R
y = mnψ

L
y (26)

i∂/ ψR
x −mnψ

L
x = 0, (−∂y + fφc(y))ψ

L
y = mnψ

R
y . (27)

To obtain separate equations for the functions ψL
y and ψR

y we apply the operator (−∂5 +

fφc) to the second equation in (26) and (∂5 + fφc) to the second one in (27), and get

[−∂2
y + (fφc)

2 ∓ fφ′c −m2
n

]
ψR/L

y = 0

or[−∂2
y + VR/L −m2

n

]
ψR/L

y = 0 (28)

In general, since left- and right-handed profiles are solutions of different equations, we can

expect different properties of ψL
y and ψR

y , so that the theory is chiral, as we demanded.

The “difference” between chiralities is controlled by the Yukawa coupling f inside the

potentials

VR/L ≡ (fφc)
2 ∓ fφ

′
c = (δ k)2 sn2

(
s, k2

)∓ (δ k) cn
(
s, k2

)
dn
(
s, k2

)
. (29)

Equations (28) have the form of the Hill’s equation, and it is known that if P is the period

of the equation, there will exist periodic solutions, of period P or 2P , and of defined even

or odd parity. For each of these solutions there will be a specific eigenvalue (m
R/L
n )2. In

our case the required degeneracy of left- and right-handed modes will be guaranteed for

all solutions of both equations. If the periodic background vev has some extra symmetry,

it is possible to address this issue before actually solving Eqs. (28).
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Let the background vev φc be periodic, of period ω, i.e. φc(y + ω) = φc(y). Assume

that this background vev also satisfies the relation

φc(y + ω/2) = −φc(y) (30)

If this is the case, we immediately see that

VR(y + ω/2) = VL(y) . (31)

This means that all periodic solutions of both equations will have exactly the same spec-

trum, the solutions being just shifted by ω/2. Therefore it is sufficient to solve only one of

the equations (R or L) and find the corresponding spectrum. The translational symmetry

(31) will then immediately give the general solutions (with the same spectrum) to the

other equation. With the general solutions of both equations, one can then impose the

boundary conditions we have chosen for each chiral fermion, and get the final solutions

for the fermion modes. It turns out that the solution of φc from Eq. (7) satisfies the

relation (30). In Fig. 3 we plot the potentials VR and VL for selected values of k2 (that

determines the period ω).

We will now solve the R equation (and therefore get also the L solutions, thanks to

the translational symmetry) and show the main results here. We will refer the reader to

the Appendix for a more detailed derivation.

Using the background solution φc from Eq. (7) one can find that the unnormalized

chiral zero mode consistent with the boundary condition (20) has quite a simple form:

ψR
0 (y) ∝

[
dn

(
m√
k2 + 1

y, k2

)
+ k cn

(
m√
k2 + 1

y, k2

)]δ

and ψL
0 (y) = 0 , (32)

where δ =
√

2f 2/λ. This solution is exact and we can see the behaviour of this chiral

mode for different compactification scales (i.e. k2) and for different values of δ in Fig. 4.

The figure illustrates the relevance of the Yukawa coupling (∝ δ) for the efficiency of the

localization of the fermionic KK modes. It is also seen that it is easier for a given strength

of the Yukawa coupling, to obtain the localization for the large extra dimension (and thus

for large k2). The rest of the modes cannot be written in such a compact form as the
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Figure 3: The profiles of the potentials VR and VL for k2 = 0.01, 0.4, 0.8 and 0.99 (or
ω = 1.01ω0, 1.34ω0, 1.93ω0 and 3.32ω0, with ω0 = 2π/m) and for δ = 0.1, 1 and 10. We
have chosen y0 = 0; for y0 6= 0, y should be replaced by y + y0. (Note the scale changes.)

zero mode; however, it can be given in terms of convergent infinite trigonometric series.

Their spectrum can be found by numerically solving a transcendental equation for each

mass eigenvalue. Once the boundary conditions are imposed, we have

ψR
2n(y) ∝ ψ0(y) CI2n

ω

[
am

(
m

2

(1 + k)√
k2 + 1

y,
4k

(1 + k)2

)]
(33)

ψR
2n+1(y) ∝ ψ0(y) CI2n+1

2ω

[
am

(
m

2

(1 + k)√
k2 + 1

y,
4k

(1 + k)2

)]
(34)

ψL
2n(y) ∝ ψ0(y + ω/2) SI2n

ω

[
am

(
m

2

(1 + k)√
k2 + 1

(y + ω/2),
4k

(1 + k)2

)]
(35)

ψL
2n+1(y) ∝ ψ0(y + ω/2) CI2n+1

2ω

[
am

(
m

2

(1 + k)√
k2 + 1

(y + ω/2),
4k

(1 + k)2

)]
, (36)

where

ψ0(y) =

[
dn

(
m√
k2 + 1

y, k2

)
+ k cn

(
m√
k2 + 1

y, k2

)]δ

(37)

and ω = 4
√

1+k2

m
K(k2) is the period of φc(y). Finally, am(x,m) is the Jacobian elliptic
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Figure 4: The profile of the normalized zero mode ψR
0 for k2 = 0.01, 0.4, 0.8 and 0.99

(or ω = 1.01ω0, 1.34ω0, 1.93ω0 and 3.32ω0, with ω0 = 2π/m) and with δ = 0.1, 2.2 and
10.1. We have chosen y0 = 0; for y0 6= 0, y should be replaced by y + y0.

amplitude.

The series CI2n
π (t), SI2n

π (t) and CI2n+1
2π (t) are the periodic solutions (of period π and

2π in the t variable) of the generalized Ince equation [8] (it is a four-parameter, second-

order differential equation, but in our case the parameter d in [8] is zero, making the

equation slightly simpler; see the Appendix for more details). The C and S indicate the

parity of the series (C-even and S-odd). These generalized Ince solutions are given by:

CI2n
π (t) =

∞∑
r=0

A2n
2r cos 2rt (38)

SI2n
π (t) =

∞∑
r=1

B2n
2r sin 2rt (39)

CI2n+1
2π (t) =

∞∑
r=0

C2n+1
2r+1 cos (2r + 1)t , (40)

where n = 1, 2, 3, . . .. The coefficients A2n
2r , B2n

2r and C2n+1
2r+1 satisfy three-term recurrence

relations, as given in the Appendix. It could be shown that ψ
R/L
2n (y) and ψ

R/L
2n+1(y) have

periods ω and 2ω, respectively. We remind the reader that the scalar modes also had two
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periods, of ω/2 and ω, meaning that together, the wave functions of scalars and fermions

have a total of three different periodicities.

As for the fermionic mass eigenvalues, there is a potential problem for the solutions

of period ω. The even right handed solutions (CI2n
ω ), when shifted by ω/2, give even

solutions, and therefore cannot be the odd left-handed modes. To have the odd left-

handed modes, we need to adopt the odd right-handed solutions (SI2n
ω ) and shift them by

ω/2. But a priori these are two different solutions, and they are not necessarily degenerate,

as they should since we are solving for the left and right chiral components of the same

mode. However, it can be proved [8] that the two different solutions CI2n
ω and SI2n

ω of

our particular generalized Ince equation have same eigenvalues (as needed) because the

transcendental equations for A2n
2r and B2n

2r , which set the eigenvalues, are the same (see the

Appendix), even though the two solutions are different. Therefore the two chiral modes

ψR
2n(y) and ψL

2n(y) will have the same mass eigenvalue.

In the case of the solutions of period 2ω, the degeneracy of the two chiral components

is guaranteed since they are exactly the same solution, but shifted by ω/2 (they have

opposite parities because the period is 2ω, and therefore the parity changes when shifting

them by ω/2). A different transcendental equation for C2n+1
2r+1 will set the masses of these

2ω modes ψ
R/L
2n+1(y).

The complete spectrum can be very easily solved numerically, and Figs. 5, 6 and 7

show the spectrum of the first fermion modes as a function of k, and for three different

values of δ.

Before going further, it is instructive to consider the two limiting cases (k → 0) and

(k → 1), which have known solutions and spectra. First let us define s = m√
k2+1

y, so that

Eqs. (28) read[
− d2

ds2
+ (δ k)2 sn2

(
s, k2

)∓ (δ k) cn
(
s, k2

)
dn
(
s, k2

)− (k2 + 1)
m2

n

m2

]
ψR/L

s = 0 , (41)

where cn(s, k2) and dn(s, k2) are the Jacobi elliptic cosine-amplitude and delta-amplitude

respectively.
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Figure 5: The mass variation of the first 7 modes with respect to the size of the extra
dimension (i.e. the value of k). The spectrum goes from the discrete n2 type spectrum
at k = 0 to the continuum spectrum for the case k = 1, represented by the thick black
vertical line. Here we have taken δ = 0.1

a) Keeping only the leading terms in the limit k → 0, the equation simplifies to(
d2

ds2
+
m2

n

m2

)
ψR/L

s = 0 , (42)

with s = my. In this limit we obtain the following solutions (consistent with the

boundary conditions (20)) for the fermionic KK modes:

ψR
n (y) ∝ cos

(
n
π

ω0
y

)
and ψL

n(y) ∝ sin

(
n
π

ω0
y

)
, (43)

with ω0 = 2π/m ]10. Note that, in the limit k → 0, the Schrödinger-like equation

is not a periodic equation, and we therefore have to fix the period by hand; here

we have assumed that the size of the extra dimension is 2ω0, as this matches the

]10Remember that when (k → 0), the size of the extra dimension does not vanish, but is instead
completely fixed by the quadratic part of the scalar potential.
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Figure 6: Same as the previous figure, but for δ = 2.2. Some discrete modes survive in
the k = 1 limit.

general solution of the general equation (28). The spectrum we expect is therefore

m2
n = n2 m2

4
for n = 0, 1, 2, . . ., and Figs. 5, 6 and 7 show how our solutions do

approach these limiting values. Note that in this case, even though the theory is

chiral, there is no localization of fermions observed.

b) When (k → 1) (which means ω → ∞), we have sn2(s, k2) → tanh2 s and

cn(s, k2) dn(s, k2) → sech2(x).

With this limiting behaviour, Eqs. (41) become(
− d2

ds2
+ δ2 tanh2 s∓ δ sech2s − 2

m2
n

m2

)
ψR/L

s = 0 , (44)

for s = m/
√

2 y. This is the limit discussed so far in the literature, see [2] and [3].

Since the y-direction is no longer compact, we obtain in this case both the discrete

and the continuum spectrum of eigenvalues. This could be observed in Figs. 5, 6
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Figure 7: Same as the previous figure, but for the first 22 modes and with δ = 10.1. Some
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and 7 where the thick vertical line represents the continuum spectrum while the

discrete eigenvalues are showed as separated “energy” levels.

Using SUSY quantum mechanics methods, it was shown in [2] that when the eigen-

value mn is such that m2
n < δ2 (in those authors notation M2 < w2) the first nB

fermion modes (with 0 ≤ nB < δ) are bound states with a very simple discrete

spectrum given by m2
n = (nB δ − n2

B/2).]11 When m2
n > δ2 the spectrum becomes

a continuum of states. Again, Figs. 5, 6 and 7 show how this limiting behaviour is

recovered by our solutions.

The early attempts to pass from the case (k = 1) (infinite extra dimension) to the

]11See also [3].
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compact case (k < 1) seem to have missed half the available spectrum of fermionic modes.

The reason for this is as follows. If in a compact dimension with a periodic background

vev of period ω, we force the size of the extra dimension to be also ω, all the fermionic

states of period 2ω will be automatically dismissed by the ω periodicity condition. This

imposition now seems rather arbitrary and awkward, since it does not come from any

symmetry, but is, as we now know, extremely constraining. Of course, the size of the

compact space must be a multiple of the background period ω, and because 2ω is the

minimum period that contains all the possible KK modes of all matter fields, it seems

natural for 2ω to be the size of the extra dimension. Close to the limit (k → 1), we can

see how some of the (k = 1) “fat-brane” modes split into period ω and period 2ω modes.

The structure follows a curious pattern:

• The zero-mode ψ0 (of period ω) and the first-level-mode ψ1 (of period 2ω) become

degenerate (and massless) in the (k → 1) limit. This means that when k is close

to 1, but still smaller than 1, we do have a chiral zero mode in the spectrum, but

also an extremely light first-level massive fermion (as seen in Fig. 8, when k2 = 0.99

(or ω = 3.32ω0), we have m2
1 ∼ 10−49m2). This feature seems to be also very

advantageous for model building (e.g. explaining mass hierarchies or modeling the

neutrino sector).

• The next fermion level, ψ2, of period ω (for δ > 1 and values of k still close to 1),

comes as a single state, with mass squared ∼ (δ − 1/2)m2.

• If (δ > 2), there is at least another limiting discrete bound state. We see that, in

this case, three fermion modes, ψ3, ψ4 and ψ5, get close together and become nearly

degenerate, when k is close to 1, the mass splitting between them being extremely

small compared to the gap between them and the previous mode ψ2. This feature

again seems quite interesting.

• The next level, if δ is big enough, comes alone, and the next three together. This

pattern repeats itself until the levels reach the continuum limit of the (k = 1) case.
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Then all the modes become roughly evenly separated, and for the higher modes we

recover the typical tower of masses following the n2

4
structure]12.

Figures 8, 9, 10 and 11 show the first modes ψ
L/R
1 , ψ

L/R
2 , ψ

L/R
3 and ψ

L/R
4 and their

mass, for different values of δ and different compactification scales.

Figure 8: The profile of the normalized mode ψ
R/L
1 , of period 2ω, for k2 = 0.01, 0.4, 0.8

and 0.99 (or ω = 1.01ω0, 1.34ω0, 1.93ω0 and 3.32ω0, with ω0 = 2π/m) and with δ =
0.1, 2.2 and 10.1. The mass eigenvalues are given in units of m2.

]12When the mass of the modes becomes large enough, we can understand this since the momentum
along the extra dimension is so high that the modes do not feel the non-trivial background. They are
therefore only limited by the periodicity of the compact space. The high-mass modes must therefore be
more and more like sines and cosines, and their masses must follow the n

2ω spectrum.
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Figure 9: The profile of the normalized mode ψ
R/L
2 , of period ω, for k2 = 0.01, 0.4, 0.8 and

0.99 (or ω = 1.01ω0, 1.34ω0, 1.93ω0 and 3.32ω0, with ω0 = 2π/m) and with δ = 0.1, 2.2
and 10.1. The mass eigenvalues are given in units of m2.

4 Conclusions

We have discussed the low-energy consequences of a non-trivial real scalar-field back-

ground in the context of one compact extra dimension. The periodic background that

appears within (1+4)-dimensional φ4 theory was found, this solution being the analogue

of the kink–antikink approximate solution discussed so far in the literature. We have

determined analytically the excitations above the background and their spectrum. It

was found that, in the presence of the non-trivial solution, there exists a minimal size

of the extra dimension that is determined by the mass parameter of the scalar potential:

L0 = 2ω0 = 4π/m. We have shown that imposing orbifold antisymmetry boundary condi-

tions allows the elimination of a negative mass squared Kaluza–Klein ground-state mode

that otherwise would cause an instability of the system. The localization of fermionic
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Figure 10: The profile of the normalized mode ψ
R/L
3 , of period 2ω, for k2 = 0.01, 0.4, 0.8

and 0.99 (or ω = 1.01ω0, 1.34ω0, 1.93ω0 and 3.32ω0, with ω0 = 2π/m) and with δ =
0.1, 2.2 and 10.1. The mass eigenvalues are given in units of m2.

modes in the presence of the non-trivial background was discussed in detail. A simple

and exact solution for the zero-mode fermionic states was found and the solution for

non-zero modes in terms of trigonometric series was constructed. The fermionic mass

spectrum turned out to be very interesting, with possible phenomenological consequences

for constructing a realistic theory based on a non-trivial background solution. Limiting

cases of small harmonic oscillations and very large extra dimensions (the case considered

in the literature so far) were discussed and used as a test of the general solutions for the

fermionic Kaluza–Klein modes found in this work. We have shown that the natural size

of the extra dimension is twice as large as the period of the scalar background solution.
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Appendix

We are interested in finding all the periodic solutions of the equation:

[−∂2
y + (fφc)

2 − fφ′c −m2
n

]
ψR

y = 0 . (A-1)

23



With these solutions, we can immediately get solutions to

[−∂2
y + (fφc)

2 + fφ′c −m2
n

]
ψL

y = 0 , (A-2)

as explained in the text, by simply doing a space translation of ω/2.

It will prove useful to perform the redefinition

ψR
y (y) = vR

y (y) exp

{
−f
∫ y

y0

dỹ φc(ỹ)

}
. (A-3)

We then have an equation for vR
y (y):

− d2

dy2
vR

y + 2fφc
d

dy
vR

y −m2
nv

R
y = 0 . (A-4)

We see that it is easy to solve either Eq. (A-4) or Eq. (26) for the zero-mode fermion

(mn = 0). The chosen boundary conditions (20) imply that the solution reads:

ψR
0 (y) ∝ exp

{
−f
∫ y

y0

dỹ φc(ỹ)

}
and ψL

0 (y) = 0 . (A-5)

Now, using the background solution φc from Eq. (7) we get the unnormalized chiral mode

ψR
0 (y) ∝

[
dn

(
m(y − y0)√
k2 + 1

, k2

)
+ k cn

(
m(y − y0)√
k2 + 1

, k2

)]δ

and ψL
0 (y) = 0 , (A-6)

where δ =
√

2f 2/λ. This solution is exact.

If we now insert the periodic background solution φc in Eq. (A-4) we get the Picard

elliptic equation [8] for the function vR
y :

− d2

dy2
vR

y + 2δm

√
k2

k2 + 1
sn

(
m(y − y0)√
k2 + 1

, k2

)
d

dy
vR

y −m2
nv

R
y = 0 (A-7)

Before going any further, we now need to use the known transformation formula for the

elliptic sine function:

sn


(1 +

√
1− k̃2) u,

[
1−

√
1− k̃2

1 +
√

1− k̃2

]2

 = (1 +

√
1− k̃2)

sn
(
u, k̃2

)
cn
(
u, k̃2

)
dn
(
u, k̃2

) (A-8)

With this at hand we now redefine u = m
2

(1+k)√
k2+1

(y − y0) and we obtain:

− d2

du2
vR

u + 2δ k̃2
sn
(
u, k̃2

)
cn
(
u, k̃2

)
dn
(
u, k̃2

) d

du
vR

u − βnv
R
u = 0 (A-9)
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where k̃2 = 4k
(1+k)2

and βn = 4 (k2+1)
(k+1)2

m2
n

m2 .

Now this can finally be brought to a simplified form of the generalized Ince equa-

tion]13[8] by a new change of variables, sin t = sn
(
u, k̃2

)
:

−(1− k̃2 sin2 t)
d2

dt2
vR

t + (1 + 2δ) k̃2 sin t cos t
d

dt
vR

t − βnv
R
t = 0 . (A-10)

Written in its canonical form we have

(1 + a cos 2t)
d2

dt2
vR

t + b sin 2t
d

dt
vR

t − λnv
R
t = 0 , (A-11)

where a = k̃2

2−k̃2 = 2k
k2+1

, b = −(1 + 2δ) 2k
k2+1

and λn = (k+1)2

k2+1
βn = 4m2

n

m2 .

We will now recall some known results related to the special case of the generalized

Ince equation from [8]. It is known that, for any real values of a (satisfying |a| < 1) and

b, there exist infinitely many values of the parameter λn such that Eq. (A-11) has an

even or odd periodic solution, of period π or 2π. We will denote them as λπ
2n, λ2π

2n+1 and

λ2π
2n+2, where n = 0, 1, 2, 3... In our case, for each of the λπ

2n, there must be two linearly

independent such solutions (except for the ground state n = 0, which allows only one

periodic solution). If and only if the parameter δ is an integer, there will be also two

linearly independent periodic solutions of period 2π, and then λ2π
2n+1 = λ2π

2n+2. When δ

is not an integer, then one of the two linearly independent solutions will be periodic, of

period 2π, but the other one will not be periodic. The λn’s satisfy the inequalities:

λπ
0 < λ2π

1 ≤ λ2π
2 < λπ

2 < λ2π
3 ≤ λ2π

4 < λπ
4 < · · · , (A-12)

where the equalities hold whenever δ is integer. In our specific case we have λπ
0 = m0 = 0.

Since the solutions to Eq. (A-11) are even or odd and of period π or 2π, the solutions

can be given with trigonometric series:

CI2n
π (t) =

∞∑
r=0

A2n
2r cos 2rt SI2n

π (t) =
∞∑

r=1

B2n
2r sin 2rt (A-13)

CI2n+1
2π (t) =

∞∑
r=0

C2n+1
2r+1 cos (2r + 1)t SI2n+2

2π (t) =
∞∑

r=0

D2n+2
2r+1 sin (2r + 1)t (A-14)

]13It could also take the form of the associated Lamé equation, by defining wu = vu dn
(
u, k̃2

)−δ

. This
form is less interesting: in order to find general solutions, we have convert it back to the well studied
generalized Ince equation and then expand in trigonometric series [8].
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where n = 0, 1, 2, 3, . . . The CI’s are even while the SI’s are odd functions of t. The

periods are as follows: π for CI2n
π , SI2n

π and 2π for CI2n+1
2π , SI2n+2

2π (they correspond to

the periods ω and 2ω, respectively, in terms of the variable y). Now, we define

Q(r) = 2ar2 − br =
4k

k2 + 1
r (r + δ + 1/2) (A-15)

Q∗(r) = 2Q(r − 1/2) =
4k

k2 + 1
(2r − 1) (r + δ) . (A-16)

The parameters A2n
2r , B2n

2r , C2n+1
2r+1 and D2n+2

2r+1 satisfy the following three term recurrence

relations [8]:

−λπ
2nA0 +Q(−1)A2 = 0 (A-17)

Q(r − 1)A2r−2 +
(
4r2 − λπ

2n

)
A2r +Q(−r − 1)A2r+2 = 0 (A-18)

r = 1, 2, 3, ...

(4− λπ
2n)B2 +Q(−2)B4 = 0 (A-19)

Q(r − 1)B2r−2 +
(
4r2 − λπ

2n

)
B2r +Q(−r − 1)B2r+2 = 0 (A-20)

r = 2, 3, ...

[
Q∗(0)− 2(λ2π

2n+1 − 1)
]
C1 +Q∗(−1)C3 = 0 (A-21)

Q∗(r)C2r−1 + 2
[
(2r + 1)2 − λ2π

2n+1

]
C2r+1 +Q∗(−r − 1)C2r+3 = 0 (A-22)

r = 1, 2, 3, ...

[−Q∗(0)− 2(λ2π
2n+2 − 1)

]
D1 +Q∗(−1)D3 = 0 (A-23)

Q∗(r)D2r−1 + 2
[
(2r + 1)2 − λ2π

2n+2

]
D2r+1 +Q∗(−r − 1)D2r+3 = 0 (A-24)

r = 1, 2, 3, ...

The condition that the series (A-13) and (A-14) converge will set the characteristic values

of λ
π/2π
i . These characteristic equations can be written in terms of infinite determinants

[15] or, as we will do, as infinite continued fractions [13].

We need to remember that we are solving the equation for the right-hand fermion

modes ψn
R. The boundary conditions impose that these are even functions of y. So, we
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might be inclined to immediately disregard the solutions SI2n
π and SI2n+2

2π . However, it

turns out that they are needed to obtain the left-hand modes ψn
L, which are odd functions

of y. We do this by translating the general solutions of Eq. A-1, by ω/2.

If we perform the translation of the period ω even solution of (A-1), constructed with

CI2n
π , we do get an even solution of (A-2). But we want ψL to be odd, and that solution

is thus not good. What is needed is to compute the period ω odd solution of (A-1),

constructed with SI2n
π . The translated function will now be odd. As we said earlier, even

and odd solutions of period π (period ω in y coordinate) of Eq. (A-1) are guaranteed to

exist for the same specific eigenvalues.

The story is different for the period 2ω solutions. Now the translation of the period

2ω even solution of (A-1) constructed with CI2n+1
2π will give an odd solution of (A-2),

which is exactly the solution for ψL that we need. Therefore the odd series SI2n+1
2π with

coefficients D2n+2
2r+1 will not be needed, since they correspond to odd solutions of (A-1) and

to even solutions of (A-2), precisely the opposite parities needed.

Summarizing, the final solutions of (A-1) and (A-2) are as follows:

ψR
2n(y) ∝ ψ0(y) CI2n

ω

[
am

(
m

2

(1 + k)√
k2 + 1

y,
4k

(1 + k)2

)]
(A-25)

ψR
2n+1(y) ∝ ψ0(y) CI2n+1

2ω

[
am

(
m

2

(1 + k)√
k2 + 1

y,
4k

(1 + k)2

)]
(A-26)

ψL
2n(y) ∝ ψ0(y + ω/2) SI2n

ω

[
am

(
m

2

(1 + k)√
k2 + 1

(y + ω/2),
4k

(1 + k)2

)]
(A-27)

ψL
2n+1(y) ∝ ψ0(y + ω/2) CI2n+1

2ω

[
am

(
m

2

(1 + k)√
k2 + 1

(y + ω/2),
4k

(1 + k)2

)]
(A-28)

where

ψ0(y) =

[
dn

(
m√
k2 + 1

y, k2

)
+ k cn

(
m√
k2 + 1

y, k2

)]δ

(A-29)

and ω = 4
√

1+k2

m
K(k2) is the period of φc(y). Finally, am(x,m) is the Jacobian elliptic

amplitude.

In order to find specific values of the eigenvalues such that these periodic solutions

exist, we will only need two transcendental equations (infinite continued fractions equa-

tions) to find the values λπ
2n and λ2π

2n+1. To simplify our notation, we will introduce the
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continued fraction notation:

a

b+ c
d+ e

f+···

=
a

b+

c

d+

e

f+
· · · (A-30)

Using the recurrence relations (A-20) and (A-22) (see §3.6 in [13] for the procedure) we

find the two transcendental equations that fix all the values of λπ
2n and λ2π

2n+1:

4− λπ
2n =

Q(−2)Q(1)

16− λπ
2n−

Q(−3)Q(2)

36− λπ
2n−

Q(−4)Q(3)

64− λπ
2n−

· · · Q(−N)Q(N − 1)

4N2 − λπ
2n−

· · · (A-31)

Q∗(0) + 2− 2λ2π
2n+1 =

Q∗(−1)Q∗(1)

9− λ2π
2n+1−

Q∗(−2)Q∗(2)

25− λ2π
2n+1−

· · · Q∗(−N)Q∗(N)

(2N + 1)2 − λ2π
2n+1−

· · · (A-32)

These can easily be solved numerically.
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