TRAET hespray- R REFENINGE HHE(- S |
| SORY-HOE Fp-2E 8790120 PO T Loty S ’
T ‘] AAEC/S17

AUSTRALIAN ATOMIC ENERGY COMMISSION
RESEARCH ESTABLISHMENT
n LUCAS HEIGHTS CERN LIBRARIES, GENEVA
\0 Yy &

S (T
oy
]

s s S
6. Jl. = CM-P00067994

AAEC/S17

CER® SUMMER SCHOOL, 1976 -

DOWN BUT NEVER OUT — THE MATHEMATICS AND COMPUTATION OF
EXPONENTIALS ARISING IN THE FIELDS OF
PHYSICS, CHEMISTRY, BIOLOGY, ...

Edited by

P.].F. Newton

x 2,
% December 1975 Y,

ISBN 0 642 99725

COVER DESIGN

.
The fhe'ﬁré'of the design is exponentials in action. The somewhat
tall and challenging mountain peaks depicted as the centre piece
is simply a plot of the number of neutrons around five sources
emitting neutrons into an absorbing block of material. Each moun—
tain consists of an exponential curve rotated about a central axis.

AUSTRALIAN ATOMIC ENERGY COMMISSION
RESEARCH ESTABLISHMENT
LUCAS HEIGHTS

SUMMER SCHOOL 1976

DOWN BUT NEVER OUT - THE MATHEMATICS AND COMPUTATION OF
EXPONENTIALS ARISING IN THE FIELDS OF PHYSICS, CHEMISTRY,
BIOLOGY,...

Edited by

P.J.F. Newton

ABSTRACT

These notes are for a Summer School which will introduce mathematically
minded year 12 High School students to scientific computing covering a
variety of scientific disciplines. All of the disciplines concentrate on
examples that follow the basic exponential behaviour of two coupled first
order differential equations.

The various problems pursued are from the disciplines of mathematics,
physics, chemistry, biology, and include. consideration of other exponential
processes such as competing population problems such as between sharks and
little fishes.

Much of the course is devoted to electronic computing. The student
(a) will set up a digital computer for the least squares problem, and
(b) will use an analogue computer to study competing exponential
processes.

(1]
(2]
(3]
(4]

(5]

(7]
(8]

National Library of Australia card number and ISBN 0 642 99725

The following descriptors have been selected from the INIS Thesaurus to
describe the subject content of this report for information retrieval purposes. For
further details please refer to IAEA—INIS—12 (INIS: Manual for Indexing) and
IAEA—INIS—13 (INIS: Thesaurus) published in Vienna by the International Atomic
Energy Agency.

COMPUTER CALCULATIONS; FUNCTIONS; MATHEMATICAL MODELS; MATHEMATICS
LEAST SQUARES FIT; MATHEMATICS; NON LINEAR PROBLEMS; DIAGRAMS
COMPUTER CALCULATIONS; FORTRAN; MATHEMATICS; PROGRAMMING

AMPLIFIERS; ANALOG COMPUTERS; DIFFERENTIAL EQUATIONS; HYBRID
COMPUTERS; MATHEMATICAL MODELS; POPULATION DYNAMICS; SIMULATION

PROGRAMMING; LANGUAGES; COMPUTERS

CAPTURE; CHAIN REACTIONS; CLADDING; FISSION; FUEL ELEMENTS; MOATA
REA CTOR; RADIOACTIVITY; SCATTERING

CHEMICAL REACTIONS; DECOMPOSITION; KINETICS; OXIDATION; REDUCTION

BIOLOGICAL CELLS; BIOLOGICAL RADIATION EFFECTS; SURVIVAL CURVES;
TARGET THEORIES; MATHEMATICAL MODELS; PROBABILITY

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CONTENTS

THE EXPONENTIAL FUNCTION

J.P. POLLARD

MATHEMATICS OF A LEAST SQUARES PROCESS

B.E. CLANCY
FORTRAN
J .M. BARRY

ANALOGUE COMPUTING AND DYNAMICS

C.P. GILBERT

INTERACTIVE COMPUTING WITH ACL

R.P. BACKSTROM

EXPONENTIALS AND REACTORS

D.B. McCULLOCH

'e' IN CHEMISTRY
A.J. EKSTROM

SURVIVAL CURVES FOR
D.K. GIBSON

IRRADIATED CELLS

CHAPTER 1

THE EXPONENTIAL FUNCTION

Lecture by

J.P. POLLARD

ABSTRACT
Mathematical properties of the exponential function, y(x) = e*
are studied in order to set the stage for material to be presented at
the Summer School. Nowadays static display of strange relationships for
their own intrinsic beauty is not enough, we need to pursue the
relationships into computational action. Following the trend, practical
digital computer and electronic calculator computation of exponentials

is introduced.

.4

CONTENTS

INTRODUCTION

ESTIMATING THE NUMBER e

APPROXIMATIONS FOR e

1.3.1 The Derivative Approach
1.3.2 The Integral Approach
1.3.3 Other Approaches

THE NATURAL LOGARITHM

THAT STRANGE BUT BEAUTIFUL RELATIONSHIP

Page
1.1

1.10

1.1 THE POWER AND EXPONENTIAL FUNCTION

A general class of power function is given by the expression

P, s (1.1)

y (x)

e.g. y(3) = p® = ppp and y(0) = p° = 1,

where p is a number, or base, chosen to suit the problem and needs of

the user. A simple example is given by the familiar antilog function

10,

arising when p

y(x) = 10% e (1.2)
so that, taking logarithms (to the base 10), we have
log y = x. eee(1.3)

It so happens that, in computation, the base p = 10 is convenient and
often used. However, in the physical world one particular value of p

arises in a natural way corresponding to
p=e=2.71828... , «..(1.4)

a number as highly regarded in the mathematical world as the number
il =v3.l4159... ... (1.5)

(Digression...
Having met T as a really special number, you may not like to see a
competitor enter the field. Well don't worry! T and e are blood

cousins through the strange but beautiful relationship

w1

e = -1, (derived by Euler).) ... (1.6)

Let us move on to investigate the properties of the power function

given by equation (1.1). Some obvious properties we notice are that

+
pr % = pfp? = y(x)y(2)

and %n . n e (1.7)
y(x) = \p = [y(;)]

then a ratio required in calculating the function derivative is simpli-

y(x + 2)

fied in the manner

y(x+8x) - y(x) _ y(x)y(6x) - y(x)
Sx Ox

y(6x) -1
y(x) [_—_Gx]

1.2

Sx

-1
= y(x) [Lsx—] i

From the definition of a derivative we have

dy _ lim [y(x+6x) - y(x)

N |
dx 6x>0 8x oo
. Sx
hence dy _ lim p = - l]

dx y (%) 8x>0 [8x
We find that a particular value of p(=e) exists such that

. Sx
lim e -1 ... (1.8)

GX*O[Sx 1=1 !

from which our central result is obtained for the so-called exponential

function,
dy _
ax - y (x)
or S _ X
dx !
i.e. e is its own derivative. ... (1.9)

Of almost equal importance is the integral result obtained from equation

(1.9). We have

but

X P x
.j. &Y ax =.I. dy = [y(x)] =yx) - y(0) =y(x) -1 ,
0 0 0

hence we have

X
f y(x)dx = y(x)-1 ,
0

X
or f eXax = e*-1 (definite integral)|,
0

1.3

X
or f e¥dx = &* (indefinite integral)| ,
0

1.e. e® is its own integral. ... (1.10)

A quick look at figure 1.1 will help us to visualise properties

(1.9) and (1.10)

3.0 — v

.............................

AREA = 1.718

e ccenmnccccsncrascmcen—cas

o
w

0 05 0.0

Figure 1.1 The function e*

Changing to the variables required for this Summer School, a slightly

more general exponential function is

x(t) = erkt ’ eeo(1.11)

where xo and A are constants. The rule for differentiating a function

of a function shows us that

At
dx _ _de"" axt _ _ A, _
3t - Xpr af - Xoe A= Ax(t) .

Similarly we calculate the indefinite integral

At
A A
ﬁ{(t)dt=x(2[et dx_t=xO§_)__ =x)(\t) .

1.4

Collecting results we have

At

de”~ | At
o Ae
At
fe)\tdt = 97__
. ax _
if ik - Ax

with x(0) = x¢ ,

At

then x(t) = xoe e (1.12)

where the last results are obtained by considering equation (1.11) with
A negative.

Before we proceed much further, we will need to know more about the
number e.
1.2 ESTIMATING THE NUMBER e

At present, all we know about the number e is contained in the

expression
lim er -1
8x>0 % | = 1 .
X

Now if we consider the above equation for sufficiently small values of

8x, we have

§x

e -1=8x

then er ~ 1 + 6x

and, taking logs,

R

8x log e = log(l+6x)

1

log e %; log (1+6x)
1

8x

R

log (1+6x)

1

(146%) 5% .

R

e
Instead of the above let us introduce

1/8x (n*® as 6x>0) ee.(1.13)

n

R

then e (l+%?n

1.5

. _ lim l.n
and, in fact e = 3% (l+;0 . ee.(1.14)

Let us tabulate a few estimations of e using the approximation

(1.13). We obtain the results

2

(1+%p = 2.25
1 5
(143) = 2.489
1 10
(1+5) = 2.594
1 20
(1+55) = 2.653 .

This method does not seem to be very practical since we need to go much
further to obtain e to 4 figures; nevertheless someone has calculated

1 10000

) = 2.7182 .

(1*+ 75000

Even this is not entirely correct for the figures stated, since the

value to 6 figures is

e = 2.,71828 ... (1.15)

~

but, in section 1.3, we will produce our own estimates from approxi-
. X
mations for e when x=1.

1.3 APPROXIMATIONS FOR e

1.3.1 The Derivative Approach

We have already established the derivative property of the ex-

ponential function y(x) = ex; it is

dy _ X (equation (1.9)).
dx
Let us assume

X
y(x) = e = ag + ajx + azx2 + a3x3 + agx" + e, ...(1.16)

a power series expansion with coefficients agp, a3, az, ... to be deter-

mined, then
y() =e’ =1=ap+0+0+ ...

apg =1 .

Differentiating equation (1.16),

d b4
a§-= e = a; + 2axx + 3a3x2 + 4aux

S+ L.,

hence equating coefficients of like powers of x (they must be the same)

aj = ap
a; =

2a; = aj;
az = 1/2
3az = a»

az = 1/(2%3)
da, = ajs

1/(2x3x4)

ay
and so on. If we define the factorial function as
n! = 1X2X3xX ... X(n-1)xn (the product of the first n integers),

e (1.17)

then we obtain the important result

2 3 [
e=l+x+x— +—+’Z<I— +(1.18)

which works for all values of x although far too many terms may be
required for large values of x. For this latter situation, invoking

properties of)exponents (equation (1.7)), we take

X = ™ (eﬁiﬂbn ...(1.19)

where n and m are integers chosen to make (Eiﬂ) sufficiently small. The
computation process consists of first calculating e§ig, then multiplying
the result by itself n times, and finally further multiplying by e, m
times. Of course, the actual choice for m and n is somewhat arbitrary.

As an example

y
e3'?2 = g% ")* = (2.71828)°% [1+0.05 + %40.05)2 + %40.05)3+ %4 (0.05) %]

20.0855(1.051271) % = 20.0855(1.22140)

It

24.5324, which compares well with the exact result 24.5325..

I

1.7

Using our power series expansion (1.18), we have

+ (+ terms we will

o

I
Y
o=
S L

11 1
l+l+y*y*a*s e '

ignore)

2.7183 ...(1.20)

I

e

which is a far more practical approach than that adopted in section 1l.2.

1.3.2 The Integral Approach

The integral property we require is given by equation (1.10), namely

xx X
fedx=e-l;
0

we estimate the integral numerically using Simpson's rule.
(Digression ...

Simpson's rule in its simplest form states that

2h
f f(x) dx
0

For example

R

3[£(0) + 4£(h) + £(20)],

2h h 8
x? dx = =[0% + 4h? + (2n)2] = = hn®
3 3
0
which in this instanqe is exact since
2h
2 _ Ll 3;2h _ 1 3 _ 8.3
.l. x° dx = [3 b ¢]0 = 3(2h) = 3 h°.)
0
We choose h = x/2; then
X
X x X 2 X X
fe dx = =[e’ +4e° +e1=¢e" -1 .
0 6

Simplifying the above equation and noting that e%=1, we have
X

X + 4xe2 + xe© = 6e - 6 R

and then

X

(6-x)e* - 4xe® - (6+x) = 0(1.21)

X

Now if we define z=e2, equation (1.21) becomes a quadratic equation in z,

1.8

(6-x)z2 - 4xz - (6+x) = 0
with the positive solution

X
2

1

— 2 -
5 Te 14X * Y (4x) 2+4 (6-x) (6+x)]

z =e =

. . . X
and we obtain an approximation for e

& = {g%;-[zx + V/3x%+36 1} |, e..(1.22)

which is valid provided Simpson's rule gives a reasonable estimate of

X
./; e®dx. It is found that the approximation holds to 5 figures for the

interval

< x < %. ce.(1.23)

|
N =

and powering similar to the process described in the previous section
(equation (1.19)) may be used for numbers outside the interval. (The
interested reader should verify that the approximation (1.22) exactly

satisfies the exponential property

e ¥ =1/,
which explains why the interval (1.23) extends into the negative region.)
(Digression ce
If you own a simple electronic calculator that has a square root
button, then approximation (1.22) enables you to calculate exponentials
with relative ease.)

As examples we calculate

(2.71828) % (0.740817) ;

1]

hence e = 40.447, which is correct to 5 figures,

(e)? = (1.64874)2

and e

2.7183 (1.25)

]

giving e

1.3.3 Other Approaches

Other approaches are used on a digital computer but we will not
investigate them except to say that they are usually part of a package

of routines made available by the machine manufacturer. For example, on

1.9

the IBM360 in FORTRAN, we simply code

Y=EXP(X)
to return the exponential of X in the storage location Y.

(Digression ...

If you have time you might like to produce a table of e* for x =
-0.5, -0.4, ..., 0, 0.1, 0.2, ..., 0.5 using both the approximation (1.22)
and the machine supplied routine to verify that the approximation is
valid to 5 figures.)

1.4 THE NATURAL LOGARITHM

The natural logarithm, denoted 1ogey or In y, inverts the rela-

tionship given by the exponential
y = &, ...(1.26)

to give fny=x, .. (1.27)
just as the ordinary logarithm, denoted log y, inverts the relationship
given by the antilog expression

zZ
y = 10°, ...(1.28)

togive logy = 2z (1.29)
Conversion between the two types of logarithms is easy. First we note

that, from equations (1.28) and (1.29),

10l09 ¥ Zn Y,

y = (and also y = e ;
hence, taking natural logs, we obtain
£ny = (log y) (£n 10) = 2.30259 log y

giving the result

log y = £n y/2.30259 |(1.30)

As for the exponential function, there are many possible approaches
for obtaining approximations for the natural logarithm. An approxi-

mation that is inverse to our approximation (1.22) is obtained from

x/2

equation (1.21). By solving for x rather than e , we obtain

~ 6(y-1)
y+4vy+1

ny ... (1.31)

which is accurate to 5 figures for the interval

N|—
=

(0.60653=) e 2 <y < e (=1.6487) | (1.32)

As an example of a possible method of attack when the above interval

is exceeded, we have

I
£n(286.5)=£n(100%2.865)=2£n(10)+4£n(2.865) *= 2(2.30259)+4£4n(1.30101)

(using successive square roots)
= 4.60518 + 4(0.263140)
hence £n(286.5)=5.6577, which is correct to 5 figures.

Alternatively

1/16

£n(286.5)=16£n(286.5) =164n(1.424198) (using successive

square roots) = 5.6577 .

We now turn to an important property of £n y, namely

dy
=+ = . ee.(1.33
fy n y ()

We readily verify this result from equation (1.9) since

./gz-==~/;x =x=4ny .

1.5 THAT STRANGE BUT BEAUTIFUL RELATIONSHIP

This section is only of interest to the advanced reader. For the

few that are determined to continue, you might recall from section 1.1

that the Euler relationship (1.6) was exposed for admiration
/-1
e ... (1.34)

Written alternatively as

uven
(e® H)f=-a1 ’ ...(1.35)
the question arises as to whether we could take x = I -1 in our approxi-
mation (1.22) and obtain the result (1.34). (We hav: at least scaled the x
to perhaps an appropriate size!) Well if we take the bold step we
obtain the answer
m/-1

(e®)® = -1.00000 - 0.00002/-1 (1.36)

1.11

This somewhat surprising result that our approximation (1.22) holds for
imaginary arguments (that is x = something times /:I) really means, to
those that know the deeper Euler relationship

ex o

= cos x + V-1 sin x , .. (1.37)

that we could derive approximations for cos x and sin x from our exponential
approximation (1.22). We leave that as an exercise for the advanced

reader.

CHAPTER 2

MATHEMATICS OF A LEAST SQUARES PROCESS

Lecture by

B.E. CLANCY

ABSTRACT
The problem of determining the equation of a curve which best
describes a set of experimental measurements is discussed and a
technique for fixing the equation when the curve is a straight line

is described.

2.1

2.2

2.4

CONTENTS

INTRODUCTION

THE LINE OF BEST FIT

LINEAR LEAST SQUARES FITTING
A SIMPLE EXAMPLE

NON-LINEAR RELATIONSHIPS

LEAST SQUARES FITTING TO EQUATION (2.4)

Page

2.1 LINEAR RELATIONSHIP BETWEEN EXPERIMENTAL VARIABLES

When analysing the results of scientific experiments in the light
of a theory, a problem which constantly arises is that of reconciling
theory and experiment. During this Summer School a fair part of your
time will be involved with just this problem.

A common situation is where the theory says that two measurable
quantities are connected by a linear relationship. If we call the two
quantities x and t, the theory then says

X =mt + b ... (2.1)
where.m and b are fixed constants.

For example, suppose that x is the length in. metres of a metal bar
and t is the temperature of the bar in degrees Celsius. The usual
theories of heat and of the properties of metals assert that equation
(2.1) holds when b is the length of the bar at 0°C and m is a coefficient
of expansion for the metal. We can construct many other theories for

which equation (2.1) is their mathematical statement.

T
"

T
!

1.046

1.042

1.038

1.034

T
| R N SR S |

Length (m)

1.030 d

1.026

T
P IR BT |

1.022 -

1.0]8:.‘.,.A il | 1 | 1 ;]
0 200 Loo 600
Temperature (°C)

Figure 2.1

Let us suppose that an experiment is carried out to determine the
values of the constants m and b in equation (2.1). 1In our example, the
experiment might consist of heating or cooling the bar by some means,
waiting until all points on the bar were at the same temperature and
then simultaneously measuring that temperature and the length of the
bar. This would give a pair of values, say t;, X1, for the two vari-
ables t and x. After repeating the experiment a number of times for
different temperatures, and recording the results, we would have a set
of pairs t;, x; tz, x2 t3, x3 ... ete.

The theory asserts that if these pairs are uéed as Cartesian co-
ordinates of points, then the points will all lie on a single straight
line. This will be the situation if the theory is correct and if our
experimental technique is perfect. Unfortunately, we aren't perfect
beings and the result of the experiment is likely to be a set of points
like those in figure 2.1.

Instinctively we would think, after inspecting these results, that

1.050 ey e A Mt : ﬂ
1.045 [.
1.040 N .-j
I) o* i
§|.035 5 . # 7
s I .]
g []
$1.030 (e
- r .
1.025 [.
1.020 F 1
. - N UV FETVRUVT DUVUUTUTN FUUTTUTTIT FOUTOTTON %
B T E—TVTy 600 800

Temperature (°C)

Figure 2.2

the theory was probably all right and that had our experimental tech-
nique been far better, then the points would all lie exactly on a single
line. Unfortunately, what happens if the experiment is repeated with
more care and with more complex and expensive equipment is that we
achieve a set of points similar to those of figure 2.2.

We see that the situation is much improved - there does seem to be
a line x = mt + b which nearly passes through the points. However, we
can't draw the line by simply joining the points.

2.2 THE LINE OF BEST FIT

Faced with the situation in figure 2.2, we have to find some way of
constructing a line which best seems to fit the set of points. We can
do this by constructing what are sometimes called"eyeball fits', Z.e.
we simply put a rule across the points and shift it around until we are
more or less satisfied that the line is good enough. Unfortunately, no
two people's eyeball fits ever agree and some more objective procedure
is desirable. Such a procedure we now describe.

2.3 LINEAR LEAST SQUARES FITTING

We suppose that the line of best fit we are seeking has the equation
x = mt + b,
and calculate an error e, for each of our N experimental points by the
rule
e, = mti + b - X, .
A convenient measure of the total inaccuracy in the fit is the total

squared error E, where

N
E = z ei
i=1
N
E = % (mt., +b-x.)%2 (2.2)
. 1 1
i=1

Squaring the individual errors removes the distinction between positive
and negative errors, and also has the effect of enhancing the contribution
of large individual errors while reducing the contribution of small
ones.

The least squares fitting procedure asserts that the line of best

fit is that which makes the squared error E of equation (2.2) a minimum;

2.4

our remaining problem is to establish a procedure for finding the values
of m and b which do this.

If the coefficient b is held fixed, then E varies with m and the
calculus tells us that E will be stationary if the derivation gﬁ- is
zero. We find also that this stationary point is a true minimum. If,
on the other hand, m is held fixed, then E varies with b and we can show
that the corresponding stationary point where gg-is zero is also a
minimum. In equation (2.2) we have a situation where both m and b can
vary independently, but we can show that the minimum value of E occurs

when both derivatives are simultaneously zero. The derivatives, denoted

in this situation by %ﬁ-and %g , are given by
N
%E = X [2t,(mt, + b - x.)]
m . i i i
i=1
- 2 -
= 2m Z(ti) + 2b Z(ti) 2 Z(ti xi),
N
dE
E = 'Z [2(mti+b-xi)]
i=1

= 2m Z(ti) + 2bN - 2 Z(xi) .

If we equate these to zero, we get a pair of simultaneous equations for

m and b which have the solution

{n (t;x;) - Z(ti)Z(xi)}
m = A

2
{Z(ti)Z(xi) - Z(ti)Z(tixi)}

b = A ---(2-3)

2 2
where A NZ(ti) - [Z(ti)]

2.4 A SIMPLE EXAMPLE

Let us see what this procedure gives for a simple example. Suppose

we have four pairs of values (ti, xi) as follows:
(0.0, 1.2) (1.0, 1.9) (2.0, 3.1) (3.0, 3.8) .

These points are plotted in figure 2.3 and you should first try for an

eyeball fit to the points.

2.5
4,000 [T T
I .)
3.500 | i
t [] j
3.000 |]
E ']
£ 2.500 []
= [
o " -4
Q
-~ i -
2.000 | h
[* 1
’- -
1.500 | i
[R q
1.000 oo e e e e e e]

Temperature (°C)
Figure 2.3

To carry out the least squares fit in this case, we can form

the table below:

(t,) (x,) (t3) (t;%;) =4
0.0 1.2 0.0 0.0
1.0 1.9 1.0 1.9
2.0 3.1 4.0 6.2
3.0 3.8 9.0 11.4

We then proceed as follows;

It, = 6.0 Ix, = 10.0 It? = 14.0 ZIt.x., = 19.5
1 1 1 1 1

— Y +2y 2
A= hz(ti) [Z(ti)]
= 4(14.0) - (6.0)2 = 20.0
NI(tx,) - I(t)Z(x;)
m= A

_4(19.5) - (6.0)(10.0) _
B 20.0

2.6

2
Z(E2(x) = 2(e)2(t %)
b = A

_ (14.0) (10.0) - (6.0) (19.5) _
B 20.0 =1.15

The line of best fit from a least squares analysis is thus
x = (0.9)t + 1.15

If you construct this line on figure 2.3 you will see how
well (or how poorly) it agrees with your eyeball fit.

The arithmetic necessary for fitting a line fo these four points is
not too complex. In a real experiment you may expect to have scores of
pairs of values and the arithmetic would be far more tedious. Fortu-
nately, digital computers exist to relieve us from the tedium.

2.5 NON-LINEAR RELATIONSHIPS

In the real world, measurable quantities are not always connected

by linear relationships. During this Summer School, much of your time

5.0x10° ————F————F———T——— q
: .
4.0 | -
E
2 :
'E 300 ;‘ -
= : °
>
-
©]
1. .
- | :
L2 2.0 .
< °
1.0 F]
X °
.
0 La L h . e, [f N | A 1 .
0 1 2 3

Arbitrary Units

Figure 2.4

2.7

will be involved with quantities which are connected by a particular
non-linear function - the exponential function. The appropriate theories
will then assert that the t and x variables are connected by the equation

x = ce™t e (2.4)

with ¢ and m being constants. We can see that an experiment to deter-
mine values of the coefficients m and ¢ could consist of collecting
pairs of values (ti, xi) and hoping that they lie on a curve whose
equation has the form of equation (2.4).

Let us imagine that we have done such an experiment and plotted the
points to get the situation in figure 2.4.

It is not easy to see, from this plot, whether or not the points
lie on or even close to a curve with the required shape. This problem
is easily overcome by changing our method of analysis. We take the
natural logarithm of each x value, call it z say, and plot the points
whose coordinates are (ti, zi). Instead of the theory simply being

given by equation (2.4), we must now couple it with the equation

z = £fn (x)
so that
z = 4£n (cemt)
= mt + £n (c) ...(2.5)

which is a linear relationship.

I have done essentially this with the data plotted in figure 2.4
and from it produced figure 2.5. 1In this figure we see that the points
tend to lie on a straight line.

Figure 2.5 was actually drawn using a computer-generated loga-
rithmic scale on the vertical axis, where the distance between two
points is proportional to the difference of their logarithms. Graph
paper ruled in this fashion is called semi-logarithmic paper and its use
saves the trouble of looking up the logarithms of the individual numbers
to be plotted. It can thus be used when attempting an 'eyeball fit' to
pairs of numbers which are believed to be related to one another by

equation (2.4).

2.8

‘ou_ T Tt 1T
!
I []
i .
- 4
®
w 1031 4
= i f
: [-
> d ,
2 i
H L .]
4
2 -
< °
102} 4
I]
o*]
r . 1
ol o oy
1 2 3
Arbitrary Units
Figure 2.5

2.6 LEAST SQUARES FITTING TO EQUATION (2.4)

When analysing an experiment for which the theory is expressed by
equation (2.4), the disadvantages of using eyeball fits to the data are
the same as those involving a linear relationship like equation (2.1).
It is more satisfactory to use a least squares technique to construct a
curve of best fit. The simplest technique, and the one which you will
be using during the Summer School, is to use the logarithms of the
experimental y values and change the theory so that it is expressed by
equation (2.5). The technique already developed for finding a line of
best fit then applies.

The results of our experiment are again the set of N pairs of
numbers (t;, xi3), (t2, X2), ... For each number xi, we compute the

natural logarithm
z, = In (x,)

to get the set of pairs (t;, z3), (t2, z2) ... Exactly as in section

2.3, we then form the sums:

2.9

NN N
(k) L () Z(z,) T (t;z,)
R © S T T T

N~z

i
and compute the slope m and intercept b of the line of best fit

z = mt +Db ...(2.6)

from the formula

- 2y _ 2
A = NI(t)) [Z(t,)]
{NZ(tizi) - Z(ti)Z(zi)}
S X e (2.7)
2
- {Z(ti)Z(zi) - E(ti)z<tizi)}

A

Since z stands for £n (x), equation (2.6) is simply
n (x) = mt +b

and this becomes, after taking anti-logarithms,

mt+b
X = e
mt .
or X = c e , the theoretical curve
with c = eb(2.8)

The coefficient m for the curve of best fit remains just as it is
found in equation (2.7), and the combination of equations (2.7) and

(2.8) lets us compute the remaining coefficient c.

CHAPTER 3

FORTRAN

Lecture by

J.M. BARRY

ABSTRACT
An introductory course in FORTRAN programming for Summer School
students designed to demonstrate the mathematical potential of the
language, while introducing sufficient basic I/O skills to write

programs.

3.2

3.3

3.4

3.6

3.7

3.8

3.10

3.11

3.12

3.13

3.14

3.15

3.16

APPENDIX 3A

CONTENTS

INTRODUCTION

OVERVIEW OF FORTRAN PROGRAMMING
PUNCHING OF CARDS

ARITHMETIC CONSTANTS

INPUT AND OUTPUT

ARITHMETIC OPERATIONS AND EXPRESSIONS
SUPPLIED MATHEMATICAL FUNCTIONS
TRANSFER OF CONTROL

LOOPS

STOP AND END STATEMENTS

ARRAYS OF VARIABLES

SUBPROGRAMS

ERRORS IN PROGRAMMING

PRACTICE EXAMPLES

ANSWERS AND TYPICAL CODING

SECTION 3.12

SOLUTION TO THE VECTOR SUMMATION PROBLEM OF

Page
3.1

3.5
3.6

3.7

3.10
3.10
3.12
3.15
3.15
3.18
3.21
3.22

3.24

3.1 INTRODUCTION

Each digital computer is capable of obeying a number of basic
instructions. These instructions vary for different computers but they
have many attributes in common:

(i) The ability to perform the four arithmetic operations (+, -,

X,).

(ii) The ability to perform logical operations (is A = B).

(iii) The ability to perform 'housekeeping' instructions (e.g.
moving numbers from core store to registers where arithmetic
and logical operations may be performed on them).

For a programmer to communicate with the computer at this most
fundamental level, it would be necessary for him to develop programs in
the basic machine language of the computer at his disposal. In the
early days of computing, it was necessary for scientists and mathe-
maticians to concern themselves with the intricacies of binary coding.
The long delays and inconvenience of this form of man-machine communi-
cation accelerated the growth of programming languages that could be
used more readily by the problem solver. Many languages (FORTRAN,
ALGOL, PLI, APL, ACL etec.) have been developed for scientific, com-
mercial and other applications. FORTRAN is chosen as the vehicle for
problem solving at this Summer School owing to its world-wide accepta-

bility as a scientifically oriented programming language. There are no

computers that obey programs written in FORTRAN directly. It is necessary

for 'high level' programs in languages such as FORTRAN to be translated
into an appropriate set of machine language instructions. This process

is known as compilation.

FORTRAN Compiler Machine
] T
Program P Program

Figure 3.1 - Compilation of FORTRAN program

The FORTRAN source statements are translated to a set of machine
language instructions by a FORTRAN compiler (figure 3.1). The compiler

is itself a program (usually supplied by the machine manufacturer) that

first checks to ensure the FORTRAN statements obey the 'rules' of the
language (syntax analysis), and then supplies a set of machine instruc-
tions that will implement what the programmer has specified. When

the compilation process is completed, the machine instructions generated
may be executed. The finer details of this process and the way it is
implemented on the IBM360 will not be our concern at this Summer School
as we are primarily interested in using the computer as a tool for
mathematical problem solving.

3.2 OVERVIEW OF FORTRAN PROGRAMMING

Let us first consider the steps involved in solving a sample
problem, and the FORTRAN program that could be developed to carry them

out. When this is done we shall examine the various FORTRAN statements

in closer detail.

l Start]

I

Specify amount
borrowed

l

Set monthly counter
to zero

1

Convert rate to
fractional rate/month

1
J

Calculate interest
after 1 month

Add interest to
amount borrowed

|

Subtract loan
repayment

[

Increase monthly
counter by 1

Has
loan been
repaid

YES

Convert number of
months to years

I

Print out number
of years

I

Finish

Figure 3.2 - Flow Chart for Compound Interest Problem

3.3

Problem If $18,000 is borrowed at a rate of 7% (monthly reducible)
and repayments of $200 each month are made, then how many years will it
take to repay the loan?

Before we can program a digital computer to solve a problem, it is
necessary for us to be able to detail logically the steps that are
needed to solve the problem, in much the same way as we would if we were
going to tackle the problem with a desk calculating machine, slide rule,
or pen and paper. Some people find it helpful to draw a flowchart
(figure 3.2) showing the steps involved, while others prefer to visualise
all the steps in their mind.

From this flow chart the following program can be coded. At this
point we will not concern outselves with the formal rules for coding but

just look at the end product (figure 3.3).

1 5 6 7 7273 80
Cc PRGGRAM BY J.M. BARRY T@ DETERMINE THE NUMBER @F

C YEARS NECESSARY T@ REPAY A L@AN.

C THE PRINCIPAL B@RRPWED, INTEREST RATE AND M@NTHLY REPAYMENT

C ARE T@ BE READ FRPM A PUNCHED DATA CARD.

READ (1,100)PRINC,RATE,PAYMNT
MNCNTR=0

FRATEM=RATE/ (100°%12°)

1| | ADPRIN=PRINC*FRATEM
PRINC=PRINC+ADPRIN
PRINC=PRINC-PAYMNT
MNCNTR=MNCNTR+1

IF (PRIN°GT*0°) G@ T@ 1
YEARS=MNCNTR/12°

WRITE(3,101) YEARS

100| | F@RMAT (3F10°3)

101| | FRMAT (' N@ @F YEARS = ',F10°3)
ST@P

END

The data card necessary for this problem would be

IOI 20| 30|

18000. 7. 200.

Figure 3.3 - Sample program for compound interest problem

3.3 PUNCHING OF CARDS

To assist in the punching of cards, programmers usually use a
standard coding sheet representing the 80 columns available on a punched
card. Each line of the sheet represents a new card which may contain

only one statement.

1 5 6 7 7273 80

J. SMITH STATEMENT EXAMPLE JAN 1976 THIS
THE AB@VE IS A C@MMENT SECTION
X=A+B NOT

50 | y=9+-C USED
P R INC = RATE * PRINC/100* + PRINC IN

SUM = A+B+C+D+E+F+G+H+ FORTRAN
1 B+P+Q+R PROGRAMS

Statements can be punched from columns 7 to 72. To assist the programmer
to recall aspects of a program, a comment card (denoted by a C in column
1) may be placed anywhere within the punched deck. These are ignored by
the FORTRAN compiler. Normally we shall commence our programs with a
comment card to assist with the identification of the program.

Columns 1 to 5 inclusive can be used if desired to assign a state-
ment label in the form of a number in the range 1 to 99999 (there is no
need to choése labels in ascending order).

Blanks may be inserted within a statement to make it more readable,
and may be considered as being removed in the compilation process.
Should a statement be too long to fit on one card, it is continued from
column 7 of a subsequent card provided column 6 of this card contains a
continuation character (any character other than a blank or zero will
suffice as a continuation character).

The character set available within the FORTRAN system consists of

(i) 26 capital letters A,B,C,...Z;

(ii) 10 numerals 0,1,2,...,9;

(iii) 10 special characters +,-,* (multiplication),/(division)
o3, () ,=,4; and
(iv) a blank (usually written J if its presence is to be emphasised

for punching).

3.4 ARITHMETIC CONSTANTS

We will treat three different types of constants sufficient for
handling data (numbers) in most scientific problems.
3 (i) INTEGER (or fixed point) constants
- a whole number without a decimal point whose absolute value
is < 23! -1 (2147483647).
Valid integer constants 0 -5 +357 7005192
Invalid integer constants 27+ 5,132 9812735997
(ii) REAL (or floating point) single precision constants.
- up to 7 decimal digits with a decimal point, with or without
an exponent. The absolute magnitude is approximately 10778 to
107°.
Valid real single precision constants
+0. 7.91 5.3E+2 (=5.3x10%)
5.3E2(5.3x10%) -.051E-03 (-.051x10™ %)
Invalid real single precision constants 1 3,471.2 1.E
(iii) REAL (or floating point) double precision constants.
- similar to (ii) but up to 16 digits are possible with a D
exponent being necessary instead of E. Double precision
constants will not be necessary for the Summer School problems.
The reason for the careful distinction drawn between the three
types of constants is electronic rather than mathematical. The elect-
ronic 'hardware' necessary for INTEGER arithmetic operations is less
sophisticated and consequently faster than that used for REAL arith-
metic. By performing those operations that require no decimal point in
integer mode, considerable time savings can be made.
3.5 VARIABLES
A variable is a symbolic name used to identify a data item that
will occupy a location (one word) of core storage. The actual address
of this location is assigned by the compilation process. If we move

a number into a variable it will replace the previous contents of that

location.
TIME=0-*

This places zero in the location reserved for TIME. When a transfer is

made from a location, the previous contents remain unaltered.

X=TIME

3.6

This assigns the contents of the location reserved for TIME to that
reserved for X without altering the contents of the location associated

with TIME.

The '=' operation should be interpreted as the assignment of the
result of the right hand expression to the left hand location. Con-

sequently, an expression such as
A=A+1-

does not yield any algebraic result but rather is interpreted as in-
creasing the old value associated with A by 1. to give a new result also

called A.
Variable names may have up to 6 characters (special characters are

not permitted) the first of which must be alphabetic such as
TIME , X3B , I5 , T .

Variables like constants take an INTEGER or REAL form. Unless the
programmer provides specifications to the contrary, all variables
commencing with I,J,K,L,M or N are INTEGER variables, while the re-
mainder are single precision REAL variables.

Variables may also be subscripted in FORTRAN. Such variables may
be used to represent vectors or matrices which you probably have en-

countered in your mathematics courses.

V(3) is the FORTRAN representation of the vector component
vs
A(3,4) is the FORTRAN representation of the matrix element
a3y.

(Further consideration of SUBSCRIPTED variables will be delayed until

section 3.12.)

3.6 INPUT AND OUTPUT

One way of assigning values to variables is through the direct use

of an arithmetic expression:
X=6°3

Should one wish to alter the data on which the program is to operate

without changing the program itgelf, then a READ statement is needed.
The read statements initiate the reading of data cards (these are

separate from the program cards) and the transfer of the numbers on

these cards to the variables in the READ lists.

READ(l,lOO)PRINC,RATE,PAYM?T
.

list of variables to be used
device 1 number of a

card reader FORMAT statement

Numbers are read from device 1 under the control of an editing (FORMAT)
statement. The supplied FORMAT statement (100) will describe the way

the punched data card is laid out. In this case
100 F@RMAT (3F10°3)

indicates that 3 numbers are punched on the data card satisfying the
format code F10.3.

10 20| 301 80
! 25000. 7. 300. ‘\j

F10.3 signifies REAL constants without any exponent (F), 10 columns

being kept for each number. Should there be no decimal point punched on
the card, one will automatically be assumed to exist 3 digits to the
left of column 10. (When the decimal point is punched, the second
parameter is ignored.)

The output statement WRITE, functions in a similar manner.

WRITE (3,101) YEARS
101 FPRMAT(' N@ @QF YEARS = ',F10°3)

would display on the printer (device 3) output of the form
N@ @F YEARS = 26°314

3.7 ARITHMETIC OPERATIONS AND EXPRESSIONS

Five arithmetic operations are available to FORTRAN users:

(i) addition + e.g. A+B

(ii) subtraction - e.g. A-B
(iii) multiplication * e.g. A*B

(iv) division / e.g. A/B

(v) exponentiation ** e.g. A**3 (A3)

Expressions may be enclosed within parentheses as in normal algebra.

(a+b) (c+d) (A+B) * (C+D)
(a+b) ? (A+B) **2
i? A/ (B*C)

3.8

Parentheses are necessary to prevent two operations from appearing next

to each other (should such a combination be possible)
X*-Y must be coded X*(-Y)

The sequence of operations in expressions is determined from the
following hierarchy and is consistent with normal mathematics.
(i) * %
(ii) */ left to right precedence
(iii) +- left to right precedence.

Consequently, the expression
X+ (Y/A) - (3°*U)+P* (S**4) /3
could have been correctly abbreviated to
X+Y/A=3°¢ *U+P*S**4 /3

The integer variables or constants deserve special mention.
Division of one integer by another results in the truncation of any

fractional remainder.

I=9
K=I/2

would result in K taking the value 4. This property can often be

exploited to the programmer's advantage in the testing for even integers;
K=I-1/2%2

would assign 1 to K if I is odd, and 0 if I is even.

Expressions should consist of variables or constants all in the
same mode Z.e. all REAL or all INTEGER. There is one exception to this
rule in that the exponent of a REAL variable or constant may be INTEGER.

The following are permitted forms of exponentiation:

V**2 V**A
(-V) **+45 V* (-1)
v**(_2) I**3

The mode of a variable on the left hand side of an arithmetic

assignment need not be the same as that of the expression on the right.
A=I+1

The compiler will arrange for the right hand side to be evaluated in

3.9

INTEGER mode and the result to be converted to the REAL mode before it
is stored away. Because of truncation in INTEGER division, great care
should be exercised in using this type of arithmetic.

3.8 SUPPLIED MATHEMATICAL FUNCTIONS

As there are a number of special mathematical functions or operations
that are common to many problems, the FORTRAN compiler provides these as
. . t
part of the normal system. To calculate the exponential function x=e ,

all we need do is code
X=EXP (T)

To use a supplied mathematical function, it is only necessary to
follow the function name by an argument enclosed in parentheses. The
result will be returned as though the function name itself designated a
variable in the program. The argument may be a variable, constant or

arithmetic expression
A=EXP (A-C)+SQRT (15.)

A list of frequently required functions follows:

Mathematical Function Function Name (Argument)
square root, SQRT (X)
exponential, ex EXP (X)
natural logarithm, log x (or £n x) ALOG (X)
sine of an angle (in radians), sin x SIN(X)
cosine of an angle (in radians), cos x COos(X)
tangent of an angle (in radians), tan x TAN (X)
arctangent (result in radians), tan” 'x ATAN (X)
absolute value (real numbers), |x| ABS (X)

Functions other than those supplied through the compiler are often
necessary, so- FORTRAN allows a programmer to name and define his own
special functions (section 3.13).

3.9 TRANSFER OF CONTROL

Execution of a program will commence at the first executable
statement and proceed through subsequent instructions in order, unless
a transfer of control statement is encountered. The simplest means of

transfer of control is through an 'unconditional G@ T@' statement.

56 READ(1,9)X
WRITE(3,11)X
G@ TP 56

3.10

This section of program would cause cards to be read and printed with no
escape mechanism until the supply of punched data cards was exhausted
in which case an error condition would cause the program to fail.
Clearly such a statement alone would be of limited use.

There is an extension of this statement, known as the 'computed G@
T@', which gives a little more choice in the statement to which the

branch is to be made.
Gg T9 (71,56,1,9),I

If I=1 control passes to statement 71
If I=2 control passes to statement 56
If I=3 control passes to statement 1

If I=4 control passes to statement 9

For any other value of I, control would pass to the next sequential
statement in the program.
The most useful form of the transfer of control statement is the

'logical IF' as demonstrated in our first sample program.
IF (PRINC*GT*0°*)G@ T 1

If PRINC is greater than zero, then control will pass to the statement
labelled 1. The logical IF statement can be considered to be of the

form
IF (logical expression) executable statement

The logical expression can take one of two values only, .TRUE. or
.FALSE. 1In a logical IF, the statement appended will be executed only
if the logical expression returns a .TRUE. result. When it is .FALSE.,
the appended statement is ignored and control will pass to the next

statement.

IF (A*LT*B)G@ T@ 56
WRITE(3,11)B
56 A=B*C

If A < B, then A will be recalculated as the product of B and C. For
A 2 B the value of B will be printed first.

While the appended statement is frequently a 'G@ T@' statement, it
may be any executable statement other than another 'logical IF' or a

'D@' statement (section 3.10).

3.11

IF(A°LT*0°)A=-A
This would be sufficient to replace A with its absolute value although
the coding would be somewhat slower than using the alternative statement

A=ABS (4)

Logical expressions are most frequently formed by two arithmetic ex-

pressions and a relational operator.

A*EQ°B a is equal to b a=>b

A°*NE*B a is not equal to b a*b

A*GT*B a is greater than b a>b

A°GE*B a is greater than or equal to b ‘ a=b

A°LT*B a is less than b a<hb

A°LE*B a is less than or equal to b a<b
e.g. IF (A+B°*LE*C+SQRT (X**24Y**2))A=1.

Frequently we wish to carry out more than one logical test at a
time. This can be done by combining logical expressions with one of the
following logical operators:

AND both expressions must be .TRUE. to return a .TRUE. result

*@Re result a .TRUE. if either expression is .TRUE.

READ(1,100)A,B,C
100 F@RMAT (3F10°3)
IF (A+B*GE*C*AND*A+C*GE*B*AND*B+C*GE*A)WRITE(3,157)A,B,C
157 F@RMAT('A,B, AND C ARE P@SSIBLE SIDES OF A TRIANGLE',3F10°3)
ST@P
END

The above program will read three values for A,B, and C respectively
from a punched data card (not shown here) and will test whether the
values A,B and C are capable of being the lengths of the sides of a
triangle. As before, if the combined logical expression is .FALSE. then
control will pass to the next statement.

3.10 LOOPS

We frequently find it necessary to repeat a section of code a given
number of times. Suppose our problem is to find the sum of the first 20
integers, Z.e. 1+2+...+20. Ignoring any appeal to mathematical analysis

then, the following code would be sufficient

3.12

ISUM=0
I=1
5 ISUM=ISUM+I
I=I+1
IF(I*LE*20)G@ T@ 5

In this example, ISUM is chosen as a variable name to accumulate the
sum of the integers (integer variables start with I,J,K,L,M or N). It
is first necessary to initialise this to zero and the counter (I) to 1.
Two statements are then necessary to increase the counter and to test it
to determine whether the loop is complete, and transfer control back if
it is not. Because scientific programming is often repetitive in this
way, FORTRAN supplies a 'DO' statement to allow operations such as the

above to be quickly coded as

ISUM=0
D 5 I=1,20
5 ISUM=ISUM+I

The 'DO' statement specifies the last statement in the series of state-
ments to be repeated (5), an INTEGER variable to act as the counter (I),
and two INTEGER constants or variables to act as the initial and final

values for which the loop is executed.
D@ 2 J=N,M

will cause all statements between itself and including one with a label
2 to be repeated (M-N+1l) times. It is necessary for N and M to have
previously been assigned values, either as the left hand side of an
arithmetic assignment, or through a READ command. FORTRAN requires that
N =1, while M > N. When a 'DO' loop is completed, the 'DO' variable (J
in the above example) is regarded as being undefined.

It is at times necessary to nest one 'DO' loop inside another. Suppose
we have 100 punched data cards with one number on each card, and that
our aim is to find the average of each group of 10 and print that

average out. The following is a complete program capable of doing this.

3.13

PRZGRAM BY J. SMITH
T@ READ 100 NUMBERS AND
FIND AND PRINT THE AVERAGE @F EACH GR@UP @F 10
Dg 1 1=1,10
SUM=0°*
Dg 2 J=1,10
READ (1,15)X
2 SUM=SUM+X
AVG=SUM/10°
1 WRITE(3,16)AVG
15 F@RMAT (F10°3)
16 F@RMAT(' AVERAGE F@R GROUP @F 10 = ',F10°+3)
ST@P
END

5.32
8.61 data cards

The loops function so that the inner counter will vary the most rapidly,
i.e.
rIi111... 1222...2...1010
Jl123...10123...10 ... 910

The last statement in a 'DO' loop can be any executable statement
other than a transfer of control. A dummy statement CONTINUE, which
does not perform any machine function, is provided as a way around this
restriction.

Dg 27 I=1,N

IF (X*GT*27+35)G@ T@ 95
27 C@NTINUE

95 X=X+7°

3.14

3.11 STOP AND END STATEMENTS

The STOP and END statements serve two different purposes.

(i) The END statement provides an indication to the compiler
that all the FORTRAN statements that precede it form a com-
plete and separate program or subprogram in their own right.

(ii) The STOP statement is translated by the FORTRAN compiler as
part of the machine program to be executed. When the program
is executed and the STOP statement encountered, execution of
it will cease and the computer will switch to the next job
waiting.

3.12 ARRAYS OF VARIABLES

Many mathematical operations require the use of vectors and matrices.

FORTRAN supplies a means of handling 1,2,3 or higher dimensional arrays.
For the simplest array (the 1 dimensional vector), the ith element of
the vector v (vi) is represented in FORTRAN as V(I). Elements of an
array or vector are capable of being used in FORTRAN in the same way

ordinary variables are employed.

V(I)=0. the ith element of V is set to zero
A=V (I)+C(J)-D(3)
V(I-1)=V(3*I-7)

The subscripts used to refer to vector or array elements must be
INTEGER and greater than zero. They may be constants, variables or
expressions. The FORTRAN compiler reserves one location (word) for non-
subscripted variables to be stored in. As subscripted variables take
one location for each array element, it is necessary for the programmer
to specify to the compiler the maximum number of elements associated
with each array. This is done through a non-executable statement, the

'DIMENSION' statement that must precede the first use of the array it is

defining.

DIMENSI@N V(15)
Dg 1 I=1,8
1 v(2*1-1)=0.

The 'DIMENSION' statement would tell the compiler that V is a vector (1
dimensional) array requiring 15 storage locations. The supplied state-

ments would set all the odd components of V to zero. The next example

3.15

demonstrates how a vector may be used to calculate the mean and standard
deviation of a set of 10 numbers. These numbers are read from 10 cards

(Z.e. 1 number per card).

Standard deviation

J. SMITH CALCULATE MEAN AND STANDARD DEVIATI@N
@F 10 NUMBERS
DIMENSI@N X(10)
D 1 I=1,10

1 READ(1,53)X(I)

53 F@RMAT (F10°3)
SUM=0
Dg 2 I=1,10

2 SUM=SUM+X (I)
AVG=SUM/10°
SUMSQ=0
Dg 3 1=1,10

3 SUMSQ=SUMSQ+ (X (I) -AVG) **2
SDEV=SQRT (SUMSQ/9°)
WRITE (3,541) AVG, SDEV

541 FPRMAT(' MEAN AND STANDARD DEVIATI@N ',2F10°3)

ST@P
END

Here we use the vector X to store 10 numbers prior to finding the mean
and standard deviation. Before employing vectors in a program, make

sure they are really necessary. In a previous example (section 3.10),

the mean of a set of numbers was required. There was no need in that
case to retain the 10 numbers as the accumulated sum of each number as
it was read was sufficient. When the standard deviation is sought, the
numbers must be retained at least up to the point at which the mean is

determined.

3.16

The next example demonstrates a program that computes the vector

sum s of two vectors u and v

s = u oty
For u = (3,5,2)
and v o= (4,2,7)
then s = (3+4, 5+2, 2+7)
= (7,7,9)

Mathematically we say that the ith component of s is formed by
s, = u, + v, 1<is<3

The program will read the three pairs of data from separate punched

cards as shown

u v

IOI 20
3 4.
5 2
e 7 e

into two vector arrays (U and V), compute the vector sum in S and print

out each component of S on a separate line.

DIMENSI@N S(3),U(3),V(3)
C FIRST READ IN THE DATA
pDg 1 1=1,3
1 READ(1,100)U(I), V(I)
100 F@RMAT (2F10°3)

C NgW F@RM THE VECT@R SUM
pg 2 1=1,3
2 S(I)=U(I)+V(I)
C WRITE @UT HEADING AND RESULTS
WRITE(3,101)

101 FPRMAT(' VECT@R S ')

3.17

Dg 3 I=1,3
3 WRITE(3,102)S(I)
102 F@RMAT (2F10°3)
ST@P
END

(In this example, it would have been possible to perform the vector
addition operation without the use of subscripted variables (how? see
appendix 3A for a solution). Such an operation, however, is frequently
a small part of a much larger program where it is necessary to store the
data in subscripted variables.)

When arrays of higher order than the one dimensional vector treated
so far are needed, the 'DIMENSION' statement informs the compiler of the
number of dimensions (Z.e. the number of subscripts) and the total

storage for the array.
DIMENSI@N A(5,5)

This informs the compiler that A is a matrix (2 dimensional array)

requiring 25 locations for storage

DIMENSI@N A(5,5),B(5,5),C(5,5)

D 1 I=1,5
Dg 1 J=1,5
1 c¢(1,J3)=A(1,J)+B(I,J)

In this case, two matrices A and B are summed and the result stored in
a new matrix C.
3.13 SUBPROGRAMS

We have met (section 3.8) the special mathematical functions
supplied through the FORTRAN compiler. The user is able to supply two
types of subprograms of his own when necessary:

. FUNCTION subprogram.

. SUBROUTINE subprogram.
Need for subprograms arises

(i) when the same mathematical function or procedure is required

at many points in a program;

3.18

(ii) in larger programs where it pays to write and test sections of
the code independently; and

(iii) when more than one person is responsible for developing the
code.

The FUNCTION subprogram returns a single value as its result and is

usually used to perform mathematical operations similar to VF: or
function evaluation. The user supplied function is best demonstrated
by an example. Suppose we wish to evaluate a cubic polynomial for

various values of x:
£(x) = 1 + 1.5x + 3.2x% + 6x° ,

which for speed of computation is best written as
f(x) =1+ x (1.5 + x (3.2 + 6%x)) .

Then we might use the coding ...

:)

F(X)+6°

=
]

Z = F(X-1°) >. Main or calling program

ST@P

END 4

FUNCTI@N F(A)

= 1.4+A* (1.5+A*(3.24+6°*
F 1.#+A%(1.5+A%(3.2+6°*A)) FUNCTION subprogram
RETURN

END

In the main program, the function is invoked by naming the function
and enclosing in parentheses a constant, variable, or expression for
which the cubic polynomial is to be evaluated. The FUNCTION subprogram
is defined through the use of the 'FUNCTION' statement and an appropriate
name 'F' (in this case) by which the function is to be known. An
argument list corresponding to that in the main program is also re-
quired. The argument names in the function are only dummy ones and need

not be the same as those in the main program (all the other variables

3.19

and labels are local to the function and are in no way associated with
labels or variables in the main program). When the above function is
invoked twice by the main program, the values X and X-1l°* respectively
are transferred into the location set aside for A. The function must
return one value through the assignment of an arithmetic expression to

the function name as in
F = 1*+A* (1°5+A* (392+6°*A))

The 'RETURN' is a transfer of control from the function back to the
main program from where control was originally passed. The END statement
is once again a signal to the compiler that this is the end of a logically
independent set of FORTRAN statements.

The SUBROUTINE subprogram is the more powerful version of a sub-

program and usually performs more involved operations than those for
which the FUNCTION is designed. Typical tasks for which subroutines are
used would include finding the roots of equations, multiplication or
inversion of matrices, and solving sets of linear equations. Unlike the
function subprogram, the subroutine is not restricted to returning one
result as part of an arithmetic expression. The SUBROUTINE and the main
program communicate through the argument list only. The following code
shows the use of a subroutine QUAD to determine real roots of a quadratic
equation ax? + bx + ¢ = 0. The coefficients of the equation to be
solved are supplied as arguments to the subroutine, while the subroutine
is responsible for returning the two roots and is an indication as to

whether real roots were possible.

1 READ(1,5)C1,C2,C3
CALL QUAD(C1,C2,C3,X1,X2,IER)
IF (IER*EQ°*0O)WRITE (3,57)X1,X2
IF (IER*NE°*0)WRITE (3,59)

5 F@PRMAT (3F10°3)

57 FPRMAT (' R@@PTS @F QUADRATIC ARE ',2F10°3)

59 FGRMAT(' NP REAL RPPTS EXIST ')
Gg Tg 1
END
SUBR@UTINE QUAD(A,B,C,R1,R2,K)
DISC=B*B-4°**A*C

3.20

IF(DISC*LT*0) G@ TP 5
DISC=SQRT (DISC)
R1=(-B+DISC)/(2°**A)
R2=(-B-DISC)/(2**A)
k=0
RETURN

5 K=1
RETURN
END

The subroutine is invoked, through a 'CALL'.statement, by naming
the subroutine and supplying a list of variables through which values
are to be transferred to and from the subroutine. The main program
passes the three coefficients of the quadratic while the subroutine will
return the roots in X1 and X2 and an indication (K=1] or 0) to the
sign of the discriminant. Once again the code within the subroutine
is independent of the calling program.

3.14 ERRORS IN PROGRAMMING

The FORTRAN compiler will inform us in no uncertain terms of any
syntactical errors we make in coding a program. Such errors are easy to
detect and correct. The computer is a totally obedient servant;
provided we ask it to perform a task in the language it understands, it
will obey us without question. Therefore the hardest errors to identify
are the ones we make in specifying the logic or steps involved in solving
our problem. All programs should be considered guilty of containing
bugs until proven innocent ('debugged').

Too often the poor computer is blamed for an error in the program
that should have been found and removed by the programmer when he was

'debugging’' his code.
garbage in implies garbage out

This adage is certainly true but the programmer and, in particular, the
scientific programmer may find it difficul£ to recognise the output of

a program for what it is. It is advisable to test programs thoroughly
before placing any confidence on their output. This is often done by
comparing the computed solution with a known mathematical or physical
solution. When agreement is satisfactory we may then proceed to use our

program for all the cases we are interested in.

3.21

Unlike the more commercially oriented programmer, the problems
faced by a mathematical programmer are three-fold. As most commercial
tasks are well defined, errors in the computer output are directly due
to the program or incorrect data on which it operated. The scientific
problem solver is solving a mathematical model of some real physical
system. When this model was developed, many assumptions (and probably
simplifications) were made. Just how valid were these and are they the
source of errors? Were the errors caused by the type of numerical
technique chosen to solve the model? Or were the errors due to the
coding of these techniques?

3.15 PRACTICE EXAMPLES

Before you attempt to code the least squares problem described in
chapter 2, try these practice examples. The answers to the questions
are given in section 3.16, but don't be too hasty to seek out these

answers until you have had a go yourself.

Q1. (a) 1In the list below, which items are variables or constants?
(b) What is the mode (integer or real) of each variable or con-
stant in the list?
(c) Are any invalid?
List (1) 1., (2) ABC, (3) 14, (4) 14, (5) -0.0001E-10, (6) INKSTAIN,
(7) FIVE, (8) 6IX, (9) e, (10) O, (11) B@S, (12) A*B,
(13) 5,312.6, (14)+5.E-03, (15) BLOT

Q2. wWrite each of the following algebraic formulae as a FORTRAN state-
ment to calculate y. Use any convenient real names for the variables,
which will be assumed to have been assigned values by previous

steps of the program.

=1
(1) Yy =3 (b+c)
(2) y = (at+b)?/3
S U R
(3) y=(+g+32)
_ X x2 x3 y =
(4) y =1+ T + T + 3T (n! = 1x2x...x(h=1)xn)
(5) y-x = a-Ty (m=3.141592)
(6) Vy =u
1.1 1
(7) x—y+b+c

3.22

What values would be stored in the variable on the left of the

following arithmetic statements, given that A=3?

(8) I=A
(9) I=A/2°
(10) U=A/2°

03. Write the necessary statements of portion of a program to calculate
the variables given by the following expressions. Use any con-
venient names for the variables. You may assume that variables on
the right have been assigned values by previous steps of the program
and that the values do not require special consideration in cal-

culating the expressions - for example a#0 in (1).

(1) x =% (-b+ /p? - 4ac)

2a

/x2+y2+22

(2) s =
% (e* - ™%
(3) u = tanh x = 1 —
—-(ex + e x)
2
(4) v = tan x
x2 x"
(5) h=1- 3T + T
_ _.x 1 -2x 1 -3x
(6) y =1 e 5 e 55 e
(7) c = tn |—]
1+a’
o 1/2 xy
(8) g = (;;) sin (3£)
(9) y = (e** + e-/;)/3
(10) 5 = -tan~ ! (x/a)

1l + u/a

Q4. Write a program that will
(1) Read the four coefficients of a cubic polynomial f(x)=a+

bx+cx?+dx® from a punched card in FORMAT (4F10.3).

Q5.

Q2.

3.23

(2) Read the estimate xo of a root of the equation f(x)=0 from a
second card (FORMAT(F10.3)).
(3) Improve the estimate of the root by the Newton-Raphson method

f(xn)
1.€. Xn+l = xn - _——f' (Xn)

(4) The process can be considered to have converged if

Ixn+l - xnl

< 0.001
|x |
n

(5) Print out the improved estimate of the root.
(6) Allow only 5 iterations. If convergence has not been achieved,
print a message warning of this.

(7) Repeat from (1).

(For advanced students only)
Read in a set of 10 numbers punched one per card (FORMAT(F10.3)).

Write code that will sort these numbers in descending order.

ANSWERS AND TYPICAL CODING

(1) real constant, (2) real variable, (3) integer variable, (4)
integer constant, (5) real constant, (6) invalid variable name as
more than 6 characters, (7) real variable, (8) invalid variable
name as first character is not alphabetic, (9) invalid variable
name as e is a lower case letter, (10) integer constant, (11) real
variable, (12) invalid since an expression is not a variable, (13)
invalid as comma is not permitted, (14) real constant, (15) real

variable.

= 0.5%(B+C)

= 0.3333333* (A+B) * (A+B)

= 1./(1./A+1l./B+1./C)

= 1.+X*(1.+X*(0.5+0.1666667*X))
= (X+A)/4.141592

= U*U

= 1./(x-1./B-1./C)

=3

=1

= 1.5

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)

a H H K K K K K K K
I

Q3. (1)
(2)
(3)

(4)

(5)

(6)

(7)
(8)

(9)

(10)

Q4.

(@]

56

57

58

3.24

X = (-B+SQRT(B*B-4.*A*C))/(2.*A)
S = SQRT (X*X+Y*Y+Z*2Z)

W1l = EXP(X)

w2 = 1./Wl

U = (W1-W2)/(W1l+W2)

V = TAN(X)

Wl = X*X
H=1.-W1*(0.5-0.04166667*W1)

Wl = EXP(-X)

Y = 1.-Wl*(1l.+W1*(0.2+0.04*Wl))
C = -ALOG(ABS(1.+A*A*n))

Wl = X*Y/3.141592

G = SQRT(1l./Wl)*SIN(W1)

Wl = A*X

Y = (EXP(W1)+EXP (-SQRT(W1)))*0.3333333
Z = -ATAN(X/A)/(1.+U/A)

J. SMITH

RPPT @GF CUBIC EQUATI@N

READ C@EFFICIENTS FR@ZM @NE PUNCHED CARD
READ(1,56)A,B,C,D

FPRMAT (4F10°3)

READ IN ESTIMATE F@R R@@T

READ(1,57) XN

FPRMAT (F10°3)

L@PP TO IMPRPVE ESTIMATE

Dg 1 I=1,5

XNP1=XN- (A+XN* (B+XN* (C+D*XN))) / (B+XN(2.*C+XN*3. *D))
N@W ASK IS PRPCESS C@NVERGING

IF (ABS ((XNP1-XN)/XN) *LT**001)G@ T@ 2

XN=XNP1

RPPT HAS NPT BEEN F@UND

WRITE(3,58)

FZRMAT (' R@@PT NPT FPUND WITHIN 5 ITERATI@NS ')
TRY AN@THER SET @F C@EFFICIENT

Gg TP 9

R@PT LPCATED WITHIN PRESCRIBED B@UNDS

3.25

2 WRITE(3,59)XNP1

59 FPRMAT (' R@@T @F CUBIC = ',F10°3)
C TRY AN@THER SET ¢F C@EFFICIENTS
Gg TP 9
END

Sample data cards:

column 10| 20| 30 uol

5.6 3.7 2. —46.}

Q5.

J. SMITH

SPRTING PRPBLEM
DIMENSI@N X(10)

o] SET UP L@@P T@ READ 10 NUMBERS
Dg 1 I=1,10

1 READ(1,9)X(I)

FPRMAT (F10°3)

D@ 2 I=1,9

N=I+1

D@ 2 J=N,10

IF (X(J)*LE*X(I))G@ T@ 2
TEMP=X (J)

X(J)=X(I)

X (I)=TEMP

2 C@NTINUE

.
.
.

TN I W T 'S U Ty W == T U By T = N O O = WM
©

CHAPTER 4

ANALOGUE COMPUTING AND DYNAMICS

Lecture by

C.P. GILBERT

ABSTRACT
The related concepts of analogues and simulation are described,
and the electronic analogue computer is introduced as the most convenient
means of building simulators. The use of such computers for the solution
of differential equations is illustrated by examples having a decaying
exponential type of response, and the uses of hybrid computers are
briefly mentioned. Behaviour characterised by increasing exponentials

is described, mainly with reference to population growth.

4.1

4.2

4.4

4.6

CONTENTS
INTRODUCTION
4.1.1 Dynamic Systems
4.1.2 Analogues
4.1.3 Simulation
4.1.4 Computing Operations

OPERATIONAL AMPLIFIER CIRCUITS

ELECTRONIC ANALOGUE COMPUTERS
4.3.1 General
4.3.2 Equation Solution

PROBLEM SOLUTION
HYBRID COMPUTERS

EXPONENTIALS AND EXPERIENCE

4.6.1 Increasing Exponentials

4.6.2 Populations

4.6.3 Sharks and Little Fishes

4.6.4 The Really Super Important Problem

4.9
4.11

4.12
4.12
4.12
4.14
4.15

4.1 INTRODUCTION

4.1.1 Dynamic Systems

Many advances in science and engineering are possible only because
of our ability to use mathematical equations to describe the behaviour
of complicated systems.

Here we are concerned with what are known as dynamic systems, Z.e.
those that vary with time, which are usually described using differential
equations. An example of a dynamic situation is the movement of a ball
bouncing on an uneven surface and, if necessary, equations could be

formulated to describe this motion.

While these lectures will concentrate on systems having an exponential

response, we must remember that the methods are normally applied to much
more complicated systems, such as a complete nuclear reactor.

4.1.2 Analogues

When dynamic systems are examined in detail, one important property
emerges. Many electrical, mechanical, biological and other systems can
be described by equations of the same form, although the actual numbers

involved may be different in each case. Figure 4.1 shows simple examples

“(a) (b) (©)

L
=
di__ R, dv__ C do H
"L R a "~ u’?
Figure 4.1 (a) Current i in an inductive circuit.

(b) Velocity v of a flywheel with a brake
(c) Temperature 6 of a cup of hot water

of three systems, each with energy decaying away. The current i in an
inductive circuit, the velocity v of a flywheel with a brake, and the
temperature 6 of a cup of hot water which is cooling down, can all be

described by equations of the form:

E = xx | ... (4.1)
Systems which resemble each other in this way are called analogues
of one another and, if each is given an equivalent disturbance, they
will all behave in exactly the same manner, although probably at different
speeds.
Thus although the three systems are different in physical form,
their dynamic properties are identical. There is then the possibility
that we can examine one of them (that happens to be convenient) in order
to find out how the others behave. As we shall see, this can assist us
with the solution of very complicated sets of differential equations.
4.1.3 Simulation
One way to examine the behaviour of a nuclear reactor, say, would
be to do an experiment. A disturbance would be purposely injected by
some means, and the reactor power and temperature would be measured as
they varied with time. Unfortunately, with a full-size power reactor
the experiment would be slow, very expensive and possibly dangerous.
However, if we could find some sort of analogue of the reactor (Z.e.
another physical system, or 'model', having the same dynamic behaviour),
then it would be much simpler, safer and cheaper to do the same experiment
on the analogue. This idea has been found to be so successful in some
applications that, instead of looking for convenient analogues in a
haphazard way, special pieces of equipment have been built solely for
this purpose.
These Analogue Computers, as they are called, consist of a number
of units which can be put together like building blocks to form analogues
of different systems; accurate measurements can then be made on the
resulting model. The process of doing an experiment on a computer model
instead of on 'the real system is known as simulation.

4.1.4 Computing Operations

As will become clear, addition and integration are the most important
processes that the units of an analogue computer have to perform, and a
number of methods are available.

Figure 4.2(a) shows how addition can be performed using a liquid;
if the contents of the smaller containers are emptied into a sufficiently
large container, the final volume of liquid is the sum of the initial

volumes:

uoirjesbajuy (q) pue ‘sawnjoA
Buisn ‘uojlippe (e) Joy sanbojeue pinbiq 74 @4nbi4

@ (e)
-)
1 T [
| | I |
| I |H
T
- " | | TA+TA+BALCEALTA = A
] |
|
iAOA
(3]
<« —
SI3U00YIS 7 "l +

+ +

saippiw ¢ D + 2 +D

4.4
V = vy + vy + vy + vy + Vs .

The more important process of integration can be achieved as shown
in figure 4.2(b). The height H of the fluid in a container of base area
A is the integral, with respect to time, of the fluid flow F (volume/sec)

as determined by the tap:

t
1
H—Kf F dt
o

These simple analogues would be of little use in practice; they
are inaccurate, slow, unsuitable for interconnection, and probably wet.
However, there are much better analogue processes available; the most
useful of them uses an electronic amplifier and is described in the
following section.

4.2 OPERATIONAL AMPLIFIER CIRCUITS

While it is not necessary to understand this section in detail to
follow the rest of the lecture, you should be clear about the overall
behaviour of a potentiometer (figure 4.3(b)), of an adder (figure
4.3(c)), and of an integrator (figure 4.4(c)).

An operational amplifier has the following properties:

. Very high voltage amplification, or ‘'gain' K (say 10°).

. Negative gain (a positive input produces a negative output,

and vice versa).

. Works at d.c. as well as at a.c., for all frequencies up to

perhaps 10° Hz.

For computing purposes, such amplifiers are used in a feedback
circuit which exchanges the high voltage gain for other more desirable
properties. The circuit of figure 4.3(a) is arranged so that the voltages
Vi, V2, vz and Vo are all of the order of a few volts. Then, if K = 10°
the amplifier input voltage u is equal to -VO/K, which can never
exceed a few microvolts and so can usually be neglected. For instance,
if the combined effect of all the inputs is positive, u tries to go
positive: this causes Vo to go negative by a very much larger amount,

which opposes the rise in u because of R Finally u ends up very

£
slightly positive, causing a negative output Vo'
If we assume that u is zero, the current i is the sum of the input

currents:

4.5

This current cannot enter the amplifier, but is drawn through Rf by Vo’

and so
\Y
i=- 2
R .
£
Eliminating i,
v
-2 - yo 4 Vs
R R, Ro R3
£
leading to
R
v = - v iﬁ + v EE + v £
o ! R, 2 Ro 3 R3 :

Thus the output is minus the sum of the input voltages. The
resistance ratios Rf/Ri are normally fixed at convenient values, such as
1 or 10, and variable coefficients are introduced using potentiometers.
(A potentiometer, represented by a circle as shown in figure 4.3(b), is
simply a device for reducing the size of a voltage by an amount which
can be set very accurately.)

The complete adder circuit is conventionally drawn as shown in
figure 4.3(c), the values of the resistance ratios being marked only if
they are other than unity. Then

Vo = -[0.3v; + 1.6 vy + V3] . c.e.(4.2)

Note that all voltages are measured with respect to earth, although the
earth connection itself is omitted. It is a pity that the amplifier
gives a reversal in sign, but it is unavoidable, and causes little
difficulty.

In the integrator circuit of figure 4.4(a), a feedback capacitor C

is used. Assuming as before that the amplifier input u = O,

Again, the current is constrained to flow into the feedback component,
but in this case the voltage is proportional to the integral of the

current i with respect to time t, namely

4.6

(]
Inputs R,
Vi e ANV ...R.'.A- Output
R | Y
Vs i av A
E S | o = LH
3 e— A
) (a) - (b)
° = ac<l
Rf Ri Rf 'l'
Vo= - [Va R; tv, ﬁ-'v, R—a]
0.3
v, 7\ 0.3 Vi
016
Va Oﬂ.ls Va 10 Vo
Ve (©

Vo == [03v,+16vy+v,]

Figure 4.3 A circuit for addition: (a) Circuit details
(b) Potentiometers (c) Circuit using
conventional symbols: the whole of the
circuit (a) is contained within the triangle

A constant value of v causes V0 to change at a constant rate; a
sine input gives a cosine output and so on (figure 4.4(b)). Unless
otherwise shown, the time constant CR can be assumed to be unity, and
the integrator circuit is conventionally drawn as shown in figure 4.4 (c),

for which

t
v = - 0.6f vy dt ' ... (4.3)
(o]

or
av
o

-'a?‘=0.6vl .

If more than one input is applied to the circuit of figure 4.4(c), their
sum is integrated.
Accuracies better than 0.1 per cent can be obtained without difficulty

for adders and integrators of the type shown.

paijtwaad sy 31nd5415 3Indu] SUO ueyl 4oy

abe3l oA Builiels syl sapiAoud *1oquAs Jsejbueiul jerdads 9yl ulylim paujeiuod
Aluo q eia Induy eyl ‘swiojanem [esidA3 S1 (B) 3INnd241d JO 3|OYM 3y} :S|OqWAS [BUO]IUDA
1p -uod Buisn 31ndJ1) (2) swioysnem |ed1dA] (q)
pue AY - =P 40 UOIIN|OS 3yl JOoy 3INdUID Yy G°f 24nbi4 S|i1e3sp 31nd41) (e) :uojjeabolu] Joy 3INOUID Y ' 24nblyg
0=1 waf 90=="°
-) 3 -
0 °A 'A 90 Oo.a 'A
n_
AP

0
% A

r—— Q

S~

Pasojd vy yapmg

4.7

uoNIpUOd [erjiuy,

ﬁl.

°A

@

H. waf M- =op

4.8

4.3 ELECTRONIC ANALOGUE COMPUTERS

4.3.1 General

An electronic analogue computer consists of a number of operational
amplifiers which can be used for addition, integration, multiplication
and a range of other functions; facilities are provided which permit
the interconnection and switching of the computing circuits, and which
allow accurate measurements to be made on them. The problem variables
in which we are interested (flux, velocity, concentration, temperature
or force, for instance) are all represented in the computer by voltages.
These voltages may vary quite slowly, and can then be read on a volt-
meter, or they may change so quickly that an oscilloscope is required to
observe them.

A medium-sized machine might have about 100 amplifiers, including
perhaps 30 integrators, and could thus perform 30 integrations at the
same time.

4.3.2 Equation Solution

Consider the circuit of figure 4.5. The extra input on top of the
integrator is inverted, and supplies a fixed voltage b to the output as
an 'initial condition' before the integration starts, but has no other
effect. When switch A is closed, this defines the instant which the
computer regards as t = 0; at this time the output V = b. Using a
potentiometer, we have now made the integrator input equal to AV, and so
the circuit obeys the equation

av

- av
at

3t -V (4.4)

AV or

This is basically the same és equation 4.1, which describes the systems
of figure 4.1, and so the circuit of figure 4.5 is simply one more
analogue, having the same dynamic properties as the other three systems.
As you know from a previous lecture, the solution to equation (4.4) is
an exponential: if we let V = ke—At, where k is an unknown constant,
then differentiating we get

At

X ke = v .

dt

ke t is a solution of equation (4.4). Since

This demonstrates that V

we have made V = b at t = 0, substitution shows that k = b, and so the

solution is V = be-kt.

AN S - I - O - - - - . W .- .

4.9

The circuit of figure 4.5 'solves' equation (4.4) by producing a
voltage proportional to be_)‘t each time switch A is closed. V starts
off positive and, via the integrator, forces itself to get smaller. As
it does so, its rate of change also gets smaller, which is precisely
what equation (4.4) tells us in a more compact way.

Switches such as A and many other controls required by the computer
are usually omitted from the computing circuit - their presence is
assumed.

Summarising, should we wish to examine one of the systems of
figure 4.1, possibly with a very complicated series of disturbances, the
simplest and most accurate way of doing the experiment would be to apply
a voltage representing the disturbances to the circuit of figure 4.5.

4.4 PROBLEM SOLUTION

To obtain the above solution we started with a computer circuit and
analysed its behaviour. The usual process is the other way round - we
are given a set of equations and have to design a circuit which will
solve them, resulting in the process illustrated in figure 4.6. The
equivalence between the physical system and the analogue circuit is very
marked, and examination of the behaviour of the latter, used as a working
model, provides considerable insight into the operation of the original
system. In fact, one major advantage of analogue computers is that they
form a means of learning, and in some cases simulators behave so much

like the original system that they are used to train operators.

Mathematical statement
of problem
dx . _ Ax
Problem :f
formulation Etx = AX — puy
d
gf' = uy - Bz
Physical - > Analogue
blem - computer circuit
(Fig, 47(0) i (simul
Fig. 4.7(a simulator,
= — Fig. 4.7(b))
Direct equivalence

Figure 4.6 Pictorial representation of the analogue
method of problem solving

4.10

(

wa|qouad syl juasaudau 03 Jsore|nwis Yy (9)
so||nedpAy ui wa|qouad y (e) L' @anb14

Q)
zg
W _ g
e
! P -
. v Bt -x
f -
XY
I mmo - XY
Ox

. VD’

Vo | VoV W VoW
SRR
02026700 %

026262 % 20% %%,
EERRRRRRK

02620220 2%

OO
BOOO)
X %ﬂo

4.11

As an example of the process of figure 4.6, consider the series of
tanks in figure 4.7(a), each having a drain hole through which it leaks
into the next tank. The depth of water in the first tank is x, and the
surface moves (or the depth changes) with velocity dx/dt, which depends
on the flow of water in and out. For the first tank the inflow is zero,
although the experiment starts (the plug is pulled out) with an initial
depth X - The outflow aepends on the size of the hole, denoted by A, and
the depth (Z.e. pressure) of water. Thus

velocity of surface = inflow - outflow

dx
z.e. 3 - 0 - Ax ,
dx
or i - -Ax (4.5)

and, by comparison with equation (4.4), we know that x will fall expo-
nentially.

However, the second tank, which starts empty, has an inflow from
tank 1 as well as the normal outflow; its rate of change of depth is
thus

dy

3 - Ax - Uy(4.6)

Similarly for the third tank,

dz

o uy - Bz e (4.7)

and one could go on indefinitely. This system of tanks gives a very
clear idea of how one radioactive material decays into another, which
itself decays (at a different rate) into a third, because the equations
describing that situation are identical to equations (4.5) to (4.7),
Z.e. the two systems are analogous.

Our simple exponential solution only fits the first tank, the
change in depth in the others being complicated by their varying inflow.
However, we have successfully formulated the problem of figure 4.7(a),
and can now go on to design the computer circuit.

From figure 4.5 we know that we can solve equation (4.5), using
integrator 1 of figure 4.7(b) to represent tank 1. The potentiometer
introduces A, the size of the drain hole (or the decay constant of a

radionuclide) .

4.12

Consider now equation (4.6). Let us assume that a signal representing
-uy is available; then with the existing Ax signal we can make up
dy/dt. This is integrated (and inverted) in integrator 2 to give -y, and
so we can supply the wanted -uy signal from the potentiometer. The
circuit of integrator 3 solving equation (4.7) can be found in exactly
the same way, except that the signs are all reversed, and so we have
developed an analogue computer circuit to simulate the water levels in the
three tanks. An inverting amplifier (4) allows y to be viewed the right
way up.

Notice from the demonstration that all the computing operations
occur simultaneously (in parallel) not in sequence as in a digital
computer, and that the solution arises at a definite speed, Z.e. the
same speed as the levels in the tanks in our case. By using smaller
capacitors in the integrators, the solution can be up to 10 times
faster and, if many integrations are involved, the overall operation is
much faster than can be achieved by a digital computer. However, the
high speed cannot be properly utilised by a human operator.

4.5 HYBRID COMPUTERS

A fairly recent development, whose full impact has not yet been
felt, is the Hybrid Computer. This consists of an analogue computer, a
general purpose digital computer, and an interface. The latter provides
the facilities required for the two machines to cooperate effectively
(figure 4.8).

The analogue computer allows high speed, parallel computation. The
digital computer can be programmed to:
Perform the scaling calculations and check the analogue circuit.

. Act as a very high speed operator, which readjusts the computer
before each solution, as determined by the preceding solution.

. Perform parts of the computation which the analogue computer

finds difficult.

(One might also express the same idea by saying that the analogue
computer becomes one of the peripherals upon which the digital computer
can call when required.)

As an example, suppose we wanted to find the value of A for an
experimental result thought to be an exponential. The operator could

use the circuit of figure 4.5 and, by comparing the output with the

wanted curve, he could adjust the potentiometer to get a better fit.

4.13
ANALOGUE DIGITAL
’
INTERFACE
IF(A.GT.B) Ne=27
Y() «-SIN(X)

TYPE "ANSWER=".Y(1)

Figure 4.8 A hybrid computer

After a number of trial and error solutions he could get a reasonable
match and the value of A would be given by the potentiometer setting.
This process would be tedious and probably inaccurate.

However, with the digital section of the hybrid computer performing
the comparison and resetting the analogue section, many trial solutions
would be performed in one second, and an accurate result could be obtained
very quickly.

4.6 EXPONENTIALS AND EXPERIENCE

4.6.1 Increasing Exponentials

So far we have talked mainly about quantities which decay exponentially
(e_kt) since these are very common in practice. However, it is quite
possible for A itself to be negative (corresponding to a drain hole
which squirts water Znto a tank), and so we end up with ekt where k is
positive, giving an increasing exponential of the type shown in figure
4.9. Whereas before we thought in terms of a 'halving-time', now we
must think of a 'doubling time' T.

Clearly such a response cannot continue indefinitely; it must stop

4.14

somewhere. Fortunately such transients are very rare, although as you
know, a nuclear reactor can theoretically behave in this way (until it
melts) if it is wrongly designed and carelessly operated.

Compound interest on a sum of money gives exponential growth - 5%
compound interest leads to a doubling time of about 14 years. Another
situation involving growing exponentials is dealt with in the next
section.

4.6.2 Populations

Consider a colony of 100 grubs. Given sufficient food and space,
an average of 20 eggs are produced by each grub per month, of which 10
eggs hatch out and produce grubs which survive to the egg laying stage.
Remembering that the original grubs die at the end of the month, the

grub population increases by a factor of ten each month.

Months 0 1 2 6 12~ n
Population N 102 103 10% 108 10 102

(If the grubs are each 1 millimetre long, 10" of them'placed end-to-
end would stretch for 10% kilometres! The moon is only 4 x 10° km
away.)

The population curve can be fitted by the equation N = 100 e2'3t
where t is in months (figure 4.9), and so the original differential

equation must have been

an

3t 2.3N .

Thus the grub population is expanding exponentially with a doubling time
of about nine days. ’

The most frightening thing about such an increase is its insidious
speed. If you only observe the past, it is difficult to realise just
how quickly things will move in the future, and any delay can turn a
difficult situation into an impossible one.

Fortunately for us, natural populations run out of food or space,
or reach some other limitation, possibly of the type discussed next, a

predator-prey situation.

N THOUSANDS

4.15
T T
12 |
10 |- [_————
I
|
8 DOUBLING TIME T |
B |
|
|
6 | |
|
|
i
.
|
I
I
|
2 |
T
I | -

TIME[MONTHS)

Figure 4.9 The exponential N=100e2° 3t showing the growth of a
population of grubs

4.6.3 Sharks and Little Fishes

The fish population is similar to the grub population: there is
plenty of food and the oceans are large, so their numbers would increase
exponentially, were it not for the sharks who live on fish. The rate of

change of the fish population F is

ar

ac = kjF - k3F.S

The first term on the right hand side represents the normal growth rate,
and the second the rate at which fish are eaten. The latter depends on
both the number of fish and the number of sharks, and introduces a
product term which is new to us, but which computers can handle easily.

For the sharks,

— = =Kk4S + k3F.S

The first term accounts for the sharks who die or who leave the

4.16

area simply because there are too many other sharks around already; the
second term represents the shark's birthrate, which again depends upon
the product F.S. (the number of shark parents, and the food supply).
While this model is oversimplified it has some interesting properties,
including cyclic, or oscillatory behaviour, alternating between famine
and plenty (for the sharks).

4.6.4 The Really Super Important Problem

The only population which has been encouraged to expand unchecked
is the human population. For over 300 years it has been growing more
than exponentially, Z.e. initially with a doubling time of 250 years,
but now, at a level of over 3,500 million, with a doubling time of only
33 years.

Not only this, but the human race is using up unrenewable resources
(0il, coal, metals, ete.), and generating pollution at rates which are
also growing exponentially, both because of the rising number of people
and because of a rising material standard of living. Clearly this type
of growth cannot continue indefinitely or there will be no room left,
insufficient food and virtually no raw materials.

In view of what we know of exponentials, it is clear that the human
racé must manage its affairs better in the future by finding ways of
limiting both the population and its usage of the world's resources to
levels that our planet can sustain. Unless this is done, nature will
apply one of her own traditional methods of limitation - famine and
disease, probably preceded by war.

Also we know that every delay in coming to grips with the problem
makes matters worse-in fact a delay of only 33 years doubles the size of
the problem.

The past four or five generations have worked hard to provide
better material standards of living, and so have helped to increase the
population and accelerate the use of natural resources. The present
generation is continuing to do this, due to sheer inertia and bewilderment,
but at least it has realised that a serious problem exists. It will be
the responsibility of the next generation to start dealing with these

formidable difficulties.

CHAPTER 5

INTERACTIVE COMPUTING WITH ACL

Lecture by

R.P. BACKSTROM

ABSTRACT
Interactive computing, in which man and machine work closely
together in setting up a computation, is described in terms of a
locally developed language ACL implemented to support many users of

a NOVA minicomputer.

5.10

5.11

5.13

5.14

5.15

5.16

5.17

5.18

5.19

CONTENTS

INTRODUCTION

TERMINAL INPUT

ARITHMETIC OPERATIONS
VARIABLES

ASSIGNMENTS

INPUT AND OUTPUT STATEMENTS
ERROR CORRECTION AND THE EDIT STATEMENT
EDIT STATEMENT

LIST STATEMENT

SYMBOLS STATEMENT

RUN STATEMENT

PROGRAM TRACING

TRANSFER OF CONTROL

SUBROUTINE CALLS

SAVING ACL PROGRAMS ON IBM360 DISK STORAGE

RELOADING ACL PROGRAMS

DELETION OF ACL PROGRAMS FROM DISK STORAGE

CONCLUSIONS

REFERENCES

APPENDIX 5A LIST OF ACL STATEMENTS

APPENDIX 5B A SAMPLE ACL PROGRAM

- T T O T W W S W T U T U T T B s O T W=
u
.
[u
N

5.4

5.4

5.4

CORRIGENDUM
AAEC/S17 SUMMER SCHOOL, 1976
Section 3.3, p.3.4.

second line of sub-section (iii) should read

I'I,I(I)I=l$; and

5.1 INTRODUCTION

ACL is a high-level language designed specifically to suit scientific
problems. The language was developed at the Australian Atomic Energy
Commission Research Establishment, Lucas Heights, New South Wales
[Bennett & Sanger 1973], and has been implemented by Dr P.L. Sanger on
a NOVA computer presently supporting 18 terminals [Sanger 1972]. This
is referred to as the ACL-NOVA system. The NOVA computer is also linked
into the on-site computer network (referred to as the Dataway) and
therefore has access to the IBM360 Model 65 central computer. This
allows ACL programs developed by users at the terminals to be saved on
IBM360 disk storage for later recall to the NOVA computer.

The ACL language consists of immediate statements and stored
statements. Stored statements are translated and saved in the user's
work area within the NOVA computer from which they may be recalled and
executed under user program control. Each stored statement has a
sequence number in the range 100 to 999 and may also have a statement
number in the range O to 99. Stored statements are used to build up a
stored program. They are ordered according to their sequence number and
may be inserted, modified or deleted by the user. Stored statements may
be typed in any order; newly entered statements replace previously
saved statements with the same sequence number.

An immediate statement which does not have a sequence number is
translated and executed when typed and is then discarded. These state-
ments are used to perform one-time or 'desk calculator' type calcu-
lations, to control the execution of a stored program and to perform
various editing and debugging functions.

Work space within the NOVA computer is allocated dynamically, thus
allowing large programs to be given extra storage areas when necessary.
The work space thus obtained is subsequently returned to the system when
the user completes work at a terminal.

5.2 TERMINAL INPUT

To begin an ACL session at a terminal, the user should hold the
CNTRL key and then press the letter G. The system responds with the
message ACL-NOVA and spaces a few lines. Once the terminal has been
initialised in this way, statements may be stored or immediate state-

ments executed.

5.2

Input begins from column 1, which is taken to be the leftmost
position of the teletype carriage that results from pressing the Carriage
Return key; it may consist of up to 72 characters. If input is con-
tinued past column 72, the whole line is cancelled and must be entered
again.

A stored statement consists of a 3-digit sequence number starting
in column 1, an optional statement number starting in column 5, and the

statement itself starting in column 8, as shown in the following layout:

1 |5 I7I8 72i
110 1 ACCEPT A,B

120 C<A+B

130 24 TYPE 'SUM = ',C

Immediate statements begin in column 1 as follows:

|1 72

EXP (2.30259)
A<3.141593*R*R
RUN

The terminals attached to the NOVA computer are operated in full-
duplex mode; this means that a character pressed at the terminal
keyboard is sent to the computer, but it is not printed out unless it is
accepted by the NOVA and 'echoed' under program control by the ACL-NOVA
system. Therefore, only characters which are valid at each point are
'echoed' at the terminal. For example, if a user pressed the keys SQR2
at the keyboard, the NOVA computer would recognise SQR as the start of
the function 'square root' and would then expect an opening bracket, (.
The 2 would be rejected and, instead a 'bell' character would be given
to indicate that an invalid character had been pressed.

The full-duplex mode feature is also used to simplify the task of
entering stored statements from a terminal. If the user gives a space
at column 1, the system responds with a sequence number followed by a
space. This sequence number is ten greater than the last sequence

number specified. In the same way, if a space is entered at column 5,

5.3

the system responds with three spaces. Thus for a stored statement, a
new sequence number and no statement number may be generated by pressing
the space bar twice.

Stored statements may be deleted by entering the sequence number,
a space and carriage return. Statement numbers may be altered (or
omitted) by entering the sequence number, a space, a new statement
number (or space to omit the statement number), one more space and
carriage return.

5.3 ARITHMETIC OPERATIONS

All arithmetic operations are performed using single-precision
floating-point numbers which give between 6- and 7-digit accuracy. For
input, the numbers may have free format, that is they may be integers,
may contain a decimal point and may also contain an exponent. Examples

include:
257, 1.704, -.00193, 1.E-7 and 4E47

The operations available under ACL are +, -, * (multiplication), /
(division) and * (power). The usual hierarchy applies, Z.e. t first, *
or / next and then + or -. The following functions are also available

in ACL arithmetic expressions:

Function Description
ABS Absolute Value
ATN Arctan (answer in radians)
Cos Cosine (argument in radians)
DPT Decimal Point Function - see

under TYPE statement

EXP Exponential

INT Integer Part (INT(4.7)=4,
INT(-1.5)=-2)

LOG Natural Logarithm (base e)

SIN Sine (argument in radians)

SQOR Square Root (gives +ve or

zero result)

Note that there is no TAN (tangent) function. This may, however,

be constructed using SIN(X)/COS (X).

5.4

5.4 VARIABLES

Three kinds of variables are supported by ACL: simple variables,
singly subscripted and doubly subscripted variables.

A simple variable name must begin with an alphabetic character
(Z.e. upper case A to 2) and may be followed by up to three alphanumeric
characters (Z.e. upper case A to Z or O to 9). Subscripted variable
names consist of an alphabetic character which may be followed by an
alphanumeric character, followed by the subscript (or subscripts sepa-
rated by a comma) enclosed in brackets. Singly subscripted variables
must have subscripts in the range 0 to 65535; doubly subscripted
variables must have subscripts in the range 0 to 255.

Examples of valid variable names are:
A, AREA, X1, X(I), 23(1,7) and 23

It is recommended that subscripted variables not be used unless
every value needs to be stored separately. For example, to total n
numbers, the total may be obtained by starting with zero and adding each
number to the total as it is entered into the computer. This will
conserve the work space allocated and allow more users simultaneous
access to ACL-NOVA.

5.5 ASSIGNMENTS

If a variable is followed by <« (assignment) during statement
execution, the expression to the right of the assignment arrow is
evaluated and its value given to the variable. If a number of assignment
arrows occur in an expression, they are processed from right to left.

For example, in the expression:
X2<F-E+0*X1+ (F<-B/D)+E“SQR(B*B-4*A*C) / (D*2*A)

D is evaluated‘first, then E, then the value of F and finally X1 and X2.
This expression in fact gives the real roots of the quadratic equation
Ax% + Bx + C = 0. If B*B-4*A*C happens to be negative, however, ACL
will issue an error message because it cannot find the square root of a
negative number. The program is then suspended while the user makes
some corrections (if necessary) to the coefficients and presses carriage
return to resume processing of the above expression. The user may
decide not to continue with that calculation, but type RUN to restart
the program, this time entering different coefficients.

5.6 INPUT AND OUTPUT STATEMENTS

Numerical values may be entered into an ACL program using the

5.5

ACCEPT statement followed by a list of variables separated by commas,

for example:
110 ACCEPT A,B,C

When this statement is executed, ACL will print out the sequence number
of the ACCEPT statement and the name of the variable to be entered,

thus:
110 A«

and will wait until a numerical value (or indeed any valid arithmetic
expression) is typed followed by a carriage return. The values for B
and C will then be requested in a similar manner.

The TYPE statement provides the means by which printed output can
be produced from an ACL program. The format of numerical output is
determined by the magnitude of the numbers, and will be in exponent form
if in the range |number|< 107" or |number|> 10%®. All other values appear
with up to seven significant figures in decimal notation (except that
integers will be printed without a decimal point).

The simplest example of a TYPE statement would be one in which the
value of a single variable is typed at the left hand margin of the page,

for example, using:
200 TYPE X1

If the value of X1 is required in exponent form regardless of its

magnitude, we would code:
200 TYPE "X1

The values of several variables may be typed on the one line (with one

blank separating each number) as follows:
300 TYPE I,X(I),Y,Z

Headings or descriptions of results may also be printed using the
TYPE statement, provided the message is enclosed in single quotation

marks, for example:

340 TYPE 'THE TOTAL IS ', TOT
would produce the line:

THE TOTAL IS 4.70319

If the output is required to be positioned exactly on the line, the

5.6

number of positions to leave at the left of the output variable may be
specified as an arithmetic expression enclosed within the symbols < and
>. Thus to leave ten blanks before printing the value of X, we could

use:
400 TYPE <10>,X

The expression between the symbols < and > may be variable, thus providing

a way of producing graphs of properly scaled functions. For example:
500 TYPE <20+20*SIN(I<I+.2)>,'*!

would calculate a value between 0 and 40, space that many blanks and
then print the *. 1In this way, a rough sine curve can be depicted on
the teletype.

The TYPE statement may also contain colons (:) and semicolons (;)
as delimiters. A colon is used to print the output, and issue a carriage
return but not a line feed, enabling another TYPE statement to overprint
the last line (where a complicated line could perhaps not be described

in a single TYPE statement). For example:

610 TYPE A,B,C,D,E,F,G,H,I,J,K,L:
620 TYPE <40>,M,N,0,P,Q,R

would print the first twelve values, give a carriage return, space 40
blanks and then print the other six values (provided that all these

numbers are small enough to fit on a teletype with only 72 print positions).
Semicolons are used to space to the next line before printing the rest

of the output, for example:
500 TYPE A;B;;

would print the values of A and B at the left hand margin of successive
lines and leave 1 blank line (not two) after printing the value of B.

To produce a column of figures of varying numerical value with the
decimal point aligned, the DPT function may be used in the positional
descriptor. DPT(X) will give a value which is the character position of
the real (or virtual) decimal point. This means that to position a
number so that the decimal point is in column 10, the expression 10-
DPT(X) will give the number of spaces to leave so that the alignment is
made. The TYPE satement would then be:

600 TYPE <10-DPT (X)>,X

5.7 ERROR CORRECTION AND THE EDIT STATEMENT

Errors which occur while a statement is being typed may be corrected
quite simply. For example, to delete the last seven characters that
were accepted as input, type <7. This would cause the original line of
input minus the last seven characters to be typed on a new line and the
rest of the line could then be typed in.

A statement being entered may also be edited by typing << and a
carriage return (see section 5.8).

To delete the entire line before final acceptance by the computer,
type <<<.

5.8 EDIT STATEMENT

This statement is used to modify statements which are part of a
stored program in what is termed 'edit mode'. The statement is of the

form, for example:
EDIT 190

Statement 190 is then printed and the carriage returned to the left on
the next line. To follow the 'edit mode' procedure, consider a pointer
to each character in the original statement. This pointer begins at the
first character and moves to the next character each time the SPACE key
is pressed (but copying each original character as it goes).

To insert a new character, press that character instead of the
SPACE key (unless a SPACE is required in which case a key marked ESC is
used). To delete a character from the original line, press the DELETE
(or RUBOUT) key. In this case, the input pointer will move one position
to the right. The rest of the line (if syntactically correct) can then
be copied by typing SPACE the required number of times.

Special care must be used to edit characteré inside quotation marks
in a type statement. For example, the following would not delete the

last three characters:
160 TYPE 'THE TOTAL EQUALS<3

because the < and the 3 would be considered part of the message. To
overcome this problem, close off the message with a single quote and,

this time, delete four characters, thus
160 TYPE 'THE TOTAL EQUALS'<4

In fact, the carriage return entered after the 3 above would have been

5.8

accepted without giving a line feed. Eventually, ACL would decide that
this line had more than 72 characters and delete the entire line anyway
(much to the surprise of the user perhaps).

5.9 LIST STATEMENT

Stored statements may be listed at a terminal in sequence number
order by executing the LIST statement as an immediate statement. A
single statement, a range of statements or the entire program may be

listed. Examples for these three include the following:

LIST 300
LIST 400,900
LIST

If you wish to keep a copy of your program on paper tape, execute

the statement:

LIST:
Since the paper tape punch is normally OFF, turn it ON and give another
carriage return. Five inches of leader tape is punched, then the pro-
gram and finally another length of blank trailer tape. Turn the punch
OFF and tear off the paper tape.

If you do not wish to wait for the entire listing, a question mark
will stop the output at the end of the current line. A question mark is
used generally to interrupt the program while it is executing and to
suspend program flow.

5.10 SYMBOLS STATEMENT

This statement is very similar to LIST except that its only forms

are:
SYMBOLS or SYMBOLS:

the difference ‘being that ':' signifies paper tape output. The values

contained in the symbol table are printed out in the following form:

A<4.709
B(1)<9.704327E+06
B(2)+«-2

X(4,11)+«0

As in the LIST statement, the symbol table listing may be terminated

by pressing question mark.

5.9

5.11 RUN STATEMENT

This statement causes the program to start executing at the lowest
numbered sequence number regardless of whether execution had been pre-
viously interrupted.

5.12 PROGRAM TRACING

To assist in debugging a program, special tracing facilities are
built into the ACL language. Individual statements may be traced by

executing an immediate statement of the form:
TRON 240

Any number of individual statements may be marked for tracing; all may

be traced by saying:
TRON

When program execution resumes, all symbol table entries are
printed out (along with the originating statement if using TRON), thus
greatly helping to spot errors (or 'bugs') in the program.

After having found the trouble (if any), individual trace requests

may be dropped by typing:
TROFF 240

To turn all tracing off, use: TROFF.
5.13 TRANSFER OF CONTROL

ACL has two main statements for transferring control within a
program, namely the GO TO statement and the IF statement.

The GO TO statement is an unconditional branch statement, which
means that when executed (either as an immediate statement or as a
stored statement), control will always pass to the statement whose
sequence number or statement number is evaluated from the expression on
the right hand side. For example, the following are all valid GO TO

statements:

200 GO TO 1

300 GO TO 110

400 GO TO J

500 GO TO K*K+100

If the expression evaluates to an integer in the range 0 to 99, a state-
ment number branch is performed; if it evaluates to an integer in the

range 100 to 999, a sequence number branch is performed.

5.10

The IF statement (see appendix 5A for the full description) provides
a way of conditionally branching. For example, if some looping operation
was to be performed 100 times, an IF statement such as the following

could be used:
480 IF(J«J+1..LE.100) GO TO 2

Note the 'double dots' in the above syntax. The first dot is a decimal
point and the second is part of the 'less than or equal to' test. To

avoid these 'double dots', we could say instead:
480 IF(J«1+J.LE.100) GO TO 2

If the relation between the two expressions is true, the right hand
statement (in this case a GO TO) is executed. Otherwise the next ACL
statement following the IF statement is executed.

5.14 SUBROUTINE CALLS

ACL provides subroutine calls to groups of statements considered as

subroutines in the following way:
140 CALL 800

The return address is remembered and execution then passes to the
statement whose sequence number is 800. When a RETURN statement is
executed, the program returns to the statement after the CALL.

Subroutines may be nested to any depth and they may all make symbol
table references to any symbol. 1In other words, subroutines should not
use the same variable names as outer level subroutines unless logically
correct to do so.

5.15 SAVING ACL PROGRAMS ON IBM360 DISK STORAGE

ACL programs developed at a terminal may be saved on IBM360 disk
storage and later reloaded into the NOVA computer when required. This
is possible because the NOVA computer is linked to the IBM360 computer
via the Dataway and another intermediate computer (a PDP9L) which is
connected on one side to the Dataway and on the other to a channel of
the IBM360 computer.

Although ACL programs may be saved on paper tape and later reloaded
via the paper tape reader on the teletypes, this is a time~-consuming
process even at ten characters per second. The loading and saving time
via the Dataway is a matter of seconds even for the largest programs
containing hundreds of statements.

To save an ACL program on IBM360 disk storage, enter:

5.11

[#SAVE PROGNAME, INT/ACCTNMBR]

followed by carriage return. PROGNAME is the program name and may con-
sist of up to eight characters provided the first letter is alphabetic
(Z.e. one of A-Z) and the rest are alphanumeric (Z.e. one of A-Z and O-
9). INT represents the three initials of the user (as contained on his
IBM360 job card) and, for the purposes of this Summer School, will be
SSK. ACCTNMBR is the user's account number (also contained on his
IBM360 job card). The Summer School account number to be used is
AM290060.

To avoid confusion between different Summer School users saving
programs under the one Summer School account, it is recommended that
program names commence with the three initials of fhe particular user.
In this way, replacement of other people's programs can be avoided. For
example, if Carole Ann Stuart wished to save her program, EXP, she

should type:
[#SAVE CASEXP,SSK/AM290060]

To save both the ACL program and also the current contents of the

symbol table, type: SAVES instead of :SAVE as shown below:
[#SAVES CASDATA,SSK/AM290060]
In either case, the IBM360 computer response will be:
[-PROGNAME-SAVED AT 09.30AM ON 75.287]
indicating the time and day of the year on which the program was saved
(if the program was being saved for the first time, or:
[-PROGNAME-REPLACED AT 09.30AM ON 75.287]

(if it was replacing an earlier version). The same area on disk is used
when replacing programs, so that it does not use up the disk space to
replace a program many times during its development.

5.16 RELOADING ACL PROGRAMS

To reload an ACL program from the IBM360 disk storage into the NOVA

computer, enter:
[#LOAD PROGNAME, INT]

followed by carriage return. In the case of the Summer School, this

will be:

5.12

[#LOAD CASPROG1,SSK]

for example. Loading does not require the specification of an account
number so that various users can share ACL programs. For saving, however,
the account number requirement (and also the fact that each Summer

School user names his programs beginning with his initials) gives pro-
tection against accidental replacement of programs on disk.

5.17 DELETION OF ACL PROGRAMS FROM DISK STORAGE

To delete programs no longer required on IBM360 disk storage, enter

CNTRL/G to re-initialise the ACL work area and then enter a normal SAVE

request, for example:
[#SAVE CASCUBIC, SSK/AM290060]

This 'null' program SAVE request is interpreted as a DELETE request.

The response from the IBM360 computer will be either:

[-CASCUBIC-DELETED AT 04.30PM ON 75.287],

or
[-CASCUBIC-NOT LOCATED IN ACL LIBRARY]

depending on whether or not the program CASCUBIC was currently stored on
disk.
5.18 CONCLUSIONS

ACL-NOVA provides a most useful interactive computing facility,
enabling users to set up and test programs very simply and quickly. The
extremely simple concept of syntax checking statements character by
character as they are entered guards the user against trivial typing
mistakes, which even large-scale computer systems seem unable to do.

With the ability to trace program flow, interrupt execution, change
variables and then resume execution (from where it was interrupted or
from some other statement), the user can gain valuable insight into the
mathematical significance of his calculations.

The connectioﬁ to the IBM360 computer also offers great time-
savings in being able to SAVE and LOAD any size ACL program in a matter
of seconds.

However, with such ready access to problem solution using inter-
active computing, one must be careful not to be carried away by the
computer. There are times when the only way to discover a programming

error is to THINK.

5.19 REFERENCES

Bennett,

N.W. & Sanger, P.L.

5.13

[1973] - The Development of the ACL Language

and its Implementation ACL-NOVA. Australian Computer Journal,

5 (3) 105-114.

Sanger, P.L. [1971] - ACL-NOVA: A Multi-User Conversational Interpreter

for the NOVA Computer. AAEC Report E221. (Reissued 1972).

5.15

APPENDIX 5A
LIST OF ACL STATEMENTS

5A1 IMMEDIATE STATEMENTS
Arithmetic statement or expression
LIST [:] [arith stmt or exprn[,arith stmt or exprn]]
EDIT {arith stmt or exprn}

RUN

GO TO {arith stmt or exprn}

PB {arith stmt or exprn}

PA {arith stmt or exprn}

TRON [arith stmt or exprn]

TROFF [arith stmt or exprn]

FTRON

FTROFF

SPACE

CLEAR [variable|[,variable]...]
SYMBOLS [:]

SUSPEND [:]

STOP

END

TYPE {;} ***| operand, {;} -.-] operand; L
, operand;

where the operands take the form:

[Rarith stmt or exprn>,] { 'character string' }
["] arith stmt or exprn

except that operand; may not be null.

S5A2 STORED STATEMENTS

C character string (Comment only)
Arithmetic statement or expression.
Go TO {arith stmt or exprn}

ACCEPT {variable[,variable] ...}
caLL {arith stmt or exprn}

RETURN

CONTINUE

arith stmt or exprnw
.EQ.} GO TO stmt
.NE. ACCEPT stmt

1F ({arith stmt or exprn} < .LT.\{arith stmt or exprn}) { CALL stmt

.LE. RETURN stmt
.GE. CONTINUE stmt
(.GT.) TYPE stmt
LSTOP stmt y

TYPE (see Part 5Al)
PAUSE
STOP

The following is a short ACL program designed to find the divisors
of integers containing any number of digits.

not, however, be greater than about 16 million because loss of accuracy

5.17

APPENDIX 5B
A SAMPLE ACL PROGRAM

will then occur in the divisions.

An array D(N) is used to hold the digits of the number and the

division is performed from left to right in a manner similar to a long

division calculation by hand.

110
120
130
140
150
160
170
180
190
1200
210
220
230
240
250
260
270
280
290
300

TYPE 'ENTER NO. OF DIGITS IN DIVIDEND.'
ACCEPT ND

TYPE ; 'ENTER DIVIDEND, ONE DIGIT AT A TIME.'
N<@

N<N+1

ACCEPT D(N)

IF(D(N) *(D(N)-9).GT.%) GO TO 2

IF (INT(D(N)).NE.D(N)) GO TO 2

IF (NDND-1..GT.@) GO TO 1

TYPE ; 'ENTER INITIAL DIVISOR AND INCREMENT.'
ACCEPT P, I

TYPE ;

J<1

R<@

R¢INT (P* (Q-INT (Q« (1@*R+D(J))/P))+.5)
IF(J«J+1..LE.N) GO TO 4

P+P+I

IF(R.NE.@) GO TO 3

. TYPE 'DIVISOR = ',6P-I

GO TO 3

The trial divisors should

CHAPTER 6
EXPONENTIALS AND REACTORS
Lecture by

D.B. McCULLOCH

ABSTRACT
Physical processes important to the behaviour of nuclear reactors
are briefly outlined, leading to a description of the 100 kW research
reactor, Moata.
The simple equations for neutron-induced artificial radioactivity
are derived, and applied to a Moata irradiation experiment in which
a target foil is identified by measurement of the resulting radioactive

half-life.

6.1

6.2

6.3

6.4

CONTENTS

INTRODUCTION

SOME NEUTRON INTERACTIONS WITH MATTER
FISSION CHAIN REACTIONS AND REACTORS
THE MOATA REACTOR

A RADIOACTIVITY EXPERIMENT USING MOATA

FURTHER READING SUGGESTIONS

Page
6.1

6.1

6.19

6.23

6.1 INTRODUCTION

Physical phenomena, whose behaviour in terms of some basic variable

such as time or distance can be described by the exponential function,
are so widespread that the exponential is one of the most important and
frequently used expressions in physical analysis. In simple terms, we
may say that whenever an observed quantity changes by a fixed ratio in a
fixed interval of time or space, regardless of where in absolute terms
the time or space interval is chosen, then the variation of that observed
quantity is exponential.

In the atomic energy field, the time dependance of the strength of
a radioactive source, or of the power level of a nuclear reactor following
an adjustment to its control system, are examples of exponential behaviour.
The attenuation of a beam of radiation such as gamma rays passing
through matter, or of the neutron intensity as one moves away from a
neutron source in a diffusing medium such as graphite, are other examples;
but here the exponential variation is with distance rather than time.

The full list of exponentially varying phenomena associated with atomic
energy would be almost endless.

As a practical application of the theory you will be studying on
this course, you will be attempting to identify an element by deter-
mining the radioactive half-life (Z.e. the characteristic time interval
over which the induced radioactivity falls by a factor of 2) following
an irradiation in the 100 kW research reactor Moata. A description of
the reactor and how it is operated, and the way in which you will use it
for your experiments is appropriate. We shall of course give due atten-
tion to those aspects where exponential behaviour comes into play; but
first we will need to look at some basic neutron reactions with matter,
and the principles of the neutron fission chain reaction on which the
operation of all reactors depends.

6.2 SOME NEUTRON INTERACTIONS WITH MATTER

Because of its zero electrical charge, the fundamental particle,
the NEUTRON, is very favourably placed to interact with atomic nuclei,
even in the case of very heavy ones (high atomic weight, A) with large
electrical charge (Z).

Such neutron interactions, particularly the process known as
fission, form the basis for design and operation of all nuclear reactors.
Some awareness of all these mechanisms is necessary to understand the
principles of the Moata reactor, which you will be meeting later in the

course.

Elastic Scattering

In this type of interaction, both neutron and interacting nucleus
behave rather like hard spheres or billiard balls. Energy and momentum
are exchanged essentially as given by the laws of classical mechanics,
depending on the mass of the target nucleus and the angle of impact.
Successive collisions of this type in moderating materials (light atoms
of low absorption cross section) are used in thermal neutron reactors to
slow neutrons down from the energies at which they are born in fission
(max. ~ 10 MeV, average ~ 2 MeV) until they approach thermal equilibrium
with the molecules of the reactor materials (~ 0.025 eV at room tem-
perature) .

Absorption Processes

Inelastic scattering

This process occurs mostly at fairly high neutron energies in
interactions with heavier nuclei. It involves absorption into the
nucleus of a neutron with energy El, and its re-emission at a lower
energy E2, accompanied by a gamma ray, which carries off the balance of
the energy. This process is very effective in transferring neutrons at
fission energies to below the threshold (~ 0.8 MeV) where they would be

238U.

capable of causing fission in
Capture
This covers a variety of processes in which a neutron is captured
to form either a stable nucleus of one which decays by emission of
charged particles and/or gamma rays to give a new product nuclide. The

decay may be essentially instantaneous, as for example
'%Bs(n,0) 'Lis

which is extensively used in neutron detectors, or it may take place
exponentially with any half-life, e.g.

B, Y

23 24 24
+n > .
Naj; +n Naij1 7T/ 15h> Mgi2

N]=—

Capture reactions are extensively used in nuclear reactors (a) in
the form of absorbing ‘control rods' for direct trimming of the fission
reaction rate or for shutdown, and (b) as fillings or coatings of

detectors to monitor the neutron flux level.

Fission
Some elements high in the periodic table, particularly uranium, are
capable of interacting with a neutron in such a way that the nucleus
splits (or ‘'fissions’') into two more or less equal parts (fission
products), with the liberation of a number of further neutrons and a
significant quantity of energy (figure 6.1) This is the fundamental

process on which all nuclear reactors depend.

2 LIGHTER ATOMS PRODUCED
(FISS{)N PRODUCTS)

NEU‘TRON %,
© @ 10
o \
. NEUTRONS
RELEASED
URANIUM ENERGY RELEASED
NUCLEUS IN FORM OF HEAT

Figure 6.1 Fission of uranium
The energy release appears because the mass of the two resulting
fission product nuclei and the liberated neutrons is, in total, slightly
less than the mass of the original neutron plus target nucleus. The
energy equivalent, E, of this mass difference m is given by Einstein's

relationship
E = mc ’

and mostly takes the form of kinetic energy of the fission fragments and
neutrons, subsequently appearing as heat as these particles are slowed
down in the bulk fissioning material. Some of the energy appears also
as gamma rays.

The neutrons liberated in fission arise because stable nuclear
configurations for elements at the high end of the periodic table favour
a higher neutron-to-proton ratio than is generally required for elements

lower down, resulting_ in a neutron surplus when fission product nuclei

are formed. §
In addition to the neutrons which are ‘boiled off' at the instant

of fission, some of the fission product nuclei formed still have too

many neutrons to be stable ana subsequently emit them by a radiocactive

decay process with half-lives ranging from a few tenths to a few tens of

6.4

seconds. These are known as 'delayed neutrons' and are of the order of
one per cent of the number released directly ('prompt' neutrons) in the
fission process. As we shall see later, they play an extremely important
part in the dynamic behaviour and the control of nuclear fission reactors.

The energy released in a single fission is about 200 million
electron volts. A fission rate of 3 x 10%° per second therefore re-
leases energy at approximately 1 joule per second, Z.e. a power of 1
watt. This may sound very little, but it should be looked at in the
light that complete fissioning of 1 gram of a heav<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>