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ABSTRACT

Analyticity is exploited +to
distinguish beitween classes of n
rartial wave solutions. Fixed + and
fixed u dispersion relations deter—
mire the over-all phase of the ampli-
tude and clearly select solutions with
a 0'(1600) resonance of 25% elasti-
city.
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An outstanding question of.meson spectroscopy, particularly relevant
with %Ee advent of the new ¥ particles, concerns the existence of p!', ol
and ‘@! vector mesons. Of these, there is so far only infermation on thé pt
state. ' Although the Frascati efe" =2n or 4 data 1) is not conclusgive,
there is definite evidence for = p'(1600) from the photoproduétion process
vBe—'(2n or 4n)Be observed at FNAT 2}, The p' is also evident inm mm
partial wave analyses of thé high statistics 7 p—=n m'n CERN-Munich data 3)

and it is this determination of p!'—>T coupling which concerns us here,

The mm scattering amplitude extracted from data on one-pion-exchange

y *
dominated reactions has two main kinds of ambiguities ’: first the discrete

3),4)

Barrelet type which gives a four-fold multiplicity of amplitudes in the

“energy rarge up to Mﬁﬁ==1.8 GeV, and secondly each of these amplitudes has an

over-all phase which is undetermined above the inelastic threshold. However,
these amplitudes, extracted from the data, do not necessarily satisfy the re-
quired‘unitdrity or analyticity properties. OFf these, unitarity is most easily

stuflied by decomposing the amplitude into partial waves and checking that

- they lie on or within the unitarity circle. This is indeed found to be the

cage, within the errors, for all four possible partizl wave solutioms. Thus

Cunitarity does not act as a discriminant - zlthough, of course, it does deter-

‘mine the over-all phase of the amplitude in the elastic region below the EK

threshold;fand constrain it in the inelastic region.

On the question of the existence of a p wave p'{1600) resonance
the solutions divide into two categories : i) solutions B, D [in the
notation of Ref. 41] have a' 'p' c¢oupling relatively strongly to wm (elasti-
city'25%),*Whereas ii) gsolutions A, C show no evidence for a p' signal
(elasticity 5'4%). In teérms of Barrelet zeros, these two categories arise
because the first zero, Vz1(s); entering the physical region has In1z1=3 0
rear s = Mﬁﬂ‘= 1.25 GeV ' and so a bifurcation of solution is possible 3)’4).
Solutions of type i) and i1) correspond to Im:al> 0 and Dnz1-< 0 respect—

ively above this energy. . .

How can we choose between these two classes, typified by solutions A
and B ? One way would be to obtain nN—wnN data in this energy region for
T :
other than e scattering; a recent discussion of these possibilities is

given in Ref. 5).

*) ‘There are alsc possible ambiguities associated with the extrapolation of
the data to the ‘v exchange pole and ambiguities, particularly near
Mpp = 1.8 GeV, which arise if the wn partial wave series is not trun—
cated at £=3,
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Here we shall use analyticity to select the physical solution. Above
thé KR threshold the data give the modulus of the amplitude |F(s,t)| and
phase shift ana1y31s determlnes the phase . (s t) of each solution relative
to, say, its phase at t 0. This is illustrated in Fig. 1 at one typilecal
energy‘ Vs-1.55 QeY. We see that solutlons A and B, though of course
havigg‘the sam€ fFI, have guite different phases especially near the back-
ward directionol The Barrelet Zeros, 3z, are indicated in the figure. A4s
we go from the forward to the backward dlrectlon the phase ¢ changes by =«

or =m in the reglon z ~ Re z, depending on whether Im Zi< O or Im Zi> 0.

The solutions A and: B differ only in the sign of Imsz above ‘Mnn==1.25 GeV

y 1
and this produces the striking phase difference near the backward directicn.

Now analyticity‘;nﬁpgmrelates_the phase and thg modulus of an amplitude

'andi since aach_%o}ution‘has the‘same modulus. but a different phase, we may

hope analyticity will [discriminate between them. From Fig., 1 we expect analy—

tlclty at flxed t to determlne the over-all phase of each amplitude, but not

to chocse between solutlons, since their real and imaginary parts are very
similar near the forward dlrectlon. In contrast, near the backward directiom,

where the phases dlffer most, fixed u analyticity can be expected to distin-

guish solutlons once the ovexhall phase iz given. As there exists np discrete

amblgulty below 1 25 GeV, it is just above. this first bifurcation point that we
may hope analyticity will most readily make this distinction. So how do we

proceed 7

A brevioué attémpt‘tgluse Tixed + and u analyticity has been made
by Froggatt and Petersen 7?._ Following Pietarinen & they conformally map the
rlght— (and left— ) hand eut 8 plane into the unit circle. At each fixed 1t
(flxed u) ;they_parametr;ze tpe amplitude‘as‘a polynomial in the new variable

and fit to the data for, [F], .inciluding a certain penalty function to ensure

'smoothnessu They flnd a. solutlon very similar to B. However, there are iwo

notable dlfflcultles assocxated with their procedure. Firstly they explicitly
1nclude the p,f and g resonance poles in the full amplitude so as to

leave a smoother function for polynomial parametrization. This would appear
to bias the analysis in favour of the soluticn (B) with a p! resorance under
the g, since it is only for one form of the residue of the pole that this
daughter can be eliminated. Secondly, the high energy behaviour of the ampli-
tude expanded in terms of large order polynomials in the unit cirele -is far
from transparent and difficult to comtrol. It may lead in practice to
oscillations “in the behav10ur of the amplitude between the end of the data and

]sl--cno Whlle such os01llat10ns do not violate analyticity they are at

variance with our expectations fdr high energy forward scattering.
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In order to avoid these difficulties, we evaluate conventional fixed

9),10

t and fixed u dispersion_qelatiqnsf Phase modulus dispersion
relations immediatél&'éome to mind, but théj are unsuitable in the backward
direction, which we have seen is the crucial'region for resclving the phase
shift ambiguity, since there the number and the location of zeros in the
complex plane is unknown. We thersfore simply use the Cauchy representation
for the scattering amplitude at fixed t and fixed u in order to impose
the necessary cut g, plane ahalyticity. The integration contour we choose
extends only to findite enérgies so as 1o avoid subtraction parameters, and
simple Regge pole behaviour isg assumed‘to hold for the amplitude beyond the

region of existing data, that is for I\‘ImT > 1.8 GeV.

Qur input for the fixed t and fixed u dispersion integrals for the
't 'amplitude, F{s,t), is listed A)-E)} below.

A) TFor M _ < 0.6 GeV we use the solution 1) of the Roy equations for the
s and p waves with an I=0 s wave scattering length ao=0u3 in
pion mass units since this matches on with the data we use 2/ most straight—

forwsrdly,

B) For 0.6 < an < 1.8 GeV in the s and t channels, we reconstruct the

nta”  amplitude from the known elastic g, p and d wave phases below

the KE +tareshold 12). Above this threshold we input IF(s,t)l, which is
reconstructed from the solutions of Ref. 4) in exactly the same way as
described in Ref. 7). In this inelastic region the phase @(s,t=0) is
free. 1In pracﬁice we sef{fhis equal to the phase shown in Ref. 2) (assu~
ming Breit-Wigner £ and lg resonance forms) to which we add a free

rhase mo(s) to be determined by analyticity.

G) In the u channel from 0.6 -~1.% GeV we input the nint data of Ref, 13)

and beyond that up to 1.8 GeV 2 smooth interpolation to the Regge form is

+_+
Lk

used. The data contribute only to the fixed % dispersion relation

and then only to the left-hand cut and so despite their large unceriasinties
they give only a very small contribution to the dispersion integrals eva-—
luated for \s > 0.6 GeV.

D) The contribution from the circular contour in the fixed dispersion

relations is calculated assuming Pomeron, f and ¢ exchange of the

form
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with v={s-u)/2, o'=0.9 GeV ° and where uP(t)=‘1+Oo2 t  and o,

4
2

Lt) =
= 0.5 4+0't with +t in GeVz, and where the signature factors are no;malized
so that Im&= 1. The slope b is chosen in the range (105,4.5)Gev—2.

The asymptotic cross-section, c”ﬁ(w) y and Bf are Iree parameters to be
determined by the fit. The p - exchange having odd signature contributes

to ReF much less than the Pomeron and f for s much less than

(1.8 GeV)2 and so we fix its residue Bp==0.75 to agree with duality and
FESR expectations *) [éee, for example, Ref. 141] rather than let it go

free..

E) The contribution from the circular contour in the fixed u dispersion
relations is calculated using a Hegge parametrization for some effective

"exotic" exchange
Flnuyz x (e g'u) B (o'w)™ (2)

with v::(s~t)/2. We choose the exotic tfajectory to have intercept in
the range (—1.5,—0.5) and canonical slcpey o'. The residue parameters
vy and y' are to be determined by the fit. Our results depend only
weakly on the exact choice of the exotic trajectory, though of course the

fitted values of v and ' are strongly Oy dependent.

We minimize the difference between the output real part obtained from
. ‘ *%
the dispersion relations, by integrating over the data with & free phase )

wo(s) for 1< Vs < 1.8 GeV, and the real part calculated directly from the

data for IF] using the same phase. This minimization is rerformed for values

*) The factor op(t)/up(O) in Bg. ia) approximates the degired t depen—
dence of the ¢ Hegge residue in the near forward region we consider.

**) First we tock ¥, as a free parameter constant in each 0.1 GeV interval
in Vsu The minimigation was then repeated parametrizing this additional
phase o, &sa guadratic in Véa The results of the two methods are
compared below.
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gf t and u in the range (O,—O.B)Gevg and for values of Ys in the range
(0068,1.75)Gev with a particularly fine grid of points in the regicn 1.25 <Vs<
< 1.5 GeV and a coarse grid at higher Vso The results for the real parts are
shown in Fig, 2 for both solutions A4 and B at +t=0 and w=0, We see
rather dramatically how solution B; which has a sizeable p! to WT o cou-
pling, satisfies analyticity very well with its cover—-all phase determined and
displayed in Fig, 3, whereas solution A,. which has no p' signal, fails
badly for 1.3 <V{s < 1.5 GeV. Indeed fhe fits for solution B are still
better away from the physical region boundary values of Fig. 2, while the mis-
fit for solution A in the region Mﬂﬂ==1.4 GeV persists for other fixed u
values. As hoped analyticity discriminates between sclutions just as Pig. 1
led us to expect. Moreover, most imﬁortantly our results are, within limits,
not sensitive to the forward Regge parameters; for example doubling cﬂﬁ(@)
does not affect the ability to distinguish between solutions, but only slightly

worsens the fit.

We conclude that analyticity overwhelmingly favours *) the mnm partial
wave solutions (B and D) with a sizeable p' coupling to mn and deter-
mines the over-all phase of these solutions (see Fig. 3 for sclution B).
Detailed work on the remaining ambiguity between the B and D solutions is
continuing. This depsnds on the Barrelet zerc, 7oy which, unlike Zy ig
near the middle of the physical region for Vs > 1.45 GeV (where the bifurca-
tion of Lm22 oceurs) end so just outside the range of validity of fixed
momentum transfer dispersion relations. This makes matters more complicated.
Moreover the existence of the spin-4 resonance 16), the h, near VYs=2.025 GeV

may play a more important rfle.
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*) Here we heve assumed that the truncation of the partial wave series at
L=73 (and moment series at J==6) is exact, sc that the unknown phase
¥, depends only on s and is independent of t. This is essentislly
correct for the epnergy region which is crucial here, that is 1.25 <
Vs < 1.5 GeV. However, when we allow & free phase at each value of u,
as well asg in the forward direction, each solution, A,B,C and D,
rotates, on imposing analyticity, to basically the same resultant ampli-
tude. This amplitude is essentially the same as solution B displayed
here in Pigs. 2 and 3.
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FPIGURE CAPTIONS
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Figure 1 :

Figure 2 :

Figure 3 :
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The modulus and phase of the n'm  amplitude at s =
= 1,5 GeV reconstructed from the partial wave analysis 4? of

the CERN-Munich data 6). The Barrelet zeros, Ziy are also

given and thelir positions (cosO =5 = Re zi) indicated.
Solutions A and B correspound to Imxa < 0 and an1 > 0

respectively. The +t=0 phase is set arbitrarily to zero.

The real part of the forward (and backward) n+n_ amplitude
as obtained from the +=0 (and u=0) dispersion relations
(the curve) and from the input data (the points). The values
shown are the result of minimization at several values of 1,
u in the range (Q,—O.B)Gevz. For golution B we fird
cﬂﬂ(aﬂ = 8.5 mb and B =1.0 (as compared to the exchange
degeneracy wvalue Bf-gﬁ =1,1). These Regge parameters

are in complete agreement with a recent FNAL experiment 15)

that gives o (ﬁ i ).~15i4 mh at sg=20 GeV2 and 13,522.5 mb

at s=32 GeV", The dispersion relation prediction near 1 GeV
is not shown as it depends sensitively on the properties of the

*
3 resonance.

Argand plot of the forward n m  scattering amplitude. The
phase is determined by dispersion relations, i) by taking
P
are the rotated data); ii) by parametrizing ©, 28 a

as a free parameter in each 100 MeV interval (the points

guadratic in Vé (the curve is the dispersion relation result).

The normalization is DnF(s,t:O) = Vé(qct(ﬂ+ﬂr)/16ﬂ-

e 9 TR o 10 -1 R TP R AR



'mmmmﬁmmmmummwmmmmﬂmrpmmqrrm--mnvwmnmmnl 17 LR UL F T T AR RSP O = R 1 e



MODULUS OF F

PHASE

n*n” AMPLITUDE AT

1

Z,=073-0-54i  Z,2-0-68%013i

l Z,=0-13-0-13i l s

05




SOLUTON B

1-8

1
1-0

SOLUTION A

LA
|

e

18

1-4

M 1 (GeV)

10

L=

(4 34) JANLIdWY

]
-—
|

o WV"W’WWWWMHWWWWMMTHNWWWWWWI[WIWMMWMun TP P

©
(=]

1k

-1,1 40 1yYvd v3y

MTCTI: (GEV)

LA U el bl UL T

FIG. 2



THE FORWARD Tt*'Tt~ AMP, F(s,t=0)

|

ImF

125 T2

FIG.3

-0'5




¥

TP

PATEI T  Tr

T T T o T T AT TT ANIT T T

e iU st o b 1 T L A il 1l s i i bk i Ui L LR L RGBT Ll il b ek



	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14

