
Constraints on anomalous QGC’s

in e+e− interactions from 183 to 209 GeV

The ALEPH Collaboration∗)
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Abstract

The acoplanar photon pairs produced in the reaction e+e− → νν̄γγ are analysed
in the 700 pb−1 of data collected by the ALEPH detector at centre-of-mass energies
between 183 and 209 GeV. No deviation from the Standard Model predictions is
seen in any of the distributions examined. The resulting 95%C.L. limits set on the
anomalous QGC’s, aZ

0 , aZ
c , aW

0 and aW
c , are

−0.012GeV−2 < aZ
0/Λ2 < +0.019GeV−2,

−0.041GeV−2 < aZ
c /Λ2 < +0.044GeV−2,

−0.060GeV−2 < aW
0 /Λ2 < +0.055GeV−2,

−0.099GeV−2 < aW
c /Λ2 < +0.093GeV−2,

where Λ is the energy scale of the new Physics responsible for the anomalous cou-
plings.
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Laboratoire de l’Accélérateur Linéaire, Université de Paris-Sud, IN2P3-CNRS, F-91898 Orsay Cedex,
France
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1 Introduction

Multiphoton production has been already investigated with the ALEPH detector to search
for physics beyond the Standard Model [1]. In this letter, acoplanar photon pairs from
the reaction e+e− → ννγγ are used to set limits on anomalous quartic gauge couplings.

Quartic gauge couplings (QGC’s) between the electroweak vector bosons are predicted
by the Standard Model (SM), as a consequence of the SU(2) × U(1) non-Abelian gauge
structure. The SM QGC contributions are unobservably small at LEP2 energies. For
example the contribution of the WWγγ vertex (Fig. 1) to the e+e− → ννγγ process is
only a few fb [2, 3]. The ZZγγ vertex is absent in the SM at tree level. Therefore evidence
of QGC’s at LEP2 would be an indication of new physics.

The values of the QGC’s depend strongly on the electroweak symmetry breaking
mechanism. Several alternatives to the SM predict anomalous QGC’s without altering
the SM values of the triple gauge couplings [4, 5].

γ

Z Z

e+

e-

ν

ν

e+

e-

ν

ν

W

W

γ

γ

γ

Figure 1: Diagrams with quartic gauge couplings contributing to the e+e− → ννγγ
channel.

The parametrization of QGC’s adopted in this paper follows the convention of Ref.
[2]. The relevant C, P and CP conserving anomalous QGC contributions, not related to a
TGC counterpart, are described by two additional dimension-six terms in the Lagrangian
[3]:

L0

6 = − e2

16

a0

Λ2
F µνFµν

−−→
W α · −→Wα,

Lc
6 = − e2

16

ac

Λ2
F µαFµβ

−→
W β · −→Wα

1



with usual notations for the electromagnetic and weak fields, and where Λ represents the
scale of the new physics responsible for the anomalous contributions. Both a0 and ac are
equal to zero in the Standard Model. In the following, the two sets of couplings, (aW

0 , aW
c )

and (aZ
0 , a

Z
c ), are assumed to be independent, as suggested in Ref. [6].

2 The ALEPH detector and event selection

2.1 The ALEPH detector

The ALEPH detector and its performance are described in detail in [7] and [8]. The
analysis presented here depends mainly on the performance of the electromagnetic
calorimeter (ECAL). The ECAL is a lead/wire chamber sampling calorimeter of 22
radiation length thickness. It consists of 36 modules, twelve in the barrel and twelve in
each endcap, which provide coverage in the angular range | cos θ| < 0.98. The insensitive
region between modules represents 2% of the barrel and 6% of the endcap areas. Cathode
pads associated with each layer of the wire chambers are connected to form projective
towers, each subtending approximately 0.9◦ × 0.9◦, read out in three segments in depth
(“storeys”). This high granularity provides excellent identification of photons. The energy
calibration of the ECAL is obtained from Bhabha events, e+e− → γγ events and events
from two-photon interactions, γγ → e+e−. The energy resolution for isolated photons is
σ(E)/E = 0.18/

√
E + 0.009 (E in GeV). The ECAL also provides a measurement of the

event time t0 relative to the beam crossing with a resolution better than 15 ns for showers
with energy greater than 1 GeV.

The hadron calorimeter (HCAL) and the luminosity calorimeters extend the coverage
to 34 mrad from the beam axis. Together with external muon chambers, they are
used in this analysis mainly to veto events in which photons are accompanied by other
energetic particles. The tracking system provides efficient reconstruction of isolated
charged particles in the angular range | cos θ| < 0.95. Photon candidates are identified by
an algorithm [8] which searches for local energy maxima within clusters of ECAL storeys.
The trigger most relevant for photon events is the neutral-energy trigger with a threshold
of 1 GeV (2.3 GeV) in any ECAL barrel (endcap) module. The trigger efficiency for the
selections described below is estimated to be at least 99.8%.

The data have been collected at centre-of-mass energies between 183 and 209 GeV.
Only runs during which all tracking devices and calorimeters were in standard working
conditions are selected, corresponding to a total luminosity of 704.4 pb−1.

2.2 Monte Carlo simulation

The KK generator version 4.15 [9] is used to simulate the SM processes for the reaction
e+e− → ννγγ(γ). It uses the YFS approach [10] to generate an arbitrary number of
initial state photons. An independent generator, NUNUGPV [11], based on exact lowest
order amplitudes for the production of up to three photons in the final state, modified
for higher order QED effects using transverse momentum dependent structure functions,

2



is used to reweight the events as a function of the anomalous couplings a0 and ac. The
cross sections predicted by the two generators in the absence of anomalous couplings are
consistent within 1% at LEP2 energies.

The simulations have been performed at eight centre of mass energies between 182.6
and 206.7 GeV, corresponding to the average energies of the data samples. For each
energy, a sample of 10000 events has been generated and processed through the ALEPH
simulation and reconstruction programs.

In the following sections, the missing mass (Mmiss) is used as a discriminant variable
to set constraints on the anomalous couplings aZ

0 , a
W
0 and aZ

c , aW
c . The distribution of the

missing mass is shown in Fig. 2 for the SM and for a few values of aZ
0 and aZ

c . A larger
sensitivity to the ZZγγ vertex is expected because of the resonant nature of the relevant
graph in Fig. 1.

2.3 Selection of events with two acoplanar high transverse

momentum photons

Only events with photons having a time measurement consistent with the beam crossing
time, no reconstructed charged particle tracks and total photon energy

∑
Eγ < 0.5

√
s

are considered. No more than one hit is allowed in the muon chambers, to eliminate
background arising from off-momentum muons in the beam halo and cosmic rays. Beam-
related background is suppressed by rejecting events with at least 0.5 GeV detected below
14◦ from the beam axis. Events with a photon acoplanarity above 5◦ are kept, to reject
the events from the QED reaction e+e− → γγ(γ).

Events with two and only two photon candidates are considered. Both photons must
fulfil the conditions

Eγ/
√

s > 0.025 , | cos θγ | < 0.94 and pTγ/Ebeam > 0.05,

and the more energetic photon must have an energy larger than 0.2
√

s.

The average reconstruction efficiency of events which fulfil the above cuts is 70.0±2.0%.
In the data 30 events are found, whereas 36.2 are expected from SM contributions, as
summarized in Table 1.

Figure 3 shows the distribution of the photon energy, of | cos θγ | and of the missing
mass for data, compared to the SM predictions from KK.

3 Results

3.1 Likelihood fit

For the ZZγγ vertex a 2-dimensional binned likelihood fit is performed on the (Mmiss, Eγ)
distribution, with 4 bins in Mmiss as displayed on Fig.2 and 2 bins in Eγ as shown in Table
1. For the WWγγ vertex only the Mmiss distribution is used.

3



All High Eγ Low Eγ

Data Events 30 10 20
Expected events (SM) 36.2 11.6 24.6
Expected events for aZ

0 = aZ
c = 300 82.1 13.1 69.0

Table 1: Number of events in the data, number of events expected from the SM, and
number of events expected for aZ

0 = aZ
c = 300. High Eγ : events for which the energy

of the less energetic photon is > 0.1
√

s. Low Eγ : energy of the less energetic photon
< 0.1

√
s. The new physics scale Λ is set to the mass of the W boson.

The two pairs of QGC parameters, (aZ
0 , a

Z
c ) and (aW

0 , aW
c ), are determined

independently, setting the WWγγ (respectively ZZγγ) contribution to zero.

Figure 4 shows the -∆log(L) curve corresponding to the fit of aZ
0/Λ2 with aZ

c set to
zero, and the -∆log(L) curve for the fit of aZ

c /Λ2 with aZ
0 set to zero. Figure 5 shows the

corresponding likelihood curves for aW
0 /Λ2 and aW

c /Λ2 .

Figure 6 shows the 68% and 95% confidence level contours in the (aZ
0/Λ2, aZ

c /Λ2)
and (aW

0 /Λ2, aW
c /Λ2) planes from a two-parameter fit. A weak correlation between the

couplings is visible in both two-dimensional likelihood functions.

3.2 Systematic uncertainties

The contributions to the systematic uncertainty on the determination of the couplings
are summarized in Table 2.

Table 2: Contributions to the systematic uncertainty on the measurements of the
couplings, in percent of the cross section. The statistical relative error on the measured
cross section is 18%.

Source of systematic uncertainty Error (%)

Higher Order corrections 1.0
Weight calculation 5.0
Acceptance 1.0
Normalization 5.0
Energy scale negligible
Background negligible
Total 8.0

The effect of absence of higher order electroweak corrections in the NUNUGPV
generator has been determined by the authors of Ref.[9] to be around 1 %. The theoretical
error is dominated by the QGC reweighting procedure; this error has been estimated to be
of the order of 5%. The acceptance is found to be stable within 1% when the couplings are
varied. Taking into account the uncertainty on the inefficiency of the cut at 14◦ described
in Section 2.3, that of the cut on the number of hits in the muon chambers and the 0.5%
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uncertainty on the luminosity, the error on the normalization is estimated to be 5%. The
contribution to the background from QED events with 3 or more photons is estimated by
the GGGB program [12], to be less than 0.01 events.

The total systematic error of 8% is small with respect to the 18% statistical error on
the measured cross section. Its contribution is convolved with the statistical component
to extract the final 95% confidence level limits on the quartic gauge couplings; these limits
are

−0.012 GeV−2 < aZ
0/Λ2 < 0.019 GeV−2 with aZ

c = 0,
−0.041 GeV−2 < aZ

c /Λ2 < 0.044 GeV−2 with aZ
0 = 0,

−0.060 GeV−2 < aW
0 /Λ2 < 0.055 GeV−2 with aW

c = 0,
−0.099 GeV−2 < aW

c /Λ2 < 0.093 GeV−2 with aW
0 = 0.

The limits from the 2-parameter fit are

−0.020 GeV−2 < aZ
0/Λ2 < 0.024 GeV−2 ,

−0.050 GeV−2 < aZ
c /Λ2 < 0.055 GeV−2 ,

−0.075 GeV−2 < aW
0 /Λ2 < 0.066 GeV−2 ,

−0.121 GeV−2 < aW
c /Λ2 < 0.116 GeV−2 .

4 Conclusions

No evidence of anomalous quartic gauge couplings in the ZZγγ and WWγγ processes
has been found in the analysis of the e+e− → ννγγ reaction in a data sample taken
at energies between 183 and 209 GeV with the ALEPH detector, corresponding to an
integrated luminosity of 704.4 pb−1.

The 95 % C.L. limits on the QGC parameters a0/Λ2 and ac/Λ2 are

−0.012 GeV−2 < aZ
0/Λ2 < 0.019 GeV−2 with aZ

c = 0,
−0.041 GeV−2 < aZ

c /Λ2 < 0.044 GeV−2 with aZ
0 = 0,

−0.060 GeV−2 < aW
0 /Λ2 < 0.055 GeV−2 with aW

c = 0,
−0.099 GeV−2 < aW

c /Λ2 < 0.093 GeV−2 with aW
0 = 0.

Constraints on these parameters have been set also by the OPAL collaboration [13]
and by the L3 collaboration [14].
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of the experiment.
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Figure 4: Likelihood curves for a) the fit of the QGC parameter aZ
0/Λ2,

the parameter aZ
c being set to 0, and b) the fit of aZ

c /Λ2 with aZ
0 set to 0.
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Figure 5: Likelihood curves for a) the fit of the QGC parameter aW
0 /Λ2,

the parameter aW
c being set to 0, and b) the fit of aW

c /Λ2 with aW
0 set to 0.
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Figure 6: Two-dimensional contours for the QGC parameters: a) aZ
0/Λ2 and aZ

c /Λ2 and
b) aW

0 /Λ2 and aW
c /Λ2. Full line: 68 % C.L. contour. Dashed line: 95 % C.L. contour.
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