CPPM, IN2P3-CNRS et Université d'Aix-Marseille II

Map of the trigger sectors for the muon detector

LHCb Technical Note

Issue:	1
Revision:	2

Reference:	LHCb-2003-161
Created:	May 14, 2002
Last modified:	December 11, 2003

Prepared by:E Aslanides, J.P. Cachemiche, J. Cogan, B. Dinkespiler,
P.Y. Duval, R. Le Gac, O. Leroy, P.L. Liotard,
M. Menouni, L. Tocco and A. Tsaregorodsev

Abstract

In this document, we define the area read by an optical link for each station of the muon detector. We assign an unique identifier to each area named trigger sector.

Document Status Sheet

1. Document title:						
2. Document Reference Number: LHCb-2003-161						
3. Issue	4. Revision	5. Date	6. Reason for change			
1	1	May 16, 2002	First draft			
1	2	December 11, 2003	First public release			

Table of Contents

1	Introduction	4
2	L0 muon trigger numbering scheme	5
3	Maps for trigger sectors	7
	3.1 Station M1	8
	3.2 Station M2 and M3	10
	3.3 Station M4 and M5	12

1 Introduction

In this document, we define the maps of the trigger sector for the muon detector. A trigger sector contains a set of logical channels. Each trigger sector is read by one optical link carrying logical channels from the muon detector to the L0 muon trigger.

The total number of trigger sectors (optical links) as a function of station and region is summarized in Table 1, for a quarter of the muon system.

Station	Region	Number of optical links per quarter of region	Number of pads per optical links	Number of horizontal strips per optical link	Number of vertical strips per optical link	Total number of logical channels per link
	R1					
M1	R2	94				94
IVII	R3	24	24			24
	R4					
	R1	12		16	12	28
M9 on M9	R2	24		4	12	16
	R3	12		4	24	28
	R4	12		4	24	28
	R1	12	24			24
M4 or M5	R2	12		8	6	14
	R3	12		4	6	10
	R4	12		4	6	10

Table 1: Number of trigger sectors (optical links) as a function of station and region for a quarter of the muon system. The content of each optical link in term of logical channels is also given in the last four columns.

In section 2, we define the numbering scheme use to identify each component of the L0 muon trigger. In section 2, we present the maps of the trigger sector and the identifier associated to each of them.

2 L0 muon trigger numbering scheme

The level 0 muon trigger contains many elements: logical pads; logical strips; optical links; processing units; processor boards. An element is identified by a unique number. The pattern of this identifier is the following $Q_i M_j R_k Nx Ny$ where:

- Q_i define a quarter of the muon system as shown in Figure 1;
- M_j defines a station of the muon system (M1, M2, M3, M4, M5)
- R_k defines a region of a station (R1, R2, R3, R4)
- *Nx* and *Ny* define the position of the element within the region as shown in Figure 2.

The reference to a quarter or to a station can be dropped when they are no ambiguity. For example, the numbering scheme is the same for all quarters. Thus, the reference to the quarter can be dropped in most of the case. The numbering of the processing unit does not depend on the station. In that case, the reference to the station can be removed.

Such identifier is used in the software and as far as possible in the hardware.

Figure 1: Cross section of the muon system showing the number for the quarter.

Figure 2: The numbering of an element within a quarter of a region. The values of Nx varies respectively between 0 and 2 NGrid(x)-1 while the value of Ny varies between 0 and 2 NGrid(y)-1. In this example, NGrid(x) = 4 and NGrid(y) = 2. The position of the hashed element is Nx = 5 and Ny = 2.

3 Maps for trigger sectors

Figure 3to 8 show the map of trigger sector for each station. They are two figures per station. The first one is devoted to region R1 and R2 while the second one is for region R4 and R5. In both case only a quarter of the station is shown.

On each figure the logical pad/strip structure is shown with the boundary of the processor board. For completeness we also write the identifier of each trigger sector. The identifier is the same for the connected optical link.

3.1 Station M1

R2	07	R2	217	R227	R237	
R2	06	R2	216	R226	R236	
R2	05	R2	215	R225	R235	
R2	04	R2	14	R224	R234	
R107	R117	R127	R137	Dogo	D000	
R106	R116	R126	R136	h223	R233	
R105	R115	R125	R135	Dooo	D	
R104	R114	R124	R134	R222	5434	
		R123	R133	Doot	D001	
		R122	R132	TLEN	R231	
		R121	R131	DOOD	D 220	
		R120	R130	ΠΖΖΟ	ΠΟυ	

Figure 3: Map for the trigger sectors for station M1 region R1 and R2. The thin lines show the pad structure while the thick ones delimit the Processing Boards. The number at the center of the rectangle is the trigger sector identifier. The identifier is the same for the optical link connected to the trigger sector. Notice that the reference to the station is dropped for readability.

R	107	R4	417	R427	R437
R406		R416		R426	R436
R	R405 R415			R425	R435
R4	104	R4	114	R424	R434
R307	R317	R327	R337	F423	B433
R306	R316	R326	R336		11400
R305	R315	R325	R335	D 400	R432
R304	B314	R324	R334	R422	
		R323	R333	F 421	
		R322	R332		H431
		R321	R331	R420	
		R320	R330		H430

Figure 4: Map for the trigger sectors for station M1 region R3 and R4. The thin lines show the pad structure while the thick ones delimit the Processing Boards. The number at the center of the rectangle is the trigger sector identifier. The identifier is the same for the optical link connected to the trigger sector. Notice that the reference to the station is dropped for readability.

3.2 Station M2 and M3

The organization of the trigger sectors is identical for station M2 and M3.

R203	R213	R223	R233	R243	R253	R263	R273
	R212	R222	R232	R242	R252	R262	R272
R101 R111	8121 R13	1 13143 R151	R131 R171	R241	R251	R261	R271
		R140 R150	R160 £170	R240	R250	R260	R270

Figure 5: Map for the trigger sectors for station M2 (M3) region R1 and R2. The thin lines show the strip structure while the thick ones delimit the Processing Boards. The number at the center of the rectangle is the trigger sector identifier. The identifier is the same for the optical link connected to the trigger sector. Notice that the reference to the station is dropped for readability.

Figure 6: Map for the trigger sectors for station M2 (M3) region R3 and R4. The thin lines show the strip structure while the thick ones delimit the Processing Boards. The number at the center of the rectangle is the trigger sector identifier. The identifier is the same for the optical link connected to the trigger sector. Notice that the reference to the station is dropped for readability.

3.3 Station M4 and M5

The organization of the trigger sectors is identical for station M4 and M5.

R203	R213	R223	R233
R202	R212	R222	R232
R103 R113 R102 R112	R123 R133 R122 R132	R221	R231
	R121 R131 R120 R130	R220	R230

Figure 7: Map for the trigger sectors for station M4 (M5) region R1 and R2. The thin lines show the pad/strip structure while the thick ones delimit the Processing Boards. The number at the center of the rectangle is the trigger sector identifier. The identifier is the same for the optical link connected to the trigger sector. Notice that the reference to the station is dropped for readability.

Figure 8: Map for the trigger sectors for station M4 (M5) region R3 and R4. The thin lines show the pad/strip structure while the thick ones delimit the Processing Boards. The number at the center of the rectangle is the trigger sector identifier. The identifier is the same for the optical link connected to the trigger sector. Notice that the reference to the station is dropped for readability.