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INTRODUCTICN

The analytic properties of scattering amplitudes have turned out to be
a vazluable tcol in the analysis of experimental data, as well as for the
test of models which describe only parts of the amplitudes or which are

only valid in & restricted energy region.

Looking at the various attempts to make use of analyticity in the con-
text of data analysis, there are mainly two kinds of problems., In the first
case, data are given within a relatively large interval and analyticity is
uged either to get a local predictiocn (or to remove inconsistenoies) of the
amplitudes on the cut, or to define a continwation to nearby peints in the
analyticity domain. BSince the unknown parts of the cuts are far away, they
play =2 minor rele in this kind of problem and do not affect very much the

final result.

In the second case, analyticity is used in order to get an extrapola-
tion of the amplitudes into regions where nc data exist. It has been shown
that a meaningful answer to such a problem can be given only if additional

constraints on the amplitudes can be established.

Several methods have been proposed in order t2 take into account the
analytic properties. The most straightferward way consists of choosing a
specific parametrization, which displays explicitly the correct analytic
and crossing properties. The parameters are then adjusted by a best fit to
the data 2 . However, one must be aware of the fact that the results are
biased by the choice of the functions which, in general, do not account for
the rather complicated behaviour of the amplitudes at low energies. More
flexibility can be obtained by expanding the amplitudes in terms of functions
which already have the correct analytical structure 3). Problems encountered

with this method were already discussed in Ref. 4).

Therefore, it seems to us preferable to use dispersion relations, since
there ig no need for a specific (model—inspired) parametrization and all

possible low-energy effects are correctly taken into account.

In the present note we wisgh to show how much information on the asymp-
totic behaviour of amplitudes can be obtained by studying dispersion rela-
tions and the available experimental data. We shall confine ourselves to
the case of forward scatftering beczuse real and imaginary paris of the
amplitudes can be directly messured in this case. Moréover, they have in
general small errcrs which turn out to be very essential in order to get
non-trivial constraints on the amplitudes in the unknown region. The case

of non-forward scattering could be treated in the same way, provided that
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sufficient observables are measured to perform an amplitude analysis without
theoretical input. At present, this can be done only at a few energies
leaving free an over-all phase which can be debtermined only by some inter-
ference experiment. The actual situation for non-forward scattering is
therefore that snalytic properties (together‘with plausible high-energy
assumptions) are used in order i¢ reduce the number of unknowns in an.amp-

litude analysis, rather than to give constraints on the asymptotic behaviocur.

Our method consists of deriving moments of the asymptotic total cross-
section which represent comstraints for any model with respect to the zsymp-
totic behaviour. The definition of these moments and a discussion of some
of their general properties are contained in Section 2. The constraints on
nN and pp total cross-sections cobtained by analyzing recent experimental
data are presented in Section 3 and Section 4, respectively. Our final con-

clusions and criticiems of other approaches are given in Section 5.

2, DESCRIPIION OF THE METHOD

OQur aim is to extract the information on the asymptotic behaviour of
two=-body scattering amplitudes contained in experimental data and in their
analytic properties. The data comsist of a discrete set of experimentally
measured points -- affected with errors -- for the real and imaginary parts
of the smplitudes within a certain energy interval. In general, the real

end imaginary parts are not given at the same energy values.

In order to be able to study amplitudes which are even or odd under
crossing symmetry, we assume to have the equivalent information also for

the line reversed process.

The analytic properities are taken into account by considering fixed +

*
dispersion relations for amplitudes with definite crossing symmetry:
-T—-'( = 3 ( Fag = f‘Ap_a,) (2.1)

where FAB denotes an invarisnt amplitude, free of kinematical singulari-

ties, for the process A+RB—A+B and P,- that of the line reversed

AR
process. For reascons which will be discussed below both amplituges F<+)

and F(_) are written in the once-subtracted form:

%) In the following we write all formulae for the case of forward scatter-
ing. The generalization to t#0 is straightforward.
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where v::s—u/4M2=:w-+t/4M2 is the crossing variable, and w denotes the

th
+
the process AB and Yo the subtraction point. FB_
possible Born terms and Féi) stands for contributions of possible unphysi-

lab. energy of the incident particle. v is the phgsical threshold for

stands for all

cal cuts. It can easily be shown that these terms behave like
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as VvV tends Ho infinity.

Cutting off the dispersion integrals in Egs. {2.2) at Y, the highest
*
energy for which the imaginary parts of the amplitudes are known ), we de~-

fine +the following functions
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*) If the situation is reversed, that means if information on the real parts
tends to higher energies than that on the imaginary parts, Egs. (2.2)
should be replaced by inverse dispersion relations.
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which can be evaluated by inserting the experimental values of the real
- parts and performing the princigal value integration over the imaginary

* + t
parts « These functions A contain all information on Im F( ) for

V>V and possible low-energy effects follewing from analyticity and the

. . + +
experimental data. Under very general conditions for In F( ), A(k) can be

expanded in a power series:
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The gquestion now is how many moments can be determined from the dsta.
Since A is known only at & finite number of v <values and has experi-
mental errors, it is clear that the number of moments which can be deter-
mined is limited. Obviously, this number is much less than the number of
data points on é(i « Furthermore, it will depend strongly on the magni-
tude of (v/G)Q; in other words, the nearer information on real parts tend

to ¥V the more coefficients Mn can be extracted.

To get an impression on the behaviour of the moments Mn’ we consilder

the following bound:

*¥) To calculate the principal value integrals numerically, we prefer to
insert directly the data rather than to use a smooth interpolation. In
order t0 avoid unreasonable local fluctuztions, we replace the data in
a small interval around the singularity by a second-order polynomial,
which is determined by & best fit to the datas points under the condition
that the first derivatives at the edges are continucus. The main
advantage of this method is that we obtain a well-defined error for the
integral which 1s hard to get if data have been interpolated before.
Moreover, there is no need for a careful selection of the input data
since the method removes fluctuations which originate from different
experiments.
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Replacing Im F by total cross-sections via the optical +theorem
-
ct) k (=)
(x denotes the lab. momentum of the incident particle), we obtain the
following upper limits for the moments:
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Taking CAB and CAE from Ref. 5), we find that in the case of nN

scattering only the first two moments contribute more than 1% at
- : +
(v/V)2:=O.1. We therefore expect that A( are slowing varying functions

of (§/5)2; at least as long as (v/G)E is not near toc 1.

Another important property of the moments holds in the case of an
amplitude which is positive everywhere. Hence, all moments are positive

and A must be a monotonously increasing function of (v/V).

These general properties are very useful in order to decide whether a
structure in A is an effect of local inconsistencies of the data, or
whether it can be related o the Mn without violating generally accepted

principles.

Finally, we wish to show what is expected in the case of conventiocnal
asymptotic behaviour of scattering amplitudeé. We have therefore calculated

the moments, assuming

i) a power law in v (Regge behaviour)
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where Ei(x) denotes the integral exponential funecticn.

In the following sections we report our resulis from an application of
the method outlined above to #N and NN forward scattering. We also
have tried toc analyse the Kgpf9K§p regeneration amplitude at +=0 by
congidering the extrapolated differential cross-sections for this process,
the forward amplitude following from coherent regeneration experiments,

+
and total cross-section data for K n. However, the errors of these data
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sre so large that all moments are compatible with zero., This means that in
this case we do not learn anything from the present data and analytic pro-

perties about the asymptotic behaviour of the regeneration amplitude.

N FORWARD SCATTERING

3.7 The crossing odd amplitude

Qur first example will be the calculation of the function A(—) in
7N scattering. The cut-off energy v in the integral of Eq. (2.4) is
chosen 1o be 200 GeV, because up to this energy o - ig known from the
th total cross-sections 6 . For convenience, we put the subtraction
energy v, equal to the pion mass m_ in order to> have a simple relation
between the subtraction constant and the scattering lemgths. The real*garts

Re F -) can be obtained in the most reliable way by an extrapolation

of
. . cons 7048),9)
the wN charge exchange (cEX) differential cross-sections to the
forward direction using isospin invariance
=) Tce
¥ = - X (3.1)

.F}

and the optical theorem Eq. (2.9) for c(-) :%(cﬂ_p-mcn+p). Qur results are

shown in Pig. 1 where we have plotted K(—J/v **3

’."‘C"') - v T
A - __A_c )_ 2 f dy! Im F vy (5.2)
v - %4 m l’f‘b V".'—Voz 3.2

as a function of (v/G)E. The errors of E(_) originate mainly from the real
parts; it turned out that the primeipal value integral gives only a minor
contribution to the total errors. The figure shows clearly that the two

recent high-energy experiments on CEX 9),10)

are inconsistent in the near
forward direction. As we shall see, this discrepancy is only important,

however, in the case where o /=90 asymptotically.

Owing to $he restricted range in (u/G)Z, we are not able to deter-

mine more than the first moment Mo which amounts to

M )

=]

0

( 202 =X 2) mb GeV (3.3)

¥) In order to obtain the CEX differential cross-section at t=0, we have
used the same procedure as the authors of Ref. 10).

*%) The integral in Eq. (3.2) is dominated by low-energy effects and can be
calculated fro? total cross—section data with high accuracy. Since it
dominates A(‘ /v, we prefer to show A _)/v rather than A ')/v
in order tc demonstrate the influence of the high-energy data on the
determination of the moments.
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if data of Ref. 9) are used at high energies. If we take instead the
results of Ref. 8), Mg_) increases only by 1%-

Neglecting the extremely small contribution from the unphysical region
which arises from the process m p— vy, Mé_ /v can be written in terms of

s-wave scattering lengths and the picn-nucleon coupling constant

) -
M S _ M+moy (CL4 - Qs ) - EE;E__j:hy
M

5 =

(5.4)

)L
3
dﬂ
1
A
®

a, and a3 are the s-wave scattering lengths for isospin I=% and %,
vB::-m§/2M, and f2=().08120.002 denotes the NN coupling

respectively,
constant. From Egs, (3.4) and (3.3) we obtain

- - f
which has to be compared with a recent determination of this quantity from
+
low-energy + p angular distribution 11). These authors obtained a, -a_ =

= (0.262:*:0.004)111;1 which differs from our result by almost two s‘tan;.ard3
deviations. We do not think that this discrepancy is due to Coulomb cor-
rections of the nip total cross-sections in the intermediate energy range
as it was proposed in Ref. 12}. It seems more likely to us that the authors
of Ref. 11) underestimated their error. But there may also be correction
terms 1o a,y--a3 and f2 due 1o a breaking of charge indepsndence at 1ow13)
energies. A careful analysis of the forthcoming measurements of nN OEX

in the region of the first resonance hopefully will solve this question.

Although the discrepancy in &, - a3 amounts only to 10%, it has a
tremendous effect for the prediction of Re F at higher energies because
it blows up linearly in energy. Inserting the values for &y - a3 and f2
from Ref. 11) into the subtracted dispersicn relation, the suthors of

Ref. 14) obtain a zero of Re F(_) near 20 GeV which, however, is certainly

exciuded by the CEX data.

The preceding discussion referred to the more general case of an asymp-
totically non-vanishing o' /. IHere, as we khave seen in Eq. (3.4), Mé_)
gave us only a relation hetween f2 and a1——a3 which must be fulfilled to
produce the correct dispersive real parts. We have, however, no constraint

on the asympitotic behavicur following from Mg_ .

Since most models on nl  CEX predict g(‘)~*0 for v, 1t is of

interest to consider also the unsubtracted dispersion relation for F(_).

(LU L] ¥ L L T T T L T Ty T B R Y B B e P T A T R R TP TS
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Then Mé_) can be expressed by an integral over c('}. Inserting this into
the left-hand side of Eq. (3.4) we obtain the well-known Goldberger-Myazawa-
Oehme {GMO) sum rule 15)

'2.4" ) 'y
4 my _ _ o my ST k) o
3(""‘ m )(‘11 Qy) = + j

o

v (3.5)

mwl-vg ar*

Subtracting the known part of the integral from Mg-)/ﬁ we obtain

oo 0.0031 % ©.0003 mb GeV
™y jv ok - if data of Ref. 9) (5.7
an* J Vrtemi 0.0042 * 0.0003 mb GeV

%

if data of Ref. 8)

are used. Obviously, any model belonging to the class mentioned above,
which describes present data on CEX [either those of Ref. 9) or those of
Ref. 8)] and o{-) and, which claims to have the correct analytic properties,

can be checked by simply computing the integral of Eq. (3.7).

First of all we wish to discuss the consequences if the larger value
corresponding to the data of Ref. 8) is the right one. Assuming = power
behaviour for 0(_) we cbtain from Eq. (2.13} «{0)=0.55%0.05 which
agrees with the value from a best fit to the o -) data giving
«(0) = 0.55£0.02. This means that the single Regge pole model is consistent
with the forward dispersion relation provided that the data of Ref. 8) are
correct. This is not the case if we rely on the data of Ref. 9},.since the
corresponding value of Egq. (3.7) inserted into Eq. {2.13) gives
«(0) =0.412 0,08 in net disagreement with the behaviour of c(_ below
v = 200 GeV, '

(-)

Having only one constraint on o at our disposal, we did not look
for more sophisticated models for the CEX amplitude because it is clesr that
Eq. {3.7) can be satisfied if a sufficient number of parameters are involved.
As an example, we note that the model of Ref. 16) derived from b universa-
1lity and a peripheral geometry for the flip amplitude has the needed tend-
ency of & faster decreasing o('). We checked that this model is, in fact,

in asgreement with our constraint.

Finally, we wish to point out that the discrepancy could be due to the
presence of a J=1 pole singularity which contributes only to the real

part beczuse of crossing symmetry. This possibility would be of particular
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interest if the power behaviour of +the present known imaginary parts per-
gists also at higher energies. The existence of such an odd J=1 pole
term simply reflects in an additional constant 4 in the GMO sum rule.
Agsuming that the power behaviour of g(-) can be continued to infinite
energies with the same parameters, we obtain the following estimate for the

pole residue at t=0:

A = —~_ 00F mb (3.8)

The numerical value of A depends, of course, very sensitively on what
has been assumed for c(-). Since it is small and negative, we expect a
zero in the real part arcund 4000 GeV so that we still are far away from

the asymptotic regime, where we would have

~}
de 2 Re F°©
e T ATA L oFe T G

The follewing table lists the prediction for the forward differential
cross~section at some energies where results will become available in the

near future.

K [Gev/c] [(a0/a%) gy at t=0]b/GeV/c”
150 4.7
200 10.6
300 7.3

We note that the presence of such a linear term was already discussed by

geveral authorsz)’17)’18)

Since they used older datz for the real and
imaginary parts of the CEX amplitude or considered only information on

nip amplitudes, their results differ from ours by orders of megnitude.

The physical origin of such a singularity is still far from being clear.
Only a similar analysis at t#0, which, however, will be hard to perform,
could clarify the situation. Therefcre, we prefer not to speculate, but
we do not think that the effect can be attributed to a fixed pole as was

proposed by the authors of Ref. 18). Because of t-channel unitarity, such

B P P T T T T R N T TR TR T T TR S T TR TR Y T PR PR S ]
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a pole must be accompanied by a shielding cut which, in general, also affects
the imaginary part, at least asymptotically. This means that the integral in
Eq. (3.7) is no longer convergent; in other words, we are back again at the
subtracted case where MO- ie simply the subtraction constant and gives no

constraint for the asymptotic behaviour of the amplitude.

%.2 The c¢crossing even amplitude

Our next example will be the calculation of the function A(+) in ©N
scattering. As in the previous case the cut-off energy v 1is taken a3
+
200 GeV, the highest energy where total cross-sections for n p scattering

are available.

The real parts Re F(+) can be taken in this case only from an analysis
of Coulemb interference measurements of nip scattering because the extra-
polation of do/dt %o t=0 does not give a reliable result. This is due
to the fact that the ratio p(+)==Re it /In F T ey higher energies is one

order of magnitude less than in the case of CEX scattering.

(+)

we need the real parts of n+p and m p scattering at the same energy in

Since the process corresponding tc F is not experimentally feasible,

order %o form Re F(+). At energles where data exist only for one process,

we used isospin invariance

I:CH = F. * ira'— Feex (3.10)

*

and took BRe FCEX from an interpolation of the CEX data (cf. subsection 3.1).

The result of our evaluation of Eq. (2.5) is shown in Pig. 2a. The
consistency between the experimental real parts and the dispersion relation
is even better than in the previous case. However, since the errors of the
real parts in the energy range between 30 and 60 GeV are rather large, we

are not able to obtain more than two moments which amount to

)

M, = —_.23 =+ _o¢% mb GeV

) (%3.11)
M, = 220 *t 20 mb GeV

An attempt to extract a third moment did not improve subsitantially X2 and

was therefore considered as insignificant.

In our caleulation the subtraction cof Egq. (2.26) was made at the cross-

(+)

N to the value of F(+) at y=0

ing symmetry point Vg = 0, relating M

and the ©NN coupling constant:
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¢+ C+) - Lrnn
Mo = F(ieo) %‘f-rrM (3.12)

In order to compare our result with s-wave scattering lengths, we consider

o0

2 +) : * te)
™y = m ok G _ guxMn ™My +M
(“ M )(o.,+2n.3) :T."!;L RPamy YT MIYMEmg - mygY) ° (3,13)

which follows from Eq. (2.26) by putting v, =M . With the value of
Eg. (3.11) we get

-4
ay+t 2oz = .04F £ 015 my (3.14)

We note that the errors of a1+2a3 is only due to the uncertainty of
Mé+), since the integral occurring in Eq. (3.13) is rapldly converging and
has an error of about 2%. The term related to the coupling constant also

turns out to give no essential contribution to the error of a1+-2as.

The positive value for the s-wave scattering lengths is in slight dis-
agreement with the results of other auwthors [cf. Ref. 19)] who based their
analysis mainly on low-energy phase shifts, We do not think that this dis-
crepancy 1is serious because the errors quoted there are only statistical and

do not account for inconsistencies of the low-energy data.

M$+)
section c(+) above 200 GeV. Any model which describes the present data

The next moment represents a constraint on the total cross-

has to fulfil this additional condition, otherwise it would be incompatible

with the dispersion relation.

In order tc demonstrate the restrictions on c(+) above 200 GeV in

specific cases, we assumed that the asymptotic behaviocur of o(+) is given

by eilther
A Z
G (R) = G(py +6 n (k/k) (3.15)
with
&, = 150 GeV/i

. G'.‘
Ga("l‘) = ) — (3.16)
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with

ke = 1 GeV/e

Although they have a quite different asymptotic limit, both parametrizations
can be adjusted to fit present data in & certain energy range gcf. Ref. 20}].
By requiring continulty at v=+v and using our value for M N we can com-

1
pute the two remaining parameters which amount to

g‘-“’(&e)e(zs,q:.'i)mb ) é"=(.3?.!‘.8’)rnb

and
Gt = (23. t43)mb, G, =(-528) mb
(o =2
The possible regicns for c(+) above y=y which follow from either beha-
*
viour are shown in Fig. 2b ).

Obviously the bounds on o(+) become stronger if we determine the
parameters not only by continuity at v=y and by adjustment to M$+), but
if we require additionally that the assumed parametrization is already valid
in & ceriain energy range below v=y.

From Fig. 2a 21)-24)

we observe also that part of the data of Ref. 21)
show a systematic deviation from the fitted curve. This different behaviour
is obviously the reason for the somewhst strange result of Ref. 25), which
claimed that a rise of o(+) above 50 GeV can be excluded. It seems to us
that the method of averaged dispersion relations which has been applied by
these authors in order to get a bound on the asymptotic behaviour of c(+),
cen produce misieading results because it is unable to detect loecal incon-

sistencies or sysitematic deviations of the data.

THE CRCSSING EVEN pp DIFFRACTION AMPLITUDE

As a third examplie we have calculated A(+) from Egq. (2.5) for the

%
case of pp forward scattering » The input for the dispersion integral

- (=) _1
was calculated froT Gtot(Pp) up to v =2200 GeV sand from o _2(0p§"gpp)'
Above 200 GeV, o was assumed to follow a power law
ot~ 1

G'.C"== c (&/8,) (4.1)

*¥) It is clear that the lower branch of the curve corresponding to
Eq. (3.15) is not of physical interest since positivity does not allow
for a negative &.

*%) The definition of the amplitude is the same as in Ref. 27).
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the parameters C=26.0%0.,5 mb, o=0.42%0.02, k, = 1 GeV/c Ybeing deter-
mined by a best fit to the data below 200 GeV [ef. Ref. 27)].

As 1n the previous case the only source of information on real parts
whizh is at present at our disposal are the Coulomb interference measurements.
Since these experiments were only perfermed for pp scattering, we assumed
that the phase of F(P) is given by the one Regge pole model. We then have
for Re F(+)

ot =4

Re F = ,}%‘?pfg}p + :7%,’- 43(%"‘)6"(%,) (4.2)

where denotes the measured ratio of real to imeginary part of pp
Ppp

scattering which we have taken from Ref. 26).

Figure % shows our result for A(+) according to Eg. (2.5) and the
agssunptions on F(') stated above., It is clear that the present result
would be changed considerably if F(_) has a "mon-Regge term" similar to
what was found in subsection 3.1. The magnitude of the errors of 4 - and

the range of (v/G)Q where A(+) is known allow us to determine two moments

t)

Mo = 3.6 * .2°¢ mb GelV

(4.3)

M," = %900 r 350 mb GV

M§+) contains the combined effect of the unphysical pp cut, the pion
Born terms, the subiraction constant and the contribution of the threshold
region, which behave like a constant at energies where we have evaluated
A(+). It is therefore not directly related to the scattering lengths, but
it may be used in sum rules for meson-nucleon coupling constants which

follow from a saturation of the unphysical cut by resonances.

() The moment M5+) glves ? §onstraint on the asymptotic behaviour of
o + With the neglect of o y which is justified if o behaves accord-
ing to Bg. (4.1) also at energles above 2200 GeV, we have calculated the bounds
on Gpp in the same way &s we did in the previous section for =N scatter-
ing. The parameters corresponding to Eg. (3.15) and Eg. {(3.16) have larger
errors due to the fact that the cross-section at v=yy 1is less precige than
in the nN case. Figure 3b shows the allowed regions for Upp if the
asymptotic law is given by either Eg. (3.15) or Eq. {3.16). We note again

that the lower branch of the curve belonging to Eg. (3.15) is not interest-

ing because of the positivity of gpp'
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It is clear that the forthcoming measurements of Ppp at the highest
attainable ISR energies will allow us to determine additional moments.
Since we then have more counstraints at our disposal, it will be possible to
check more sophisticated asymptotic models where more than two free parame-—

ters are involved.

FINAL REMARKS

We have shown what are the consequences for the asymptotic behaviour of
total cross-sections following from present data and asnalytic properties.
In all three specific cases considered in this note, we obtained only one
integral constraint for the asymptotic cross-section due to the fact that
real parts are not measured at such high energies as the imaginary parts

and that they have in general larger errors.

In the case of the lsospin even amplitudes, our resulbts show consist-
enncy with the increasing behaviour of total cross-sesctions as is indicated

by present experimental results con an asymptotic constant behaviour,

g *
however, cannot be excluded. For thzofsospin odd ©N Zforward amplitude,,
we found net disagreement with the one-Hegge pole model, if we rely on more
recent, but still preliminary data, on CEX scattering. Our result imposes

a valusble constraint on models which have the property of an asymptoti-
cally vanishing c(—); we checked, in particular, that a model derived

from b universality reproduces the mcoment obtained in our analysis.
Furthermore, it is pointed out that if the present behaviour of U(—) per=-
gists also at higher energies, a simple interpretation of the CEX forward
amplitude can be given by assuming the presence of a purely real term which
grows linearly with energy. For this case we calculated the forward differ-
ential cross-secticns at some energies where experimental results will

become available in the near future.

FPinally, we would like to stress that our analysis gives completely
model-independent results because we are using dispersion relations where
the information contained in the data is extracted without any further
assumption. In our opinieon this is the most suitable way to study the con-
sequences of analyticity on any model. One only has to evaluate a few

simple integrals and compare them teo the moments given by our analysis.

It is obvious that the analytic parametrization method 2) which has to
concentrate on a specific behaviour of the amplitudes from the very beginning,
tests only compatibility of the data with the chesen specific form. In this

sense 1t is just a model which is adjusted to the data rather than a test of

R i L L T LR ey T N TR L T
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analyticity. The same arguments hold also for the recently proposed opera-
tor method 28) which replaces the non-local dispersion integral by a differ-
ential operator. Apart from the fact that it provides by nc means a local
relation * s 1t is also based on a specific parametriszation. It is important
to note that the admissible functions must belong to a very restricted class
of functicns, otherwise the operator method does not give a meaningful re-
sult as has been shown recently by the authors of Ref. 29). The agreement
of the results of Ref. 28) with the experimentally measured real parts
proves only that these authors have selected a favourable interpolation of
the total cross-sect on data; there are certainly other parametrizations

of Tiot with equal or even better XE which give completely differenty
real parts if the differential operator is applied, whereas the dispersion
relation reproduces essentially the same result for every parametrization.

Ancther method which is, however, closely related to ours, consists in

25),30

studying averaged dispersion relations The intention is to avoid

principal value integrals which is achievead by integrating the dispersion

relation over a certain energy interval w Sfw<qy This means that the

1 2’
usual Cauchy kernel is replaced by a new kernel K(m,wq,wg) which has cnly

two logarithmic singularities at w, and Woe

these singularities are easier to handle than = role singularity if the

It is certainly true that

input data have large fluctuations, but this is of no practical importance.
In all cases considered in this note, total cross-section data have small
errors and show only little fluctuations; therefore principal value inte-

grals cen be computed in a reliable way. On the other hand, since this
2
1
not be detected but may produce & misleading result. Moreover, it always

w
method considers <4 >y and not A(w), inconsistencies of the data can-

gives only one constraint even in the ideal case where real and imaginary

parts are known up to the same enexrgy.
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*) According to the authors of Ref. 28), a few derivatives of O4gt are
sufficient to reproduce the real part. This can, of course, only be true
if the local interpolation of the ctot data, continued to the low-energy
region, forms an average of the physical amplitude. To make sure one has
to study a FESR which is a non-local relation.
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FIGURE CAPTIONS

Fig. 1

Fig. 2a

Pig. 2b

Fig. 3a

Fig. 3b

The quantity K(—)/v as defined by Eq. (3.2) as a function of
(v/;)Z. The real parts are taken from the forward values of
Refs. 7), 8) =nd 9).

(+)

caleulated from Coulomb interference data from Refs. 21), 22),

The function A for the isospin evern nN amplitude as

23) and 24). The s0lid line corresponds to our best fit.

(+)_i
= 2(Un+p+cn’p
The dashed line indicates the bounds if a logarithmic increase

[Eq. (3.15)] ig assumed above 200 GeV. The solid iine belongs

).

Allowed regions for the total cross-section o

$0 a behaviour with a constant limit at infinity [Eq. (3.16)7.
Data below 200 GeV are taken from Ref. 6).

a(+) for the pp crossing even amplitude. The real parts are
calculated according to Eq. (4.2) using the data on Pop which
are listed in Ref. 26). The solid line corresponds to a fit

with Mo and M1 given in Eq. (4.3).

Bounds on G;;t . The notation is the same as in Pig. Z2b.
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