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Abstract

LHCb can collect large samples of B® — 7«tn~, B - KTn~ B - KTK~
and BY — 77 K~ decays. The sensitivity achievable on the corresponding direct and
mixing-induced CP-violating observables has been studied in detail. The combined
measurement of the B — 7t7~ and B — KTK~ CP asymmetries provides a
promising strategy to determine the 7 angle of the unitarity triangle. The results of
a study on the sensitivity on « achievable by employing this technique are presented
and discussed.

1 Introduction

LHCD is a dedicated experiment on b-quark physics currently under construction at the
Large Hadron Collider (LHC) [1, 2]. It will exploit the 500 ub beauty production cross-
section in the 14 TeV proton-proton collisions of LHC, with the aim of performing precise
measurements of CP-violation and rare decays of the B-mesons.

Since in the primary collisions large statistics of B? /ES and B mesons, as well as
other b-baryons, can be produced - differently from the case of the eTe™ beauty factories
operating at the Y(4s) - LHCb provides a unique opportunity to probe Standard Model
predictions in the b-quark sector beyond the B°/B° and B* mesons. By over-constraining
the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements, LHCb will be hopefully able to
observe subtle inconsistencies with the Standard Model, therefore providing hints of New
Physics.

The long awaited evidence of CP-violation in the neutral B-meson sector has been
eventually established at the asymmetric et e~ beauty factories by the BABAR and BELLE



experiments [3, 4], which provided the first direct measurements the 5 angle of the unitarity
triangle (UT), mainly through the “gold-plated” B® — J/¥ K2 decay. BABAR and BELLE
have also provided measurements of CP violation in the B® — 77~ decay [5, 6|, although
with large statistical uncertainties.

Differently from the case of B® — J/9 K2, a simple interpretation of the B® — 77~
CP-violating observables in terms of CKM phases is not possible. In fact, in addition to
the b — w+ W tree amplitude, sizable b — d+ g (v, Z°) penguin amplitudes are expected
to contribute to the B® — 777~ decay [7]. This penguin pollution prevents theoretically
clean measurements of CKM phases.

However, recent theoretical works [8, 9] have shown that the combined measurement of
the B — 77~ and BY — K*K~ CP asymmetries, under the assumption of invariance of
the strong interaction dynamics exchanging the d <+ s quarks (U-spin symmetry), provides
a way to determine the vy angle of the UT.

In the following, after an introductory section where the basic formalism useful to
describe CP violation in B-meson decays is presented, we will focus on the LHCb CP-
reach with B?s) — h*h™ decays. We will describe in detail the technique adopted to
extract the CP-violating observables from data, and will show the results of a simulation
based on a “toy” Monte Carlo event generation, which employs as inputs the results of a
full GEANT simulation study [10].

Once the sensitivity on the CP-violating observables for B?S) — h*h~ decays is estab-
lished, we will use these information to estimate the LHCD sensitivity on the measurement
of the v angle of the UT, by using a Bayesian approach based on the strategy described in
8, 9]

All the analyses we will describe throughout this note have been performed employing
the CPU power of the LHCb-Bologna computing cluster [11], hosted at the INFN-CNAF
computing centre in Bologna.

2 CP violation formalism

In this section we introduce the basic formalism that will result useful to understand the
contents of the following sections. The symbols B and B will be used to denote the particle
and antiparticle states for both B® and B? systems.
The decay rates for initial B and B meson, decaying into a final state f at generic
proper time ¢, can be written as:
2
Ipoy(t) = AL

e () + (1) (2.1)

and

2

r o= AL |p] e [I.(t) = I_(1)]. (2.2)

Analogously, for the CP-conjugated final state f, one has:
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A _
Pp(t) = e " [1.(0) +1-()] (2:3)

and

e T - T-(1)]. (2.4)

Ay and Zf are the instantaneous decay amplitudes for B — f and B — f respectively,
and I is the average decay width for the two mass eigenstates |B) and |Bpy):

r
= b’ (2.5)
2
where the eigenstates are expressed in the |B), §> basis as:
1 —
Br) = s (pIB) +4[B)) (26
pl” + lq|
and
1 _
Br) = ——— (0|B) - 4|B)). (2.7)
pl” + lq|
The functions I (t), I_(t), I, (t) and I_(t) are:
AT AT
I(t) = (14 [As]*) cosh 5t = 2Re(Xy) sinh =, (2.8)
I_(t) = (1= [As]*) cos Amt — 2Im()) sin Am , (2.9)
_ - AT — AT
I.(t)= (1 + |)\7|2) cosh ——t — 2Re()\y) sinh ——t¢ (2.10)
2 2
and
I (t)= <1 — ‘X?‘Q) cos Amt — 2Im(X5) sin Am , (2.11)
where AT is the difference of the decay widths of the mass eigenstates:
while Am is the mass difference:
Am =my —my. (2.13)

The complex numbers Ay and XT are defined by the following equations:
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_ a4y

Ap == 2.14
1= A (2.14)
and
_ pA?
A7 = —=". 2.15

In the following, since the approximation ‘%‘ ~ 1 is valid up to a few per mil, even in the
presence of New Physics, we will assume:

-t

2.1 Case of f CP eigenstate

If f is a CP eigenstate, one has f = f, and the four decay rates reduce to two. We define
the time dependent CP asymmetry as:

2 .
ASP (1) = I, () — Tpss(t) _ (1 — [Af] )cos Amt — 2Im(\) sin Amt' (2.1
! 5, ;(t) + Tpop(t) (1 + \/\f\2) cosh &t — 2Re(\y) sinh 4"¢

Introducing the quantities:

; 1— A\
Adr = — I 2.18
! 1+ |\ (218)
: 2Im(\
miz _ 2Im(As) f)2 (2.19)
1+ [ Ay
and
2Re(A\
e Lfl (2.20)
L+ [Ay]
the time dependent CP asymmetry (2.17) can be re-written as:
Adir Amt Amzm inAmt
A?P(t) _Af cos Amt + Fsin Am (2.21)

cosh &F¢ — A% sinh 57t
The relative decay width difference AT'/T is expected to be of the order of 10% for the B’

meson, while it is negligible for the B® meson. In case AT’ = 0, the expression of the CP
asymmetry reduces to:

AGT(t) = AY" cos Amt 4+ AT sin Am t. (2.22)

¢r and AT parametrize direct and mixing-induced CP violation respec-

The quantities A¢
tively.



2.2 Case of f flavor specific final state

If f is a flavor specific final state, then f # f, and one can write:

A=y =0, (2.23)
since only the B has instantaneous access to the decay channel f, while only the F_ has
instantaneous access to the decay channel f. In this case, the functions I (¢), I (t), I.(t)
and I_(t) reduce to:

- AT
and
I_(t)=1_(t) =cosAmt. (2.25)

By using the four decay rates, one can define the following two decay asymmetries:

I'g,;(t) —Tpsp(t)  cosAmt (2.26)

Ap(t) =
and
A-(t) = I'5,7(t) =T 7(t)  cosAmt
P T T3 + Ty 5(8) ~ cosh &Lt
It is also possible to define the following CP asymmetry:

A0 P57(8) + D 7(0)] = [P (8) + Dons (0] (2.28)

P [Pang®) + Tz )] + [Tao(8) + oo (8)]
that results to be not dependent on time, and identically equal to the charge asymmetry
defined as:

(2.27)

2

— 2 Ay

|4y* - [A] e
Apg=——— = (2.29)

A5 ° + 4] L+ |5

The charge asymmetry differs from zero in the presence of direct CP violation, and
parametrizes it.

3 CP violation in Bf,) — h*h~ decays
As already mentioned in the introduction, measurements of the 3 angle of the UT are

already available by the BABAR and BELLE experiments [3, 4]. By averaging the mea-
surements of sin 23 performed by the two experiments one obtains:
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sin 28 = 0.731 + 0.055, (3.1)

in very good agreement with the Standard Model prediction of 8 from the magnitudes of
CKM elements [12].

BABAR and BELLE have also provided first measurements of direct and mixing-
induced CP-violating observables in the B® — 7F7~ decay [5, 6]. The results of the
two experiments are:

- 0.30+£0.25 BABAR
dir __
A = { 0.77+0.28 BELLE (3.2)
and
miz _ | 0.02+0.34 BABAR
A’ = { ~1.23+042 BELLE - (33)

As it can be seen, these results are only weakly compatible at the moment, and it is not
yet possible to draw any definite conclusion.

The decay B° — 77~ is generated by the b — u + W™ tree diagram, as well as by
b — d+ g(v, Z° penguin diagrams. Analogously, the B — K+ K~ is generated by the
same diagrams, if all the d (d) quarks are replaced by the s (3) quarks (see Figure 1).
Concerning the B® — K*7~ and B? — 77K~ decays, it can be noted that they differ
only in the spectator quarks from B? — KTK~ and B® — 77~ respectively.

The direct and mixing-induced CP asymmetry terms for the B® — 7+~ decay can be
parametrized in the Standard Model as |8, 9]:

- - 2d sin ¥ sin 7y
dir dir

A% = A% (. = 3.4
o wx (49, ) 1 — 2d cos ¥ cos 7y + d? (3:4)

and

_sin(@a + 27) — 2d cos I sin(Ba + ) + d”sin dy
1 — 2dcoscosy + d?

where the dependence on the CKM angle v is made explicit, and ¢4 = 23 is the B® — B’

mixing phase. The parameters d and 1) are real quantities defined by:

d eiﬂ _ 2 |Vuchb‘ A]c)en - A;)en

2|Vub| - |Vub| |Vvus|2 Agc—i_Agen_Af)en

where V;; are CKM matrix elements, A;Zen (j € {u, ¢, t}) describe penguin topologies with
internal j quarks, and AY, describes current-current contributions. Sloppily speaking, d
and 9 parametrize the magnitude and the phase of the penguin-to-tree amplitude ratio

respectively. Predictions of the values of the hadronic amplitudes necessary to compute
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Tree diagram

- d® ., .
| K
W ',:"(—> u T[( )

20Ey” ™ (K

d(s) > d(s)

Y

Example of penguin diagrams

b a® ...
o T(KY)
BY(BJ)
] S
d(s) > > d(9) T[(K )

Figure 1: Tree and penguin diagrams generating B® — 7¥n~ (B — K*K~) decays. By

exchanging all the d (d) quarks by the s (3) quarks, the tree and penguin processes of the
B® — 7t7~ generate those of the B — K+tK .

these parameters are very challenging at the moment, especially for what concerns the
phase 9.
For the B — K™K, following similar lines, one can write:

2d' sin ¥ sin 7y

Adir — Adir dl, 19/’ - _ a — 3.7
KK e V) 1+ 2d' cos ' cosy + d”? (3.7)
. . in(¢, 4+ 27) + 2d' cos ¥ sin(¢, + ) + d”? sin ¢,
mT __ mir dl’ /19/’ , s) = _Sln(¢ _ ~ 38
KK K 7, $s) 1+ 2d' cos ¥ cosy + d'? (3:8)
and
cos(¢s + 27) + 2d cos ' cos(ps + ) + d’% cos ¢,
A = Agx(d, 9, v, ¢5) = - - , (39
KK el V: 6s) 14 2d' cos ¥ cosy + d"? (3.9)
where ¢, = —2 is the B — E‘j mixing phase and the parameter d' is defined as:
i 1=V’
= ——d. 3.10
VP (3.10)

The magnitude of the CKM matrix element V,, is given by the sine of the Cabibbo angle,
and is measured with very good precision to be |V,,| = 0.2229 £ 0.0022 from nuclear, kaon
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and hyperon decays [12]. d’ and ¥’ are the analogs of d and ¥ for the B — K™K~ decay,
similarly defined by:

d/em' _ 2 ‘Vus V;b| % Achlen - A;Ien
2|Vub| - |Vub| |Vus|2 Agé+Agén _A;’)Ien’

(3.11)

where A7 and A are the corresponding penguin and current-current contributes to the

pen ) .
decay amplitude. The terms A% ATZ and A% satisfy the following relation:

(A%})Q +( 2@%)2 + (AQK)2 —1. (3.12)

By noting that the B’ — 77~ and B} — K*K~ decays are each other related by

exchanging all the d (d) and the s (5) quarks, in the limit of validity of the U-spin symmetry
of the strong interaction dynamics, one can write:

d=d (3.13)

and

9="1. (3.14)

For a discussion on the validity of this symmetry see [8, 9] and references therein.

Finally, since the B® — K7~ and B? — 7t K~ decays differ only in the spectator
quarks from B? — K*K~ and B® — 777~ decays, respectively, by relying on the SU(3)
flavor symmetry and on certain dynamical assumptions [8, 9|, one can write the following
relations:

AR = Axr (3.15)

and

where Ak, is the charge asymmetry for the B® — K*7r~ decay, and A,g is the charge
asymmetry for the B — 77K~ decay.

4 Experimental decay rates

In Section 2 we have introduced the theoretical expressions of the rates for B and B decays.
From these expressions, it is possible to define the observed decay rates, by taking into
account the tagging, the presence of background, the signal acceptance as a function of
the proper time after trigger and offline-selection, and the resolution on the proper time
measurement.



4.1 Case of f CP eigenstate

In case f is a CP eigenstate, one has the following two observed decay rates for events
tagged as B and B respectively:

Ry(t) = [ [(1 = )T s(r) + kT, (7)] e(r)Glr = t)dr + %B(t) (4.1)

and

Ry(t) = [ [ohTos(r) + (1~ )T, (0] €r)Glr — t)dr +  B(),  (42)

where €(t) is the acceptance as function of the proper time ¢, while G(At) is a function
describing the proper time resolution for the decays under study. These functions must be
determined from full Monte Carlo simulations. The function B(?) is an effective function
describing the proper time dependence of the background rate. Its functional form for
combinatorial background can be extracted from data by studying the proper time dis-
tribution in the mass sidebands spectrum. Without lack of generality, it can be written
as:

B(t) = npb(t), (4.3)
being np the number of tagged background events and where b(¢) is normalized to 1:
/ b(t)dt = 1. (4.4)

The constant £ is obtained by noting that the sum of the integrals of the two signal rates
must give the total number of tagged signal events n;:

/ / (1 — w)kT 5 (1) + whT, ;(7)] ()G (r — t)drdt + (4.5)

+ [ [ kT pop(r) + (1 = w)kT5, (7)) e(r)G(r — t)drdt = ng

yielding:
k= i . (4.6)
IS [FB—>f(7') + Fgﬁf(T)] e(T)G (T — t)drdt
By introducing the auxiliary functions:
he(t) = [ 1(D)e(n)G(r — t)e Tdr (4.7)
and
ho(t) = [T (De(r)G(r —t)e Tdr, (4.8)

and their normalizations:



H, = / he(t)dt (4.9)
and
H = / h_(t)dt, (4.10)

the observed decay rates assume the following simple expressions:

Ry(t) = hy(t) + (;I: 2w)h(t)g n ”7%(7:) (4.11)
and

It is straightforward to verify that, as expected, one has:

/[Rf(t)+ﬁf(t)] dt = ny +ng (4.13)

It is then possible to write the probability density functions (p.d.f.s) for the variable ¢
for events tagged as B and B, by normalizing the decay rates, i.e.:

hi(t)+ (1 —2w)h_(t)ny np

Pyt = fRff(T)dT T H,+(-20)H n; np (4.14)
H, Py
and
hi(t) = (1= 2w)h_(t)ng | np
Py = Ju® Hy 2 5" (4.15)
P T Ry(rydr Hy —(1—20)H_n; np '
H, 2 2

Finally, by introducing the invariant mass m, which is measured for each event together
with the proper time ¢, one can write joint p.d.f.s for £ and m:

ha(t) + (1 = 20)h () ny gs(m) | ns gs(m)
. 5 T 5 b(t)
H++(1—2w)H,ﬂ+n_B
H. 2 T2

Pf(t= m) =

(4.16)

and
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hi(t) — (1 — 2w)h_(t) ny gs(m) L "B QB(m)b(t)
Bt m) — HH++ e Qw)HQ_ — 2 _ (4.17)
1. PIr)

The functions gs(m) and gg(m) describe the shape of the mass spectra for signal and
background events respectively, and must be normalized to 1:

/gg(m)dm = /gB(m)dm =1 (4.18)

4.2 Case of f flavor specific final state

In case f is a flavor specific final state, the previous formalism can be re-used in order to
write the following four joint p.d.f.s:

hi(t) + (1 —2w)h_(t) nsgs(m) | npgs(m)
H, ’ > T g
H++(1—2w)H_ﬂ+nB ’

H. 2 79
hi(t) — (1 = 2w)h_(t) ny gs(m) | npgs(m)
Py(t, m) = H, R
A H+—(1—2w)H_E+nB ’

Pf(t, m) =

H, 2 2

hi(t) — (1 — 2w)h_(t) n7 gs(m) L nEQB(m)b(t)
P, m) = Hth 0 Qw); T 2 (4.21)
- +

H, 2

and

hi(t) + (1 — 2w)h_(t) 77 gs(m) n "EQB(m)b(t)
— B H, 2 2
Py(t, m) = Hi+(1-2w)H_n5 ngm (4.22)
4 + 2
H. 2 2
In the previous expressions, ny and ny are the numbers of tagged f and f signal events
respectively, while np and ng are the numbers of tagged background events for the states

f and f respectively. The functions h, (t) and h_(t) are given by:

hi(t) = / L. (7)e()G(r — t)e Tdr = / I.()e(n)G(r —t)e TTdr = (4.23)

= / (cosh %7’) e(T)G(T — t)e TTdr
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and

h(t) = /14ﬂdﬂaﬁ—oefw7:/74ﬂdﬂaﬁ—nefw7: (4.24)
:/@%Amﬂdﬂaﬁ—@f“m.
The normalizations H; and H_ can be calculated as in (4.9) and (4.10).

The charge asymmetry defined in (2.29), can be introduced in the expressions (4.19),
(4.20), (4.21) and (4.22), by writing:

1
=50 (1 - Af,f) (4.25)
and
_1 A 4.2
ng=gny7 (14 A7), (4.26)

being n, 7 the total number of tagged f or f signal events, i.e., defined as:

nf,f =Ny + 7?,7 (4.27)

5 Construction of the likelihood function

The formalism of the previous section has been introduced in order to write the expressions
of the likelihood functions, to be used to extract the physics parameters of interest from
data, as it is discussed in the following.

5.1 Case of f CP eigenstate

In the case f is a CP eigenstate, the likelihood is written as:

Ny Ny
Ly =11 Ps(ts, ms) [T Pr(t;, my) (5.1)
=1 j=1

This expression of the likelihood is formally correct, being the joint p.d.f.s for proper time
and mass Pf(t, m) and P;(t, m) normalized to 1:

//Pf(t, m)dtdm = //Ff(t, m)dtdm =1, (5.2)

but it has the disantvantage of using only the information on the shape of the decay rates,
ignoring the additional information of the integrals of the decay rates, i.e., ignoring the
information of the integrated asymmetry. This information is almost irrelevant in the case
of BY decays, due to the large oscillations which lead to null integrated asymmetry. On
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the other hand, it is crucial to take it into account in the case of B° decays, since the slow
oscillations of the B® mesons lead to a sizable difference between the numbers of B® and
B decays.

The information on the integrals of the decay rates can be naturally included by defining
an extended likelihood function:

Nf —{—Nf)' v Ny 7 Ny Ny Nf_
zewt:( _ _ _r_ Pi(ty, m)) TI Pr(ts, mi) (5.3
! NyIN ! (Nf+Nf> (Nf+Nf> z:l_ll 4 m)jl;ll sty ) (53)

where v is the average of the number of events tagged as B (Ny is a single realization of
this random variable) and 7 is the average of the number of events tagged as B (N; is a
single realization). The logarithm of the extended likelihood is then:

Ny N,
log L = Nylogv + Y log Ps(t;, mi) + Nylogv + ) log Py(t;, m;) +
i=1 =
(N + ) Ny N
+ log )Nf+ﬁf - i;” log Py (t;, m;) +j§11/ log P(tj, m;) + const.

NN, (N + N
(5.4)

where the constant term can be dropped since irrelevant in the maximization of log [,fc”.
The averages v and 7 are given exactly by the following relations:

o [ [ @) mogat) ]
Hy+(1-2w)H_n; np
= T 7’" + (5.5)
and
Y R IRGE L LI P
_H - (1-2w)H_ny ng
= i 7’” + 5 (5.6)
Thus, redefining:
Pi(t, m) = hi(t) + (1 —2w)h_(t) npgs(m) npgs(m) (1) (5.7)

and
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hi(t) = (1 = 2w)h_(t) nygs(m) | ngs(m)

Pi(t, m) =
f(im) H+ 2 2

b(t), (5.8)

one can rewrite the extended log-likelihood function obtaining the final expression:

Ny Ny
log L5 = log Pp(ti, mu) + > logﬁlf(tj, m;). (5.9)
i=1 j=1

It is interesting to note that the following relation for the resolution on the CP-violating
observables holds:

! Ly (5.10)
Ofest  Opy  OF '

i.e., the resolution achievable with the extended likelihood is the combination of the resolu-
tions achievable by using the integrals of the decay rates and the ordinary likelihood. Due
to the fast oscillation of the B? meson, for B? decays one has 1/02,, ~ 0, thus the extended
likelihood and ordinary likelihood methods are nearly equivalent. The same fact does not
apply to BY decays, where the information of the integrals is important and cannot be
neglected.

5.2 Case of f flavor specific final state

In case f is a flavor specific final state, the previous formalism can be easily re-used. We
only write here the final expression, with obvious meaning of the symbols:

Ny Ny oo Ny Ny
log L5 =" log Pj(t;, m;) + Y log P'f(tj, m;) + Y _log P%(ti, m;) + > log P’T(tj, m;)

i=1 j=1 i=1 j=1
(5.11)

5.3 Comments on the numerical computation of the likelihood

The likelihood optimization, performed with the MIGRAD algorithm from the CERNLIB
MINUIT library [13], is rather expensive from the point of view of CPU time. This is
because of the large signal and background statistics, and because, for each event, a convo-
lution product of the signal rates with the proper time resolution function G(At) needs to
be performed. These integrals in the expression of the likelihood function are in the form:

AT
Ch(t;) = /e(T)e*FT cosh -7 G(t — t;)dr, (5.12)

Sp(ti) = /e(T)e_FT sinh %7’ G(t — t;)dr, (5.13)
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Ct;) = / e(r)e™T" cos Amr G(r — t;)dr, (5.14)

and

S(t;) = /e(T)e_FT sin Amt G(7 — t;)dr, (5.15)

being ¢; the proper time of the ¢-th event. A nice improvement can be achieved by noting
that these integrals can be re-calculated only when the parameters I'; AI' and Am are
varied during the optimization. If ', AI' and Am have the same values as the previous
optimization step, these integrals, for each event 7, have the same values as they had in the
previous step. Thus, they can be saved into arrays and re-used without being re-computed.
But this is not yet very satisfactory, since while simulating hundreds of toy Monte Carlo
experiments, the required total time remains very large.

A dramatic improvement can be obtained by noting that the achievable resolutions on
I, AT' and Am are rather good, i.e., they are not varied too much from their nominal
values during the numerical maximization procedure. Thus, an expansion in power series
on I', AT, and Am to a fixed order n can be safely performed, i.e.:

iozj: T < > Ry(t;, 4, mod(j — k, 2) + 1) x
x(T'— Ty)F(AT — ATy )7 7%, (5.16)
si) = 23 (1) Rt somodti— k4194
x(T' —Tx)F(AT — ATy )7 7%, (5.17)

x(T —Tx)*(Am — Amy)?* (5.18)

and

noJj o(_1\k int(52) .
S(t) = z_%kg;;( DA ]1,) <§€ )R(t,—,j, mod(j — k+1,2) +1) x
x([' = Ty)*(Am — Amy )=k, (5.19)



where 'y, AT'y and Amy are nominal values for I', AT, and Am (i.e., they can be chosen
to be not too far from the true values), the operator int(-) stands for truncated integral
part of its argument, and the operator mod(n, m) stands for n module m. The functions
Ry, and R are given by:

r
Ry(t;, 1, 1) = /Tle(T)e’FNT cosh AQNTG(T —t;)dr, (5.20)
AT
Rp(t;, 1, 2) = /Tle(T)e_FNT sinh 2N7‘G(T —t;)dr, (5.21)
R(t;, 1, 1) = /Tle(T)e*FNT cos Amy1 G(T — t;)dT (5.22)
and
R(t;, 1, 2) = / Tle(r)e "N sin Amyr G (1 — t;)dr. (5.23)

These integrals, which are constants for each event ¢ because they no longer depend on
the current parameters I', AI', and Am, can be calculated only at the very first step of
the maximization procedure, their values saved into arrays and re-used for all subsequent
optimization steps until the fit convergence. An expansion of order n = 5 has been checked
to be more than sufficient, with the fit yielding the same results if compared to the full non-
approximated time-consuming calculation. This approximation reduces the completion

time of a fit from the order of several hours to the order of ten minutes on a powerful
modern CPU.

6 Combined likelihood fit

By looking at the experimental CP asymmetry for the B® — 7+7~ decay that, in the case
of no background and perfect proper time resolution for simplicity, can be written as:

AP (1) = (1 — 2w) (Ai" cos Amg t + AT sin Amy t) , (6.1)

™ T

one can easily convince him/herself that it is not possible to extract w, A% and A™®
simultaneously from the B® — 777~ data only, since the problem is undetermined.

Similarly, for the B — K™K~ decay, one can write the experimental CP asymmetry
as:

Adincos Amg t + AT sin Am ¢

cosh 812t — A%, sinh &L=t~

where, in the Standard Model, the relation (3.12) between A%, ATE and A% holds.
In this case, the indetermination of the problem is in principle removed by the presence

of the denominator in (6.2), but, since the expected value of AT is small (AT's/T'y ~ 10%),

i.e., the denominator does not differ dramatically from unity for every interesting proper

ARl (t) = (1 - 2w) (6.2)
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time ¢, useful information on w could be extracted from data with good precision only with
very large statistics.

A way out consists in making use of the B® — K*n~ (B — 77K ~) decay, which
is topologically similar to the B — 7nt7~ (BY — KTK ) decay. This similarity, apart
from small systematics that can be taken into account, leads to same tagging efficiency
and mistag probability.

For the B — K*7~ decay, two experimental decay asymmetries can be written, given
by:

Agir-(t) = —(1 — 2w) cos Amgy t (6.3)

and

Ag-z+(t) = (1 — 2w) cos Amy t. (6.4)

Analogously, for the B — 77K~ one has:

cosAmgt
-t =—(1-2 6.5
Acer=(0) = ~(1 = 20) S (65
and
cos Amgt
—xr(t) = (1 — 2w) ———=— 6.6
A (t) = (1= 2) S22 (6.

The expressions of the asymmetries (6.3), (6.4), (6.5) and (6.6) clearly state that for the
BY » K*n~ and BY — 77K~ channels it is possible to extract the mistag probability w
from data.

One can conclude that, in order to use the maximal content of information and de-
termine w, the most general approach consists in making a combined likelihood fit of
B - 7f7~ and B - K*r~ (BY - KK~ and B? — 7K ~) data'. This is discussed
in the following.

6.1 Caseof B 5> ntn~ and B —» K*tn~

A combined fit of B® — 7t7~ and B® — K7~ data can be realized by writing a combined
extended likelilood function in the following way:

N7'r7r Nﬂﬂ' - NK+7r7
log Ef}ff Kr = Z log P!_(t;, m;) + Z log le(tj, m;) + Z log Pye+.— (t;, m;) +
i=1 j=1 i=1

! The mistag probability can be also determined from Monte Carlo simulations and used in the likelihood
fit, once there is enough confidence that the Monte Carlo reproduces the data with sufficient accuracy. In
this work we ignore this possibility. In this sense, this can be considered as a conservative choice.
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NK+7r* — NK77T+ NK*7r+ —
+ Z IOgP K+n— (t]', mj) + Z log P}(77r+(ti; mz) + Z IOgP K_7r+(tj: m]-).
j=1 =1 j=1

(6.7)

In order to improve the sensitivity on the CP parameters, prior information, such as
the known resolution and values of Amy and I'y, can be naturally included in the fit by
multiplying the likelihood by Gaussian functions, i.e.:

’ Amd — Amd)2 (Fd — Td)Q
log L8 =log L& . — ( — . 6.8
0og T, Km 0g 7w, K 2Gimd 20_12(1 ( )

For oam, and or,, their current knowledge has been used [14]. On the contrary, no prior on
ATy has been used, since the current experimental knowledge on this parameter consists
only in a large upper limit.

In the following, we will define all the terms that are present in the expression of
the likelihood. For more details on how the values of the relevant quantities have been
estimated, see [10].

The signal efficiency €(t) as function of the proper time has been studied for each
B?s) — h*h~ channel. It can be parametrized as:

_ a
" 14exp [(t X ps‘l)ﬂ] '

e(t) (6.9)

In the expression of the likelihood, the constant « is cancelled (e.g., it can be set to 1), as
it can be argued by looking at (5.7) and (5.8), where it can be factorized in the expressions
of hy(t), h_(t) and H,, and thus eliminated in the ratio. The parameter § has been fixed
to the central value obtained from the full simulation.

The proper time resolution function G(At) has also been studied. It turns out to be
well described by a double Gaussian?:

G(AY) = Az ) PGt VP (- At ) (6.10)

71}0 exp <— B 2
\% 27T0—At1 20At1 \% 27T0-At2 20At2

where At = t,ec — tirye, and t,.. is the reconstructed proper time while t;.,. is the true
proper time. A detailed study of the dependence of At on the true proper time has
been performed. Only a moderate dependence is observed, and it can be ignored at first
order without dramatic loss of information. In this study this dependence is considered

2In the studies described in [10], the presence of a small bias in the proper time resolution is observed. It
is due to the fact that B decay products are included in the primary vertex finding, so biasing the primary
vertex position, and in turn biasing the distance of flight and thus the proper time measurement [2]. This
bias can be eliminated by removing the B decay products once the final state has been reconstructed, and
then re-fitting the primary vertex. For the studies presented in this note, we assume that this bias is not
present. This is why the expression (6.10) does not contain it, differently from what shown in [10].
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negligible and it is ignored®. The parameters of the resolution function are fixed in the fit
as determined from the full simulation.

The normalized rate b(t) for combinatorial background events has been guessed to be
the same as the untagged signal one, and written as:

ble) = 1 +exp [(t X psfl)é] // 1 +exp [(’7’ X psfl)d] o 641

The values of § and n have been determined specifically for each decay under study, by
fitting this expression to triggered bb data, selected with slightly reduced offline-selection
cuts in order to have a sizable statistics. These parameters are left free during the likelihood
maximization and their best values are determined from the fit.

The signal mass distribution from the full GEANT simulation has been found to be
consistent with a single Gaussian:

gs(m) = \/%Gm exp (—(m#;)j : (6.12)

The two parameters m and o, are left free during the likelihood maximization, and their
best values are determined from the fit.

The combinatorial background mass distribution has been guessed to have an exponen-
tial shape:

g(m) = pexp(—pm)

_ , 6.13
eXP(—Mmmm) - exp(_,ummam) ( )

being Mpin = 4.9GeV/c? and My = 5.7GeV/c® the minimum and maximum mass
values accepted by the trigger. This mass range is assumed to be available for the B?s) —
h*h~ offline analyses. The value of the variable i has been determined by using the full
simulation, fitting the previous expression to triggered bb data, with slightly reduced offline-
selection cuts. Also these parameters are left free to be determined from the likelihood
fit.

All values of the parameters present in the previous expressions can be found in [10].
For the reader’s convenience, they will be summarized in Table 1.

As it can be argued from what said above, only combinatorial background is included
in this study. Indeed, specific decay backgrounds are expected to contribute to the total
decay rate, even if they are estimated to be kept relatively small by the offline-selection,
as discussed in [10]. These backgrounds can be particularly dangerous, since they may
exhibit their own CP asymmetries, thus biasing the CP measurements of the decays under
consideration. For the moment they have been ignored, but in future developments of this
work they must be included.

3In principle, in real data analysis the knowledge of the event-by-event estimated error on t,.. can be
used as an additional information to be included in the fit. This has not been done in the studies presented
in this note. This improvement can be included in future developments of this work.
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The complete list of parameters left free during the likelihood maximization (17 in
total) is:

e Re(Aqr) and Im(A;,);

e the charge asymmetry for the B — K+~ decay, Agx;

e the number of tagged B® — 77~ decays nyx;

e the number of tagged B® — K+n~ decays ngr = Ng+r— + Nk nt;

e two parameters for the B — 777~ background rate, 6(B® — 7*7~) and n(B° —
Ttn);

e two parameters for the B — K7~ background rate, §(B® -+ K™n~) and n(B° —
K*7);

e one parameter for the B’ — 77~ background mass distribution, u(B® — 7F77);
e one parameter for the B’ — K7~ background mass distribution, u(B® — K*7™);
e two parameters for the B® mass distribution, m and o,,;

e the wrong tagging fraction w;

e the difference of the decay widths of the B® mass eigenstates AT'y;

e the mass difference of the B® mass eigenstates Amy;

e the average decay width of the B® mass eigenstates I'y.

Note that the number of tagged background events for each channel is not varied as a free
parameter, since it can be obtained as the difference between the total number of tagged
events, which is observed and thus a constant, and the number of tagged signal events,
which is left free in the fit.

6.2 Case of B - KK~ and B? —» 7" K~

The combined fit of B} - KK~ and B? — 77K~ follows the same lines as B — nt7~
and B° — K*7~. The combined extended likelihood function takes the form:

Nk k Nk Notr-
log L& = log Pgc(tiy mi) + 3 log P gec(ty, my) + 3 log Pl g (ts, my) +
=1 7j=1 =1
NW"‘K_ N, T~ K+ NW_KJF —
+ > log P p+ k- (tj, m;) Z log Pr— g+ (ti, mi) + D log Pla-ge+ (85, my).
j=1 j=1

(6.14)
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Prior information on AI';, Amgs and I'y are included in the fit by multiplying the
likelihood by Gaussian functions:

log E?;(I,WK = IOgL%%’ﬂK - 2 - 2 - . (615)

For oar, and or,, the results of the LHCb B? — J/1¢ analysis have been used [15], while
for oam, the results of the LHCb BY — D,k analysis have been used [16].

The central values of the parameters determined from the full GEANT simulation for
the B - K*K~ and BY — 77K~ [10], analogous to the B® — 777~ and B® — K*7r~
ones, are summarized in Table 1.

The complete list of parameters left free during the likelihood maximization (always 17
in total) is:

e Re(Akk) and Im(Akg);

e the charge asymmetry for the BY — 7 K~ decay, A, k;

e the number of tagged B? — KT K~ decays nkxs;

e the number of tagged BY — 77K~ decays n,x = Np+x- + Np-g+;

e two parameters for the B — KK~ background rate, §(B? - K+*K~) and n(B? —
KTK™);

e two parameters for the B — 7t K~ background rate, 6(B? — 77K ) and n(B? —
KT

e one parameter for the B — KK~ background mass distribution, u(B? — K+K~);
e one parameter for the B — 77 K~ background mass distribution, u(B? — 7+ K~);
e two parameters for the B? mass distribution, m and o,,;

e the wrong tagging fraction w;

e the difference of the decay widths of the B? mass eigenstates AL;

e the mass difference of the B? mass eigenstates Am;

e the average decay width of the B? mass eigenstates T's.
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| B = 7fn |[B 5 K'n [BO-K'K | B 5 n"K |

Annual Signal Yield 26 k 135k 37k 5.3k
bb B/S ratio 0.42 0.16 0.31 0.67
€rag [0 %] 1.8 1.8 9.8 19.8

w [in %] 34.9 31.9 33.0 33.0

153 —2.35 —2.28 —1.76 —2.52
7 Tin %] 86 88 85 80
oan 5] 32.6 32.8 344 29.8
oan U] 59.9 60.6 673 541

0 —3.09 —2.16 —1.03 —2.19

n [ps™] 1.02 1.15 0.89 0.87

m [GeV/E] 5.279 5.279 5.369 5.369
Om [MeV/c?] 17.5 17.5 17.5 17.5
p [(GeV/c*) 1 1.71 0.54 1.21 0.44

T lps ] 1/1.54 1/1.54 1/1.46 1/1.46

are obtained from the respective B

0

(s)

Table 1: Values of the parameters used as inputs to the fast Monte Carlo simulation. They
— h*h~ analyses with the full GEANT simulation

[10]. The bb B/S ratios quoted in [10] are the 90% CL upper limits calculated before
the trigger, while the values reported in this table and used in the fast simulation are
the respective central values. €, and w are the signal tagging efficiency and the mistag
probability respectively. They are assumed to be identical for B® — 7+t7~ and B® —+ K+7~
(B - KTK~ and BY — 7t K™) decays (see text). The meaning of the other parameters
is described in the text.

7 Fast Monte Carlo simulation

In order to generate the data samples required to study the sensitivity on CP-violating
observables for the B?s) — hTh™ decay channels, a fast Monte Carlo simulation program
has been written. The program first generates proper time and mass values for triggered
and offline-selected untagged signal and combinatorial background events, according to
the annual signal yields and background-to-signal (B/S) ratios, as well as proper time and
mass distributions, obtained from the full GEANT simulation.

In the signal event generation, the effect of CP violation is obviously included, while
no CP violation is assumed for the combinatorial background. The program also simulates
the effect of the trigger and offline-selection acceptance as function of the proper time, the
effect of the proper time resolution (smearing of the proper time by means of a double
Gaussian), and the tagging procedure.

All the input parameters used in the fast Monte Carlo generation are reported in Table
1, and are taken from [10]. Signal yields and B/S ratios reported in the table are calculated

for events with a mass value inside a window +dm around the nominal B?s) mass, for each
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BY,y — hh analysis, as described in [10]. In the fast Monte Carlo simulation, the mass
is generated from a value m,,;, = 4.9 GeV/c? up to a value My, = 5.7GeV/c?, in order
to include the mass sideband spectrum and simulate the extraction of the combinatorial
background properties from data, as discussed in the previous section. Then, the generation
of signal and background events is performed by reproducing the signal yields and B/S
ratios inside the respective +£dm mass windows.

The tagging efficiencies and mistag probabilities for B® — 777~ and B — K7~
(B - K*K~ and B? — 77K ) decays are assumed to be indentical. From the full
GEANT simulation, they result to be compatible within statistical uncertainties |2, 10,
17]). The assumed common values are the ones from B® — 7t~ (B? — KTK~), which
have smaller statistical errors due to the larger Monte Carlo statistics available in the
full simulation. For the tagging of combinatorial background events, the same tagging
efficiency of the signal is conservatively assumed, while the mistag probability is assumed
to be 50% (i.e., one combinatorial background event can be randomly tagged as B or B
with same probability).

Table 1 does not include the values of A, Am, A%" A™% and Ag, (A:x). Due to
the fact that these values are unknown (except AI'; which has been set to zero in the
generation), a scan over reasonable ranges (i.e., around the Standard Model expectations)
has been performed for them, by running different sets of fast Monte Carlo generations,
and then making likelihood fits on each independent data set (see next section).

Instead of scanning directly the values of A%", A™% and Ag, (Arx), we perform scans
on the parameters d, 9, v and ¢, defined in Section 3 (¢4 = 23 has been set to the central
value of the current world average, and not varied). The corresponding values of A%",
A™® and A, (Arx) are then calculated from equations (3.4), (3.5), (3.7), (3.8), (3.15)
and (3.16), assuming the validity of U-spin symmetry.

Table 2 summarizes the scanned values of AT’y /Ty, Amg, d, 9, v and ¢,. The parameters
are varied one at a time, with the other ones kept to their assumed nominal values, which
are also indicated in Table 2. This results in a total of 13 independent sets of values for
the B® — 77~ and B® — K7~ scan, and 21 for the B’ - KTK~ and B? — 7t K~
scan.

For each set of values, 375 fast Monte Carlo experiments and subsequent likelihood fits
have been performed. Repeated experiments are simulated in order to assess the average
values of the sensitivities on the physics parameters of interest, and also to produce pull
distributions for the fitted parameters to demonstrate the reliability and consistency of the
event generation and fit procedure, as it will be shown in the next section.

8 Likelihood fit results

In this section, we present the results of the likelihood fits used to extract the physics
parameters from data generated by the fast Monte Carlo simulation.
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AT,T, 1 0 | (01) | 02
Amgps™'] | 15 (20) 25 30

d 01 ] 02 | (03) | 04

9 120° | 140° | (160°) | 180° | 200°

~ 55° | (65°) | 75° | 85° | 95° | 105° ]
osfrad] | 0 | (-004)| —0.1 |02

Table 2: Scanned values of the unknown physics parameters. The physics parameters are
varied one at a time, with the other ones kept to their assumed nominal values. The
nominal values are those enclosed in parentheses.

8.1 Propagation from Re()\) and Im()\) to A% and A™*

As discussed in Section 6, the CP-violating observables returned by the fit are Re(}),
Im(A) for the B® — atr~ (B — KTK™) and the charge symmetry for B® — K*tr~
(B® — 7t K™). In order to obtain the best estimates of the observables A% and A™,
with their uncertainties and correlation, a propagation from Re(\) and Im()) to A%" and
A™® each other related by equations (2.18) and (2.19), is necessary.

The analytic procedure consists in calculating a new 17 x 17 covariance matrix (17 is
the number of parameters in the fit), where Re()\) and Im()) are substituted with A%" and
A™%  However, an easier way to do it, that is the one we follow, is to perform a Monte
Carlo propagation.

The Monte Carlo propagation is realized by generating a sample of 17-tuples of random
numbers from a multi-variate Gaussian p.d.f., using the best estimates of the parameters
and the covariance matrix returned by the fit. Then, the values of Re()\) and Im()\) in each
17-tuple of random numbers are used to compute A%" and A™< through (2.18) and (2.19),
and the uncertainties and correlation of A% and A™ are estimated from the full sample.
In order not to introduce additional uncertainties in the propagation, a large sample of
Monte Carlo generations has been performed (n = 10°)*. The distortion from gaussianity
of the p.d.f. for A%" and A™?* has been checked to be completely negligible.

8.2 Sensitivity on CP-violating observables

The sensitivity on A% A™® and charge asymmetry Ag, from B® — K*7~ is explored
for different values of the physics parameters d, ¥ and y. For A% ATZ and charge
asymmetry A,k from B? — 77 K~ an additional scan on the values of AT;/T's, Amg and
¢s has been done. These parameters are varied one at a time, with the other ones kept to
their assumed nominal values. The results are summarized in the Tables 3 and 4.

Figure 2 shows the pull distributions from 375 experiments simulated with nominal

“The Monte Carlo generation of the multi-variate Gaussian distributed random numbers has been
realized by employing the function CORGEN from the CERNLIB library [19]. The generation of 10°
17-tuples requires just few seconds of (a modern CPU) time.
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d 0.1 0.2 (0.3) 0.4
o (AT 0.063 0.063 0.064 0.064
o (Amizy 0.053 0.054 0.055 0.056
p(AZr - Amiz) —0.43 | —043 | —0.43 | —043
o(Akx) 0.0035 | 0.0035 | 0.0035 | 0.0035
9 120° 140° (160°) 180° 200°
o (AZT) 0.065 0.064 0.064 0.063 0.064
o (A™T) 0.055 0.055 0.055 0.054 0.054
p(AZT AT —0.45 | —045 | —043 | —0.42 | —0.41
o(Ascr) 0.0035 | 0.0035 | 0.0035 | 0.0035 | 0.0035
7y 55° (65°) 75° 85° 95° 105°
o(A%T) 0.064 0.064 0.064 0.064 0.064 0.064
o(A™®) 0.057 0.055 0.053 0.052 0.053 0.056
p(A%T ATT) —0.41 | —-043 | -044 | —042 | —0.40 | -—0.37
o(Akn) 0.0035 | 0.0035 | 0.0035 | 0.0035 | 0.0035 | 0.0035

Table 3: Average statistical uncertainties and correlation on A%’ and A™® from B® —
7t7~, and average uncertainty on the charge asymmetry Ag, from B® — K+~ corre-
sponding to one year of data, depending on the true values of the physics parameters d,
¥ and 7. The physics parameters are varied one at a time, with the other ones kept to
their assumed nominal values. The nominal values are those enclosed in parentheses. The
correlation between Ay, and A% (A™?) is negligible, and is not reported in the table.
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AT, /T, 0 (0.1) 0.2
o (A% 0.054 0.051 0.047
o (A7) 0.070 0.067 0.061
p(A% ATL) -020 | -0.22 | -0.21
o(Ax) 0.023 0.024 0.024
Amy |ps™] 15 (20) 25 30
o(A%) 0.043 0.051 0.060 0.076
o (AFE) 0.058 0.067 0.077 0.093
p(A%rm Amzy | —0.24 | —-0.22 | —-0.20 | —0.17
o(Ax) 0.024 0.024 0.024 0.024
d 0.1 0.2 (0.3) 0.4
o (A% 0.060 0.056 0.051 0.049
o (A7) 0.065 0.079 0.067 0.061
p(A%, ATE) —0.18 | —-0.33 | —-022 | —0.15
o(Ax) 0.024 0.024 0.024 0.024
¥ 120° 140° (160°) 180° 200°
o (A% 0.061 0.055 0.051 0.049 0.050
o (AE) 0.053 0.059 0.067 0.070 0.066
p(A%r Ay | —0.27 | —0.30 | —0.22 0 0.22
o(Ark) 0.023 0.023 0.024 0.025 0.024
v 55° (65°) 75° 85° 959 105°
o(A&) 0.050 0.051 0.051 0.050 0.050 0.050
o (A7) 0.065 0.067 0.067 0.067 0.067 0.066
p(AZ Amizy | -020 | —0.22 | —-022 | —020 | —021 | —0.18
o(Ax) 0.023 0.024 0.023 0.023 0.023 0.023
o [rad] 0 (—0.04) —0.1 -0.2
o(A%) 0.051 0.051 0.051 0.052
o (A7) 0.064 0.067 0.072 0.079
p(A%r  Amzy | —0.21 | —0.22 | —-0.22 | —0.23
o(Azx) 0.023 0.024 0.023 0.024

Table 4: Average statistical uncertainties and correlation on A%". and ATE from B? —
K™K~ and average uncertainty on the charge asymmetry A,x from B? — 7t K~ cor-
responding to one year of data, depending on the true values of the physics parameters
AT, /T, Amg, d, ¥, v and ¢,. The physics parameters are varied one at a time, with the
other ones kept to their assumed nominal values. The nominal values are those enclosed
in parentheses. The correlation between A,x and A% (ATE) is negligible, and is not
reported in the table.
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values of the input physics parameters, for all the 17 parameters varied in the B® — 7t7~
and B — K7~ combined fit (Figure 3 for the B’ - KTK~ and B? — 7t K~ combined
fit). The pulls are compatible with normal distributions centered in zero with unitary
variance. This condition has been checked to be fulfilled for all the sets of (13 + 21) x 375
experiments simulated in the scan.

As an example, Figure 4 shows the mass distributions generated by the fast Monte
Carlo simulation, with a projection of the likelihood fit superimposed.

8.3 Discussion

The resulting resolutions on (A% A™®) and (A%, ATZ) are quite similar, even if the
B? — KTK~ decay is characterized by larger signal yield, larger tagging efficiency and
smaller mistag probability, as well as smaller background, with respect to the B — 77~
decay. This is due to the fact that the mistag probability is measured with smaller precision
for the B — K+ K™, due to the much smaller yield of B — 7+ K~ with respect to the yield
of B® — K*7r~. The mistag probability is measured with an average relative resolution
of 1.0% for the B® — 7t7~ and B® — K7, while the average relative resolution for
BY? - K*K~ and B? — 77K~ goes from 6.1% to 9.1%, depending on the true value of
Amyg.

Within the considered parameter ranges, the dependence of the resolutions and corre-
lation of A%" and A™% on their true values (i.e., on d, ¥ and y to which they are related)
is negligible. The same thing does not hold for A%". and AWE. This is still due to the
different resolution on the mistag probability. A simplified semi-quantitative explanation
is given in the following.

The experimental CP asymmetry for B — 77~ and B? — K"K, in the case of no
background, perfect proper time resolution and negligible AI' for simplicity, is:

AT () = (1 — 2w) (Ad" cos Amt + A™7 sin Am t) ) (8.1)

Let us suppose to have infinite statistics of B® — 77~ and B? — KK~ data at our
disposal. Even in this case, the problem of extracting w, A%" and .A™? simultaneously from
BY — 77~ and BY — KTK~ data only, is undetermined. By combining B® — 7tm~
and B® - K*r~ (B? - KTK~ and B? — 77 K™) data, as already discussed, w can be
extracted from data. Now suppose that the measurement of w for one experiment gives
the best estimate:

@ = Wirge + 0w, (8.2)
where wy, 18 the true value of the mistag probability and dw is the difference between
the measured and true values of w. Since we have assumed to have infinite statistics for
BY - 777~ and BY — KT K~ we can write:

(1 = 20) A% = (1 — 2wppue) AYT (8.3)
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Figure 2: Pull distributions from 375 experiments simulated with nominal values of the
input physics parameters, for all the 17 parameters varied in the B® — 7t7~ and B° —
K*7~ combined fit.

28



25

25

40
20
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Figure 4: Mass distributions for each B?S) — hTh~ generated by the fast Monte Carlo
simulation for one year of data, with a projection of the likelihood fit superimposed.
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and

(1 —20)A™7 = (1 — 2wipye) A2 (8.4)

true’

where A% and A™? are the best estimates of A%" and A™7 while A% and A7 are
their true values. By inserting (8.2) in (8.3) and (8.4), we have:

2
a 1 — 2Wirye : 20w 20w ,
Adzr — Adzr ~ |1 O Adzr 8.5
1-— 2wtrue — 20w frue - - 2wtrue - 11— 2wtrue frue ( )
and
2
A (1 — 2wirye) : 20w ( 20w > -
A™E = g~ |1+ ———4+ O || ——— e, (8.6
(1 — 2wWpye — 20w)" " 1 — 2Wirge 1 — 2Wrue K (86)
Hence, for small dw, we finally obtain:
. ~ , 24 ,
BAMT = AT — Al S A (8.7)
Wirue
and
) " . 20 )
R 2: iz (8.8)
rue

i.e., the absolute errors on A%" and 4™ depend on their true values, and are proportional
to dw. In the limit of dw tending to zero, this dependence on the true values is not present.
One can note that:

2
- ; 20w ; -
sasmsm = (200 A 89)
rue
suggesting that the covariance depends on the product Af,fzg and gffjﬁ,, and should be
negative if A%" and Aj70 have opposite signs, negligible if Adir or AT are close to zero,
and positive if A% and A™2 have same signs. In fact, this is exactly what observed in

BY - K*K~ and B? — 7t K~ fits. In Table 4, in the row corresponding to the scan on
9, one can see that the correlation is negative for ¥ < 180°, null for ¥ = 180° and positive
for ¥ > 180°. Tt is possible to verify by using (3.7) and (3.8), with d = d' and ¥ = ',
that A% and A™* have opposite signs in the first case, A%" is zero in the second case,
while in the third case A%" and A™* have same signs. The same thing does not apply to
BY — nt7~ and B® — K*t7~ fits, where the main contribute to the correlation between
A% and A™? is not introduced through w. This will be clear in the following.

In order to validate our initial assertion it is now sufficient to demonstrate that if w
is perfectly known (i.e., in case of infinite statistics for B — K*7~ and B — 77K "),
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the uncertainties and correlation on A%" and A™* are not dependent on their true values.
This is true since the asymmetry is linear in A% and A™<. We demonstrate it in the
simplified but conceptually equivalent case of a x2 fit of the binned asymmetry. The x? is
given by:

3 <(1 — 2wirye) (A cos Amt; + A™ sin Am t;) — AzCP) 2 (8.10)

"X (A7)

where the sum runs over all the N bins, ¢; is the proper time of the i-th bin, A{” is the
observed asymmetry in the i-th bin, and o(A$T) is its error.
The second order derivatives are:

0?2 N (1 — 2wirye) cos Amit,

=9 A1
aAdzr2 z:zl ( (AZCP) ) ) (8 )

0% N — 2Wirue) SIN Amt; 2
__—9 12
8Amz$2 1:21 ( O'(.A,LCP) (8 )

and
62X2 2wtrue ?

W = E ( ACP) ) COS Am tz sin Am tz (813)

Hence, the covariance matrix, that is given by the inverse of the second derivative matrix,
does not depend on the true values of A%" and 4™ if no such dependence is present for
a(AST). But this is true, since o(ASY) depends essentially only on the statistics in each
bin.

Furthermore, in the case of the B — KTK~, the second mixed derivative (8.13)
cancels, since within a period of the fast B? oscillations (e.g., 27/20 ps for Am, = 20ps™),
there is no sizable variation of statistics, and hence of o(A¢T). This leads to a diagonal
covariance matrix, i.e., to null correlation. This means that a correlation between .4%" and
A™2 for the B — K+ K~ can be introduced only through w, as previously discussed. The
same fact does not hold for the B® — 77~ where the oscillations are slow (the period
is 2 /0.5ps), and so there is a sizable variation of statistics in one period, and then of
o(ASF). In this case, the main contribute to the correlation is not due to w.

One further comment concerns the resolution on the charge asymmetry. First of all,
the uncertainty on the charge asymmetry is much larger for the B? — 77 K~ with respect
to the B — K*7~, due to the large difference of the yields. Secondly, since the charge
asymmetry is given by:

ny—n
Apz=—L (8.14)

’ ny + ny
where ny and ny are the yields of K=" and K7~ decays from B’ - K*r~ (r"K™ and
7t K~ decays from B? — 7t K ) respectively, its uncertainty depends only on the yields,

and in particular its measurement in not correlated with those of A%" and A™®.
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Finally, since it will be useful in the following, we note that due to the presence of
correlation the joint p.d.f. for A% and A™< is best described by a bi-variate Gaussian

T

G (A%, A7) and similarly for A%y and AR by Gy (A, ARE).

T

9 Extraction of the CKM angle ~

Once the best estimates of the CP-violating observables A%" Amiz  Adr and AT have
been determined from the likelihood fit, together with their uncertainties and correlations,
it is possible to determine the value of the CKM angle v by assuming the validity of the
U-spin symmetry (see Section 3).

In fact, if (3.13) and (3.14) hold, equations (3.4), (3.5), (3.7) and (3.8) relate A%",

Amie - A% and ATEE to d, U, 7y, ¢q and ¢,. If the values of ¢4 and ¢, are determined
elsewhere, e.g., from the B® — J/¢¥ K2 and B? — J/v¢ decays respectively, we have a
system of four equations and three unknowns (d, ¥ and <), which is then over-determined
and can be solved to extract the values of d, ¥ and ~y. This problem consists in propagating
the experimental joint p.d.f. for A%r Ami  Adr = A7 ¢, and ¢, to a joint p.d.f. for
d, ¥ and ~y, by making use of the theoretical relations between these parameters (in the
following, these theoretical relations will be called “constraints”). For this purpose, we

adopt a Bayesian approach.

9.1 Bayesian determination of v

By using the Bayes’ theorem one can write:

f <d7 19, Y, {OCP}a d)d: ¢8 | {@CP}) (&8 f <{@CP} | d: 197 Y, {OCP}7 ¢d7 ¢s) X
Xf (da 197 v {OC’P}v ¢d7 ¢s) (91)

where the generic notation f(-) is used to indicate p.d.f.s. The symbol {Ocp} stands for
the 4-tuple of CP-violating observables (A%T A™e  Adr = Amiz) while {Ocp} stands

mmo g 0 KK KK TS N
for their respective experimental best estimates (A%, A™® Adr = A72)  Since {Ocp}

T T

depends on d, ¥, v, ¢4 and ¢, only via {Ocp}, the following relation holds:

£ ({0cr} | d, 0, 7, {Ocr}, 6 6,) = f ({0cr} | {Ocr}) (9.2)

By using simple rules of probability, we can also write:

f (d’ 79’ Y {OCP}’ ¢d> ¢s) = f ({OCP} | d7 191 Y ¢da ¢s) X f (d’ 79’ Y ¢da ¢s) . (93)

In the Standard Model and under the assumption of U-spin symmetry (i.e., d = d', 9 =
9'), the CP-violating observables {O¢cp} are exactly related to d, 9, v, ¢4 and ¢; by the
constraints (3.4), (3.5), (3.7) and (3.8). Hence, one can write:
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f({OCP} | d7 197 Y, ¢d7 ¢8) =
=4 (Adir —.Adir(d, ,19’ '7)) % 5(Amzx _ Amm‘(d ,19’ Y, ¢d)) %

x 6 (Afin — AW (d, 9, 9)) x 6 (AWE — Ame(d, 9, v, ¢,)) (9.4)

where the symbol (-) stands for the generalized Dirac delta function.
Equation (9.1) can then be re-written as:

F(d, 9,7, {Ocp}, ba, 85 | {Ocr}) o f
X0 (AT — A™(d, 9, 7y, ¢a)) X O
x0 (A — Afir(d, 9, 7)) 5

({Ocr} | {Ocr}) x
Adz'r Adz'r d ,19 '7))

(
X ( mzw mzw d 19 v, ¢5))
x  f(d, 19 Vs ba, ¢s)- (9.5)

f ({@Cp} | {Ocp}) is the joint experimental p.d.f. for A% A™@ Adr and ATE. Fol-

) T )

lowing what discussed in Section 8.3, it can be written as the product of two bi-variate
Gaussian p.d.f.s:

f ({Ocp} [{Ocp}) = Gr(Alir, A7) x G (Al ARR). (9:6)

The p.d.f. f(d, 9, 7, ¢4, ¢s) describes our a priori knowledge on d, 9, vy, ¢4 and ¢,. Since
we have independent measurements of ¢, and ¢, but we ignore any knowledge on d, ¥ and
v, we can write:

f (d’ 795 s (bd, ¢s) = F()(d, 19’ 7) X g(()i(¢d) X gé(¢s)a (97)

where Fy(d, 9, v) is a prior p.d.f., which we assume to be uniform, while gg(¢4) and
95 (¢,) are prior p.d.f:s for ¢4 and ¢,. We assume g¢(¢q) and g§(d,) to be Gaussians, with
resolutions obtained from the LHCb B® — J/¢ K and B? — J/v¢ analyses respectively
[15, 18].

By introducing all these ingredients in equation (9.5), we end up with the final expres-
sion:

f (9, 7, {Ocp}s das &5 | {Ocp}) oc Gl Al A7) x G (Afls, AR X
) (Adir _ Adir(d’ 19’ '}/)) X (\Aﬂm;w _ Amzx(d’ ,19’ Y, d’d)) %
X(S(Adzr Adzr (d 9, ’7)) x 5( TI?IS(E B mzw(d 0, v, ¢S))

X Fy(d, 9, 7) X g§(¢a) X g5(9s)- (9.8)
Finally, this p.d.f. can be integrated over the variables A%r Amiz  Adir = AT g, and ¢,

to get the (unnormalized) joint p.d.f. for d, ¥ and  that we are looking for:
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F(d,9,7) o [ f(d 97 {Ocp}, b0, 65 | {Ocp}) dAL d Amd ALl d At dpado,
= /GW(Agrz;(d, 19’ 7)a A;n;w(d’ 79: v, ¢d)) X
x G(A%n(d, 9, 7), ARE(d, 9, v, ¢5)) % 98(Ba) x 95(¢s)ddadds,  (9.9)

where the flat prior Fy(d, 9, ) has been dropped, since it does not carry information and
would be in any case cancelled by normalizing F'(d, 9, ) to 1.

9.2 The (d, v) plane

Equation (9.9) provides a conceptually simple way to compute a joint p.d.f. for d, ¥ and
. Since this p.d.f. is a function of three variables, trivial graphical representations are not

possible. However, useful plots can be realized in two variables, for example for the joint
p.d.f. of d and ~:

F(d, y) = / F(d, 9, 7)dy. (9.10)

The (d, ) plane was also chosen by R. Fleischer in his original work [8] to represent
the analytical solution of the system of constraints, in case of perfect knowledge of the
CP-violating observables and of the weak phases ¢; and ¢,. This is discussed in Section
9.2.1.

Figure 5a shows the 68% and 95% confidence regions for d and + in the (d, ) plane, for
one year of data and nominal values of the unknown physics parameters (see Table 2), while
Figures 5b and 5¢ show the one-dimensional p.d.f.s for v and d respectively, calculated as:

F(d) = / F(d, 9, 7)dddy (9.11)

and

F(y) = / F(d, 9, 7)dddd. (9.12)

The confidence regions for d and v are numerically computed as highest posterior
density regions®. All the multiple integrals in expressions (9.9), (9.10), (9.11) and (9.12)
have been computed by means of a Monte Carlo integration method [20].

Figure 5a shows also two distinct 95% confidence regions for d and y (continuous bands),
obtained by combining the two constraints (3.4), (3.5) and the two constraints (3.7), (3.8)
independently. A discussion on how they are obtained is reported later in Section 9.2.2,
after the introduction of additional useful formalism in the following section.

SHighest posterior density confidence regions (intervals) of a given confidence level a are defined as
regions (intervals) which enclose a probability «, with the p.d.f. having larger values everywhere inside
the region (interval), with respect to the outside. Different definitions of confidence regions exist in the
literature. However, they are equivalent if the p.d.f. is symmetric, and almost equivalent in case the p.d.f.
does not spread dramatically far from the mode.
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Figure 5: a) Confidence regions in the (d, ) plane for one year of data, generated with
nominal values of the unknown physics parameters (see Table 2); the darker (red) bands
delimit the 95% confidence regions obtained by combining the two constraints (3.4) and
(3.5) from B® — 7*7~; the lighter (cyan) bands delimit the 95% confidence regions ob-
tained by combining the two constraints (3.7) and (3.8) from B? — K™K ~; the black solid
and dashed curves represent analytical relations between d and 7 obtained with perfect
knowlegde of the CP-violating observables and of the weak phases ¢4 and ¢4 (see Section
9.2.1); the light (yellow and white) contours enclose the 68% and 95% confidence regions
obtained by using all the four constraints, as described in the text. b) p.d.f. for 7. ¢) p.d.f.
for d.
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9.2.1 Analytical solution of the system of constraints

The black solid and dashed curves in Figure 5a, represent analytical relations between d
and 7 obtained by combining the two constraints (3.4), (3.5) and the two constraints (3.7),
(3.8) independently [8].

In fact, by combining (3.4) and (3.5), it is possible to eliminate 9 (e.g., obtain 9 as a
function of A% d and 7 from the first constraint, and insert it into the second). After

T ?
some algebra, one arrives to the following equation:

d= \/% [l + VP = hk|, (9.13)

where h, k and [ are given by:

h =u*+ D(1 — ucosy)?, (9.14)
k=v®+ D(1 —vcosy)? (9.15)
and
l=2—wuv—D(1—wucosvy)(1l—wvcosv), (9.16)
with
u= A Tsinat2y) (0.17)
A cosy + sin(dg +7)
Amim + sin ¢d
= P 9.18
T A cosy +sin(ga + ) (918
and

D= (A_) | (9.19)

sin y

If the values of A% A™ and ¢, are known, by means of equation (9.13) one can plot two
curves of d as functions of vy, depending on the choice of the plus or minus sign in (9.13).
By following similar lines, combining (3.7) and (3.8), it is possible to eliminate ¢, and

after some algebra one obtains the following equation:

~ 1

d = \/ " BT, (9.20)
where b/, k' and I’ are given by:

B =u”+ D'(1 —u' cosy)?, (9.21)
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k' ="+ D'(1 —v'cosy)? (9.22)

and
I'=2—vv'— D'(1 =4 cosy)(1 — v cosvy), (9.23)
with
ML cosy + sin(ps + )’
v = — iic +5in g, (9.25)
K cosy + sin(gs + )
and

D= (ﬂ) (9.26)

sin 7y
If the values of A%, A7 and ¢, are known, by means of equation (9.20), and using in
addition the relation between d’ and d’ given in (3.10), one can plot two curves of d’ as
functions of v ©.

If U-spin symmetry holds, then d = d', and all the four curves from (9.13) and (9.20)
can be plotted in the same (d, ) plane. In case of perfect knowledge of the true values of
the CP-violating observables and of the weak phases ¢, and ¢, the curves must intersect
at the true value of d and v, as it is shown Figure 5a (black solid curves for B — n*7~ and
black dashed curves for B — K+ K~). However, note that in this way we have reduced the
original system of four constraints to only two constraints, i.e., we are not using the entire
available information. Even if the system of four contraints has unambiguous solution,
there is no guarantee that no fake solutions are obtained so doing. In fact, this is exactly
what can be observed in Figure 5a, where the curves intersect also at different points than
the right solution (d, v) = (0.3, 65°).

The fake solutions can be eliminated by, for instance, re-inserting the obtained (d, 7)
solutions in the original equations, then solving for ¥. If the employed (d, ) solution is
fake, the solution in ¥ cannot be found. Another mathematical trick consists in obtaining
a further relation between d and 7, and plot the corresponding curve on the (d, ) plane,
as it is done in [8].

It is worth to note that the adopted Bayesian approach described in the Section 9.1,
which without lack of generality uses the four original constraints independently, i.e., it
makes use of the full available information, automatically finds the true (d, 7) solution, in

6To compute d’ from d' by using (3.10), also the value of the sine of the Cabibbo angle needs to be
known. Its value is nowadays measured with a small relative error of the order of 1% [12], i.e., much
smaller than the errors on A%%. AT and ¢, for one year of data. Hence, for the sake of simplicity, in
the following we have considered the uncertainty on this parameter as negligible, or, in other words, the
parameter as perfectly known.
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the limit to Dirac delta functions of the p.d.f.s of the four CP-violating observables and
the two weak phases ¢4 and ¢,. However, due to finite experimental resolutions on A4%"

T
Amiz - pdin - ATE ¢, and ¢, fake solutions, i.e., fake “peaks” in the F(d, ¥, ) p.d.f., may
still occur, but, as it can be argued, for a different reason than that discussed before. For
instance, these wrong peaks are visible in Figure 5. How to deal with them, is discussed

in Section 9.4.

9.2.2 Construction of 95% confidence regions

In this section, we describe how the 95% confidence regions for d and 7 obtained by com-
bining the two constraints (3.4), (3.5) and the two constraints (3.7), (3.8) independently,
are calculated. These confidence regions are shown in Figure 5a as continuous bands. As
it can be argued, this is related to the formalism introduced to calculate the analytical
solution discussed in the previous section.

In practice, these 95% confidence regions are obtained by projecting the 95% confidence
regions from the space of the observables (i.e., A%" A™ Adin = ATZ ¢, and ¢,) to the
corresponding space in the (d, 7) plane. This can be done since the probability must
conserve in this transformation”.

We have shown in the previous section that combining (3.4) and (3.5), it is possible to
obtain from (9.13) a relation between d and 1, if the values of A% A™* and ¢, are known
(i.e., from an experimental point of view, if they are measured). Assuming the gaussianity
of the experimental p.d.f.s for A% A™% and ¢,, the 95% confidence region in the (A%",
A™iz " ¢;) observable space is an ellipsoid. By taking in mind that the measurements of
A and A™ are each other correlated (see Section 8), the equation of the surface of this

95% confidence ellipsoid is:

1 Adir _ Adir 2 Amm: _Amiz 2
: : s dhvivs s vy D)
31— p (A, 4] [( wan) () 920
) ) Adir _ Adir Amuc _ Amzw 1 Qsd _ di 2
. dir miT T T T T - —
2 (A, A7) ( o (A%T) ) ( o (A7) )] i ( o (4a) 4

where A%T

o (A™%) and o (¢4) are their estimated uncertainties, and p (.Ad"

)

Aﬂm;“ and ¢q are the best estimates of the corresponding observables, o (A%:),

Aﬂmﬁ) is the correlation
between the measurements of A%" and A™<®. The value of the parameter f corresponding
to 95% C.L. depends on the number of random variables (in this case 3). It can be found
for instance in [14], and it is:

"In principle, these 95% confidence regions could be determined by obtaining p.d.f.s for d and v with a
Bayesian approach, following the same lines as in the discussion of Section 9.1, but employing as constraints
equations (9.13) and (9.20). This way was first tried. The so obtained p.d.f.s resulted to have regular
but very complex shapes. For this reason, it was not easy to give a reasonable definition of confidence
region, and instead of choosing an arbitrary definition, difficult to be justified, we decided to follow the
more intuitive approach described in the text.

39



7.82

By uniformly scanning the volume of this ellipsoid, one can explore the 95% confidence
region of the (A% A™® _ ¢;) observable space. By uniformly scanning  in the range
[0°, 180°], and for each value of v making a uniform scan in the 95% confidence region
of the (Adir, A™i= = 4;) observable space, one obtains sets of 4-tuples (AZT, A™T | ¢,
7). With the values of each 4-tuple, by means of (9.13), the corresponding value of d can
be computed (if it exists). Each pair of values for d and 7 is then used to populate a
bi-dimensional histogram. By suitable choice of the steps used while scanning the volume
of the ellipsoid, it is possible to obtain uniform bands in the (d, ) plane, as it can be seen
in Figure 5a.

One may object that with this technique, one indeed obtains the union of 95% con-
fidence intervals for the random variable d conditioned by the value of the variable ~y
(interpretation A), obtained for all the allowed values of 7, instead of the 95% confidence
region for the random variables d and ~y (interpretation B). In fact, it is simply true. But
since we are now using only one constraint, given by equation (9.13), that can be generi-
cally re-written (ignoring for simplicity the presence of two solutions corresponding to the

plus or minus sign) as:

d = d(AZy, AT, 4, ), (9-29)

) T )

the problem is undetermined (two unknowns, d and 7, and one constraint). To better
understand it, suppose that A% A™® and ¢4 are very well known (i.e., their p.d.f.s are
very narrow, and at limit tend to Dirac delta functions). In this very favourable case, all
we obtain from (9.29) is an (almost) exact dependence of d on 7, i.e., a function. All we
can say is that, given a value for 7, we can compute a value for d (and vice versa, inverting
the function). Thus, the only thing that we can be sure of on d (or ), is its dependence
on v (or d) and its allowed region.

At this point one might be tempted to say that the individual p.d.f.s f(d) and f(v)
must be uniform inside the respective allowed regions for d and . But, by looking at
(9.29), if f(7) is uniform inside the allowed region for =, it is obvious that for an arbitrary
dependence of d on 7, f(d) cannot be uniform too (and vice versa). Then, one can conclude
that stating the perfect ignorance on v by assuming the uniformity of its p.d.f., the p.d.f.
for d is automatically fixed by the constraint (9.29). In this case one can write:

fld,v) = f(d]v) x f(v) o< f(d]), (9.30)

since f(7) is flat. Hence, interpretations A and B are equivalent. But one may also have
followed the opposite path, by choosing f(d) to be uniform inside the allowed region for d,
so obtaining:

fld,v) = f(y|d) x f(d) oc f(v]d). (9.31)
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The two relations are not simultaneously true, and in this scheme, the choice of which p.d.f.
assume as uniform is arbitrary. The arbitrariness reflects the fact that perfect ignorance
on a random variable cannot be translated so blindly into a uniform p.d.f., as it can be
argued for example by noting that the p.d.f. of the inverse of a random variable distributed
uniformly is not uniform, and this cannot mean that we know something on the inverse of
the variable, if we don’t know anything on the variable itself.

In conclusion, we need more information to unambiguously solve such a problem, oth-
erwise we must cohabit with this ambiguity. Hopefully, this ambiguity does not lead to
dramatic difference of the results. The connection to Bayesian reasoning and the usage of
flat priors seems evident.

However, if the previous discussion holds in the very favourable case of perfect knowl-
edge of the observables A%" A™7 and ¢y, there is no need of any mathematical proof to
convince anyone that no additional information can be obtained in the real case of sizable
uncertainties on A% A™<® and ¢4. What can only happen is a further enlargement of the

allowed regions for d and . The conclusions remain unchanged, and interpretations A and
B are still equivalent.

The case of the combination of the constraints (3.7) and (3.8) is analogous, with the
equation of the 95% confidence ellipsoid given by:

1 _Adzr Adzr M)Q
i iz Adzr Adw miz _ Amiz 1 ¢s _ (ZA&S 2
2p (A, ATE) ( - (AT) ) ( I;IE %;{Kﬂ . ( - ) _

where the meaning of the symbols is now obvious. The only difference with the case
discussed previously, is that one now has to use equation (9.20), and not forget to pass
from d to d through (3.10).

9.3 Sensitivity on 7y

The sensitivity on «y is explored for different values of the physics parameters AT'y/T,
Amg, d, 9, v and ¢4. These parameters are varied one at a time, with the other ones kept
to their assumed nominal values. The results are summarized in Table 5.

As it is visible for instance in Figure 5b, the p.d.f. for v (9.12) can be asymmetric for
some of the input physics parameters. For this reason, the sensitivities o(«y) shown in Table
5 are calculated as half the range covered by the 68% highest posterior density confidence
intervals. Furthermore, since secondary fake solutions can be present (see discussion in the
next Section 9.4), these are ignored in the construction of the confidence intervals.
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AT, /T, 0 0.0 0.2
o(vy) 5.2° 4.9° 4.5°
Am, [ps] 15 (20) % 30
o(7) 10° 1.9° 5.0° 8.5°
d 0.1 0.2 0.3) 0.4
o(7) 1.8° 2.7° 19° 9.0°
Y 120° 140° (160°) 180° 200°
o(7) 3.8° 3.8° 19° 6.7° 5.2°
¥ 55° (65°) 75° 85° 95° 105°
o(y) 5.8° 4.9° 4.3° 4.7° 4.7° 4.7°
&, [rad] 0 (—0.04) | —0.1 —0.2
o(7) 19° 1.9° 19° 5.4°

Table 5: Statistical uncertainty on v for one year of data, depending on the true values of
the physics parameters AT’y /Ty, Amg, d, 9, v and ¢s. The physics parameters are varied
one at a time, with the other ones kept to their assumed nominal values. The nominal
values are those enclosed in parentheses.

9.4 Discussion

At this point, it is worth pointing out some remarks. As it can be noted in Figure 5a, the
two 95% confidence regions obtained from the combination of (3.4), (3.5) and (3.7), (3.8)
cross each other not only in the right solution region, but also in other regions where the
p.d.f. calculated by means of the full Bayesian approach described in Section 9.1 does not
extend. This is due to the same reason mentioned at the end of Section 9.2.1, i.e., the two
95% confidence regions are obtained using partial information only.

However, what is really important for the determination of y is the approach described
in Section 9.1. The two 95% confidence regions and the analytical relations from the
combination of (3.4), (3.5) and (3.7), (3.8) are reported in Figure 5a with the sole aim of
providing means to understand the consistency of the technique adopted to extract . They
are of no relevance and not used for the evaluation of the sensitivity on -, as presented in
the previous Section 9.3.

By looking at the 68% and 95% confidence regions for d and v in Figure 5a, as well as
at the p.d.f.s for v and d in the Figures 5b and 5c¢, it is possible to see that a fake solution
at large values of v (v ~ 170°) and small values of d (d ~ 0.05) is obtained (we remind
that all the plots in Figure 5 are obtained for one year statistics and nominal values of the
unknown physics parameters reported in Table 2). Within the parameter ranges used in
the sensitivity scan, these wrong components to the p.d.f. F(d, ) are always observed at
large values of v (v > 160°) and small values of d (d < 0.15), mainly depending on the
true values of d, v and ¥. Furthermore, they are not observed in all the sensitivity scans.

This effect is not due to the method itself, but to the finite resolution on the CP-
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violating observables. It can be eliminated with larger statistics (in the sense of more years
of data taking), or by combining the measurement of d and « with information from other
independent analyses (i.e., start from non-uniform prior Fy(d, ¥, 7) in equation (9.8)). For
this reason, the occasional presence of a wrong solution is ignored in the determination of
the resolutions reported in Table 5.

One final remark is on the assumed validity of U-spin symmetry, which is required not to
be dramatically broken in order to have reliable and useful results from this measurement.
A starting point for a theoretical discussion on the validity of this symmetry, useful for
this study, can be found in [8]. From an experimental point of view, this symmetry can be
checked to some extent from data itself. For example, since the problem is over-constrained
(3 unknowns, d, ¥ and ~, and 4 constraints) as discussed at the beginning of Section 9,
one can release an additional parameter, such as no longer impose d = d’ (or alternatively
¥ = 1), and study the difference Ad = d' — d (or A = 9" —9).

10 Conclusions

The LHCD sensitivity in measuring the CP-violating observables in B?s) — hTh™ decays
has been estimated. Due to the large statistics collected per year of data taking [10], it has
been found that LHCDb can realize very precise measurements of CP-violation with these
decays.

The event generation has been realized by means of a dedicated fast Monte Carlo
simulation, while the extraction of the physics parameters from simulated data has been
achieved by employing an extended maximum likelihood approach.

The combination of B® — 77~ and B? — KT K~ CP measurements can be used to
extract the CKM phase v [8], relying on the validity of the U-spin symmetry of the strong
interaction dynamics. An implementation of this method, based on a Bayesian approach,
has been realized, and the resulting sensitivity on v has been estimated.

The relevance of this measurement can be made immediately visible considering that,
since both b — d + g (v, Z°) and b — 5+ g (7, Z°) penguin processes are involved in the
BY — 77~ and B? — KT K~ decay amplitudes, the value of v determined in this way can
be affected by sizable contributions from New Physics. This would lead to discrepancies
with the values of v predicted by the Standard Model through indirect CKM fits, as well
as with those determined by using other B decays, such as B — DFK¥ [16], which is
generated by pure b — T+ W+ and b — ¢+ W tree processes.
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