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Abstract

We present some straightforward applications of the QCD heavy quark expansion,
stated in previous papers [1-3], to the inclusive widths of heavy flavour hadrons. We
address the question of the Ds lifetime and argue that – barring Weak Annihilation
(WA) – τ(Ds) is expected to exceed τ(D0) by several percent; on the other hand
WA could provide a difference of up to 10 ÷ 20% of any sign. We extract mc, mb

and |Vcb| from ΓSL(D+) and ΓSL(B). The values of the quark masses are somewhat
higher, but compatible with estimates from QCD sum rules; we obtain |Vcb| ≃ 0.043
for τ(B) = 1.4 psec and BRSL(B) = 10.5% . We discuss the associated uncertainties
in the 1/mQ expansion as well as some consequences for other electroweak decays.
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Our theoretical understanding of both exclusive and inclusive heavy flavour decays
has improved considerably over the last few years. This progress has been driven
largely by treatments that involve expanding weak transition amplitudes in terms of
1/mQ, mQ being the mass of the heavy flavour quark, i.e. mQ = mbeauty, mcharm.
In this note we will analyze some phenomenological consequences that such a general
treatment has for inclusive decays of beauty and charm hadrons.

The paper will be organized as follows : in Sect.1 we recapitulate briefly the salient
features of our method which in Sect.2 is then applied to the lifetime of Ds mesons;
in Sect.3 we extract the size of mc from the semileptonic D width and infer the value
of mb; the value of |Vcb| is then determined from the semileptonic B width. In Sect.4
we present our conclusions.

1 General Method

On very general grounds one expects that the spectator ansatz correctly describes
inclusive heavy flavour decays for asymptotically large values of mQ; yet at finite mQ

there arise nonperturbative corrections to transition rates that among other things
generate different lifetimes for the various types of hadrons HQ carrying the flavour
Q. It was shown in refs. [1-5] how these preasymptotic effects can be incorporated
in a self-consistent and systematic way; this will be exemplified now for the case of
charm lifetimes.

The width for the weak decay of a charmed hadron into an inclusive final state f
is obtained from the transition operator that has been expanded into a series of local
operators 1:

Γ̂ =
G2

Fm5
c

192π3
|KM |2{c0(f)c̄c +

c2(f)

m2
c

c̄iσGc + Σi
c3(f)

m3
c

(c̄Γiq)(q̄Γic) + O(1/m4
c)} (1)

where the dimensionless coefficients ci(f) depend on the parton level characteristics
of f and on the ratios of masses of the final state quarks to the mass of the c quark;
KM denotes the appropriate product of the weak mixing angles.

The operators that appear on the right hand side of eq.(1) represent a rather
universal cast, e.g. they control semileptonic as well as nonleptonic transitions and
also distributions like semileptonic spectra:

• the scalar density c̄c describing the ‘quasifree’ decay of the c quark;
• the chromomagnetic dipole operator c̄ iσG c;
• the four-fermion operator (c̄Γq)(q̄Γc). It actually contains terms differing in both

the flavour of the light quark q and the particular Lorentz structure of the γ-matrices
Γi.

The widths for Ds, D0, D+ and Λc decays are then given by the diagonal matrix
elements of the operator Γ̂ from eq.(1) between the corresponding states Ds, D0, D+

and Λc. These matrix elements depend on long distance bound state dynamics; thus
they cannot be evaluated perturbatively. Yet this aspect of the strong interaction

1This expansion is based on a sufficiently large energy release. It is not applicable for beauty decays into
τ leptons, whose partial width is to be calculated explicitly. It is, however, the relevant approach to other
annihilation-induced semileptonic widths [5].

2



cannot be ignored, for even the matrix element of the ‘quasifree’ operator c̄c contains
nonperturbative effects, giving rise to some nontrivial width splitting:

〈Hc|c̄c|Hc〉 = 2MHc
+

1

4m2
c

〈Hc|c̄iσGc|Hc〉 −
1

2m2
c

〈Hc|c̄(i~D)2c|Hc〉 + O(1/m3
c) (2)

with Dµ denoting the covariant derivative; a relativistic normalization has been em-
ployed here. In addition to the chromomagnetic operator another operator appears
now, namely c̄(i~D)2c which describes the kinetic energy of the charm quark in the
gluon background field.

The size of the matrix element of the chromomagnetic operator between the heavy
flavour mesons can be extracted from the hyperfine spin splitting between the pseu-
doscalar and vector states:

1

2Mc

〈D|c̄iσGc|D〉 ≃ 3

2
· (M2

D∗ − M2
D) . (3)

For baryons it vanishes:
〈Λc|c̄iσGc|Λc〉 ≃ 0 . (4)

The following general conclusions can be drawn from this approach:
• The leading nonperturbative corrections arise on the 1/m2

c level.
• There are two distinct sources of such 1/m2

c corrections: (i) The matrix elements of
the d = 5 operator c̄iσGc that appear in eq.(1); its weight depends on which particular
channel is considered. (ii) The expansion of the matrix elements of the ‘quasifree’
operator c̄c, see eq.(2) that affects uniformly all decay modes of a particular hadron.
• These corrections are flavour independent: they do not depend explicitly on the
flavour of the spectator antiquark in the meson; they do, however, differentiate be-
tween mesons and baryons.
• Order 1/m3

Q corrections are produced by the four-fermion operators (c̄Γiq)(q̄Γic)
describing the nonspectator effects of ‘Pauli Interference’ (PI) and ‘Weak Annihila-
tion’ (WA) or ‘Weak Scattering’ (WS) in baryons. These flavour-dependant operators
generate different lifetimes even among the members of the same isomultiplet2.

The analysis of 1/m2
c [1-4] and 1/m3

c [6, 7, 5] corrections shows that their size is
in general quite large in charm decays. For example the chromomagnetic operator
produces corrections ∼ [3(M2

D∗ − M2
D)]/(2m2

c) ≃ 0.4. Higher order corrections can
thus be expected to be still significant and we have to be satisfied with a typically
semiquantitative analysis. For example the theoretical predictions τ(D+)/τ(D0) ∼ 2,
BRSL(D+) ∼ 16% and BRSL(D0) ∼ 8% have to be seen as in agreement with the
experimental findings within the uncertainties of such a treatment.

2 Ds vs. D0 Lifetimes

The lifetimes of D0 and Ds mesons could a priori differ substantially from each
other due to SU(3)Fl breaking and in particular due to a different weight of WA in

2Similar effects leading to the width splitting of the two D0 eigenstates are described by the corresponding
four fermion operator of the form (c̄u)2. Its effect, however, is strongly suppressed and does not shift the
central value of the width; we ignore it in our analysis.
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Γ(D0) and Γ(Ds). A previous analysis [7] suggested WA to be smallish already in
charm meson decays; furthermore 1/mQ expansions naturally lead to the prediction
of SU(3)Fl breaking to be small in heavy flavour decays, namely of the order of several
percent only [1]. Thus one predicts

τ(Ds) ≃ τ(D0) (5)

to first approximation, in agreement with recent E687 data:

τ(Ds)

τ(D0)
= 1.13 ± 0.05 (6)

A rather delicate analysis is required to go beyond the semi-quantitative prediction
of eq.(5) to see whether, indeed, the Ds lifetime should be slightly longer than the
D0 lifetime, as suggested by present data, and by how much.

There are two main sources for lifetime differences among charm mesons, namely
explicitly flavour-dependent 1/m3

c terms and corrections of order msµhadr/m
2
c due to

SU(3)Fl breaking in the ‘flavour-independent’ 1/m2
c contributions.

Attempting to estimate relative corrections of a few percent in nonleptonic D
decays is a bold enough enterprise and we will ignore processes contributing less
than 1% to the total width. In that category are e.g. doubly Cabibbo suppressed
transitions c → ds̄u with a relative rate ∝ tan4 θc ≃ 3 ·10−3 as well as Penguin driven
processes; the latter are suppressed by either tiny mixing angles with the b quark or
by the small mass of the s quark.

Numerically large effects can arise only from Cabibbo-allowed channels: WA is
present in nonleptonic D0 decays, and in semileptonic as well as nonleptonic Ds

decays; it also drives Ds → τν. Cabibbo-suppressed modes c → ss̄u, dd̄u can
produce corrections to the total width of a few percent: WA affects D0, D+ and Ds

decays; in addition to D+ PI intervenes also in Ds modes.
Since the impact of WA as compared to PI is reduced in meson decays [5, 6, 7, 8],

it is natural to compare τ(Ds) with τ(D0) rather than with τ(D+). There are four
distinct sources for a difference in Γ(Ds) vs. Γ(D0) exceeding the 1% level:
(a) The decay Ds → τν. (b) PI in those Cabibbo suppressed Ds decays that are
driven by the quark level transition c → ss̄d. (c) The effects of SU(3) breaking on
the matrix elements of the chromomagnetic and kinetic energy operators. (d) WA in
nonleptonic D0 and in nonleptonic as well as semileptonic Ds decays.

While the corrections listed under (a) and (d) have been discussed extensively in
the literature, the corrections referred to under (b) and especially (c) on the other
hand are much less familiar.

(a) The width for the decay Ds → τντ is completely determined in terms of the
axial decay constant for the Ds meson:

Γ(Ds → τντ ) ≃
G2

Fm2
τf

2
Ds

MDs

8π
|Vcs|2(1 − m2

τ/M
2
Ds

)2 . (7)

For fDs
≃ 210 MeV one gets numerically

Γ(Ds → τντ ) ≃ .03 Γ(D0) . (8)
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This effect necessarily reduces τ(Ds) relative to τ(D0).

(b) PI in Ds appears in the c → ss̄u channel. Its weight is expressed in terms of
the matrix elements of the four-fermion operators

〈Bs|(c̄LγµsL)(s̄LγµcL)|Bs〉 , 〈Bs|(c̄Lγµ
λa

2
sL)(s̄Lγµ

λa

2
cL)|Bs〉 (9)

with known coefficients that are computed perturbatively, see refs.[6, 7, 5]; the hybrid
renormalization [6] of these operators down from the scale m2

c has to be included. The
most reliable way to estimate the effect of PI, we believe, is to relate it to the observed
difference in the D+ and D0 widths. Both PI and WA contribute in reality to this
difference; yet according to a detailed analysis [7, 8, 5] PI is the dominant effect in
mesons (see also the discussion below). It is also worth noting that the size of the PI
correction in D+ as estimated theoretically reproduces the observed width splitting
for reasonable values of fD – provided the hybrid renormalization of the operators
involved is taken into account.

It is easy to see that the structure of the operators responsible for PI in Ds is
exactly the same as in D+ if one replaces the d quark by the s quark and adds the
extra factor tan2 θc; it is then destructive as well. From the assumed dominance of PI
in the D+-D0 lifetime difference one thus arrives at:

δΓint(Ds) ≃ S · tan2(θc)(Γ(D+) − Γ(D0)) ≃ −S · 0.03Γ(D0) (10)

where the factor S has been introduced to allow for SU(3) violation in the relevant
matrix elements of the four-fermion operators 3.

The factor S is expected to exceed unity somewhat; in the factorization approxima-
tion it is given by the ratio (fDs

/fD)2. Various estimates yield the range S = 1÷ 1.7;
to be more specific we adopt S = 1.4. Then we conclude that

δΓint(Ds) ∼ −0.04Γ(D0) . (11)

(c) As already stated in Sect.1 the 1/m2
c corrections are given by the appropriate

expectation values of two dimension five operators. As far as the chromomagnetic
operator is concerned one has the general expressions:

1

2Mc

〈D0|c̄iσGc|D0〉 ≃ 3

2
· (M2

D0∗ − M2
D0) . (12a)

1

2Mc
〈Ds|c̄iσGc|Ds〉 ≃

3

2
· (M2

D∗

s
− M2

Ds
) . (12b)

Since the measured values for D-D∗ and for the Ds-D
∗
s mass splittings are almost

identical, the chromomagnetic operator cannot be expected to induce an appreciable
difference between τ(Ds) and τ(D0).

3SU(3)F l violation also affects the coefficients of the operators that depend on the mass of the quarks
in the final state; those corrections, however, are of the order of (ms/mc)

2 whereas the factor S is linear in
ms/µhadr, and we neglect the former.
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The observation that the hyperfine splitting is largely independent of the flavour of
the spectator can be understood in the following intuitive picture (see ref. [9]): using
a simple constituent description one finds that the chromomagnetic field strength is
proportional both to the chromomagnetic dipole moment of the spectator (or more
generally, of the light degrees of freedom in the D meson) and to the wavefunction
density at the origin, 1/〈r〉3. The former is most naturally expected to decrease when
the (current) mass of the spectator quark increases, whereas the latter is always as-
sumed to increase when going from non-strange to strange particles. Such a behaviour
can explicitly be demonstrated at least in the limit when the spectator becomes heavy
enough as well 4. These two effects may thus offset each other. The conclusion about
the equal strenght of the hyperfine splitting can and of course must be tested in B
mesons where the mass formulae are more reliable due to the larger b quark mass.

The second operator that generates 1/m2
c corrections is the kinetic operator c̄(i~D)2c

which describes a nonrelativistic (“Fermi”) motion of the charm quark. As mentioned
above one expects the spatial wavefunction to be more concentrated around the origin
for Ds than for D mesons. This in turn implies that the mean value of ~p2 is expected
to be larger for Ds than for D mesons; in other words the charm quark undergoes
more Fermi motion as a constituent of Ds than of D mesons. Correspondingly the
lifetime of the charm quark is prolonged by time dilation to a higher degree inside
Ds than inside D mesons. Eq.(2) makes this connection quite explicit [3, 4]: the
factor 1−〈~p2〉/2m2

c appearing in the expression for the transition operator is actually
nothing but the mean value of the Lorentz factor

√
1 − v2 that suppresses the decay

probablity of a particle in a moving frame.
The qualitative trend of this effect is thus quite transparent. However its nu-

merical size is not, at least not yet. One can expect future progress in QCD sum
rules and/or simulations of QCD on the lattice to determine the appropriate matrix

elements 〈Hc|c̄(i~D)2c|Hc〉. Yet for the problem at hand, namely the Ds-D
0 lifetime

difference one can in principle extract the relevant matrix element from the measured
values of meson masses in the charm and beauty sector according to the following
prescription [10]:

1

2MD
(〈Ds|c̄(i~D)2c|Ds〉 − 〈D|c̄(i~D)2c|D〉) ≃

≃ 2mbmc

mb − mc

{[〈MDs
〉 − 〈MD〉] − [〈MBs

〉 − 〈MB〉]} (13)

where 〈MD,Ds,B,Bs
〉 denote the ‘spin averaged’ meson masses: e.g. for D mesons

〈M〉D =
MD + 3MD∗

4
4The situation with the chromomagnetic dipole moment could in principle have been more complicated if

the nonspectator (gluon) light degrees of freedom tended to form a ground state with a nonzero spin inside
a meson; then for an arbitrarily weak interaction of the spectator’s spin the chromomagnetic term would
be still finite. This abstract possibility however contradicts the spectrum of states in heavy quarkonia – it
would produce an additional hyperfine splitting pattern due to interaction of the heavy spins with the spin
of the light degrees of freedom.
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and likewise for the other mesons. Accordingly one finds

∆ΓFermi(Ds)

Γ̄
≃ − mb

mc(mb − mc)
{[〈MDs

〉 − 〈MD〉] − [〈MBs
〉 − 〈MB〉]} . (14)

A 10 MeV shift in any of the ‘spin averaged’ mass terms 〈M〉 in eq.(14) corresponds
numerically to the kinetic energy operator generating approximately a 1% change in
the ratio τ(Ds)/τ(D0). The meson masses have been measured with an accuracy of 2
MeV or better, which is sufficient for our analysis – with the exception of the Bs-B

∗
s

sector. Very recent LEP/CDF data [11] indicate that the SU(3) mass splitting in the
beauty sector is practically the same as in the charm sector, namely MBs

− MB0 ≃
(94.5±4.6 MeV) vs. MDs

−MD ≃ (99.5±0.7 MeV). Nothing is known experimentally
about the B∗

s mass; on the other hand retaining only the leading non-trivial term in a
heavy quark expansion, one would conclude that the hyperfine splitting in the Bs-B

∗
s

system be the same as in the Bd-B
∗
d – simply because the analogous equality holds for

charm mesons. Combining the preliminary measurement of the Bs mass with these
theoretical expectations about the B∗

s mass would lead to the rather surprising result
that the mean momentum of the heavy quark is practically the same in strange and
non-strange heavy-flavour mesons; the Fermi motion of the charm quark could then
cause a difference in τ(Ds) vs. τ(D0) of at most 1%.

This conclusion can be confronted with a general expectation: it is natural to
expect the value of 〈~p2〉 to be at least of order of (400 MeV)2 even in non-strange
heavy mesons5; this by itself would suppress the width in charm by about 3% and
increase the mass of the meson by 50 MeV. Assuming that SU(3) violation increases
〈~p2〉 by a moderate factor 1.5 in the strange system one would then expect at least a
2% decrease in the width of Ds.

We think that this oversimplified yet transparent line of reasoning cannot be ruled
out yet; it would seem quite premature to conclude that the Fermi motion plays a
negligible role in the Ds-D

0 lifetime difference. Namely the chromomagnetic field in
Ds and D may not coinside so closely to predict the B∗

S mass with the necessary
precision. For one has to allow for sizeable corrections to the mass formulae stated
above where only the leading terms in 1/mb and 1/mc have been retained since mc

is not much larger than typical hadronic scales. There is no general reason to expect
that the mass splitting formulae hold to better than 30% accuracy. Taking into
account that the size of the hyperfine splitting in charm mesons constitutes about
140 MeV, such an uncertainty translates into a 3-4% shift in the lifetime ratio, see
eq.(14). Therefore we conclude: (α) The Fermi motion of the charm quark inside
the meson may well prolong τ(Ds) by typically a few percent relative to τ(D). (β)
A better determination of the chromomagnetic field can be obtained from the B
system. Therefore a more definite predictions can be made once the mass of the
vector meson B∗

s has been measured and the experimental uncertainty on M(Bs) has
been decreased.

One further comment is in order here. The discussion given above was concerned
with nonleading corrections to the mass formulae for charm particles that could be
sizeable because of the moderate value of mc. Could there be analogous corrections

5A recent QCD sum rule estimate yielded about 0.5 ÷ 0.6 GeV2 [12].
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to the expansion of the widths of charm particles? In particular there could be a
sizeable deviation from the relation 〈Ds|c̄iσGc|Ds〉 ≃ 〈D|c̄iσGc|D〉; this would show
up as a violation of the prediction MB∗

s
− MBs

≃ MB∗ − MB that is suggested by
a simple extrapolation from charm. This deviation would reflect the weight of non-
leading corrections in the charm system and could a priori have a significant impact
on the width; for the chromomagnetic interaction seems to be more important nu-
merically than the kinetic energy [4]. However we do not expect this to amount to
an important effect. For the chromomagnetic operator appears twice, namely in the
expansion of the transition operator Γ̂, eq.(1), and in the ‘quasi-free’ operator c̄c;
there is an almost complete cancellation between the chromomagnetic contributions
from the nonleptonic and the two semileptonic channels if one uses for the coefficient
c2 in eq.(1) the expression obtained in ref. [1]. Even allowing for a 30% uncertainty
in the coefficient c2 the shift cannot exceed 1% for each 30 MeV in the hyperfine
splitting of D or Ds. (A more accurate prediction had to include the next to leading
perturbative corrections in the coefficient c2; computing them represents a task that
is straightforward in principle, although tedious in practice.)

(d) The numerical impact of WA on charm meson lifetimes is the most obscure
theoretical item in the analysis. The task becomes even harder for our present anal-
ysis addressing a difference in the WA contribution to τ(Ds) and to τ(D0). The
uncertainty centers mainly on the question of how much the WA amplitude suffers
from helicity suppression. In the valence quark description the answer is easily given
to lowest order: the WA rate is suppressed by the ratio m2

q/m
2
c where mq denotes

the largest quark mass in the final state. For a proper QCD treatment one has to
use current rather than the larger constituent quark masses, at least for the 1/m3

c

corrections. That would mean that WA is negligible in D0 decays where the appro-
priate factor reads (ms/mc)

2 ∼< .01 and a fortiori in Ds decays where only non-strange
quarks are present in the final state. (Semi-)Hard gluon radiation cannot circumvent
this suppression [7]. For such gluon corrections – when properly accounted for – drive
the hybrid renormalization of the corresponding four fermion operators which how-
ever preserves their Lorentz structure and therefore does not eliminate the helicity
suppression, at least in the leading log approximation. A helicity allowed amplitude
can be induced only at the subleading αs(m

2
c)/π level and is thus expected to be

numerically insignificant.
On the other hand nonperturbative dynamics can quite naturally vitiate helicity

suppression and thus provide the dominant source of WA. These nonperturbative
effects enter through nonfactorizable contributions to the hadronic matrix elements.
This has been analyzed in considerable technical detail in ref.[5]. The expression
for the weak annihilation operator in Ds as well as its renormalization can be easily
obtained from the general expression for the case of D0 or B0 (see refs. [7, 5]) by
interchanging the colour factors c1 and c2:

Γ̂ann ≃ −G2
F |Vcb|2
6π

(p2δµν−pµpν)( asing(c̄LγµqL) (q̄LγµcL) + aoct(c̄Lγµ
λa

2
qL) (q̄Lγµ

λa

2
cL)) ;

asing = (3c2
2 + 2c1c2)æ

9/2 +
1

3
c2
1 −

1

9
(æ9/2 − 1)(3c2

2 + 2c1c2) ,

8



aoct = 2c2
1 − (æ9/2 − 1)(2c2

2 +
4

3
c1c2) ,

c1 ≃
c+ + c−

2
, c2 ≃

c+ − c−
2

, q = d for D0 decays ,

c1 ≃
c+ − c−

2
, c2 ≃

c+ + c−
2

, q = s for Ds decays ,

æ = [
αs(µ

2)

αs(m2
c)

]1/b , b = 11 − 2

3
nf = 9 . (15)

For each of the two semileptonic channels in Ds one additionally has

asing =
8

9
æ9/2 +

1

9
, aoct = −2

3
(æ9/2 − 1) . (15a)

Numerically in Ds the overall singlet coefficient as is about 9 and the octet one is
−2.3 whereas in D0 they are −.32 and 3.2 respectively.

The reason behind asing being so much larger for Ds than for D0 mesons is that
there is a colour-allowed WA contribution to Ds decays while WA is colour-suppressed
in D0 decays. This colour-allowed contribution is obviously factorizable, however the
factorizable part practically vanishes due to helicity suppression. Appreciable effects
can then come only from nonfactorizable contributions or from O(αS(m2

c)/π) cor-
rections to the leading log approximation. Naive colour counting rules suggest that
nonfactorizable parts in the matrix elements of colour singlet operators are 1/Nc sup-
pressed as compared to those of colour octet operators. This line of reasoning is at
best semi-quantitative, but if one adopts it one would conclude that the weight of
WA is similar in inclusive Ds and D0 decays. As already stated nonleading pertur-
bative corrections are capable of producing helicity unsuppressed contributions even
to factorizable matrix elements; yet also they are colour-suppressed.

It was shown in ref. [5] that a detailed experimental study of the semileptonic
width and the lepton spectrum, in particular in the endpoint region, in D0 vs. D+

and/or in B0 vs. B+ decays would allow us to extract size of the matrix elements
that control the weight of WA in all inclusive B and D decays. Since such data are
not (yet) available we can at present draw only a qualitative conclusion: WA is not
expected to affect the total lifetimes of D0 and Ds mesons by more than 10 ÷ 20%,
see refs. [8, 13]. Furthermore WA does not necessarily enhance τ(Ds)/τ(D0): due to
its interference with the spectator reaction it could even reduce it!

To summarize our findings on the Ds − D0 lifetime ratio: SU(3)Fl breaking in
the leading nonperturbative corrections of order 1/m2

c can – due to ‘time dilatation’
– increase τ(Ds) by 3 ÷ 5%. On the 1/m3

c level there arise three additional effects.
Destructive interference in Cabibbo suppressed Ds decays increases τ(Ds) again by
3 ÷ 5% whereas the mode Ds → τν decreases it by 3%. These three phenomena
together lead to τ(Ds)/τ(D0) ≃ 1.0 ÷ 1.07. Any difference over and above that has
to be attributed to WA. Taking these numbers at face value one can interprete the
recent measurement [14] of the Ds lifetime in turn as more or less direct evidence
for WA to contribute not more than 10-20 % of the lifetime ratio between charm
mesons. As expected [6, 7], it does not constitute the major effect there. Finally the
predictions just stated can be refined by future more accurate measurements, namely
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• of the difference in the semileptonic spectra of charged and neutral mesons in the
charm and in the beauty sector to extract the size of the matrix elements controlling
the weight of WA;

• of M(Λb), M(Bs) and M(B∗
s ) to better than 10 MeV to determine the expecta-

tion values of the kinetic energy operator.

3 Heavy Quark Masses and |Vcb| – phenomenological approach

Conventional wisdom has it – based on considering the simplest perturbative diagrams
– that semileptonic decays are easier to treat theoretically since they are less affected
by the strong interactions. Our analysis of non-perturbative corrections in inclusive
heavy flavour decays [1-5] offers additional evidence in support of this conviction.
For there are smaller and fewer nonperturbative corrections in semileptonic than
in nonleptonic decays of heavy flavour mesons. Even the first, O(α∫ ) perturbative
corrections may appear to be quite large in nonleptonic b decays owing to a relatively
large mass of the charm quark in the final state 6. The semileptonic widths are then
best suited to extract fundamental parameters like quark masses and KM angles.

The semileptonic width of the D meson is given by the expansion

Γ(D → lνX) =
G2

F m5
c

192π3
|Vcq|2 · {(z0(x) − 2αs(m

2
c)

3π
(π2 − 25/4)z

(1)
0 (x))·

·(1 − KD/m2
c +

1

4
GD/m2

c) − z1(x)GD/m2
c + O(α2

s, αs/m
2
c , 1/m

3
c)} (16)

where the phase space factors z account for the mass of the quark q = s, d in the final
state:

z0(x) = 1 − 8x + 8x3 − x4 − 12x2 log x , z1(x) = (1 − x)4 ,

z
(1)
0 (0) = 1 , z

(1)
0 (1) = 3/(2π2 − 25/2)) ≃ 0.41 , x = (mq/mc)

2 (17a)

(the function z
(1)
0 can be found in ref.[15]), while KD and GD denote the kinetic energy

and the chromomagnetic matrix elements respectively:

G =
1

2MD
〈D|c̄iσGc|D〉 ≃ 3

2
· (M2

D∗ − M2
D) , K =

1

2MD
〈D|c̄(i~D)2

2
c|D〉) ≡ 〈~p2〉

2
.

(17b)
It should be noted that the explicit form of the order αs perturbative correction in
eq.(16) refers to the on shell (pole) definition for the charm quark mass.

The expressions given above allow one to determine the mass of the c quark from
the measured semileptonic width, provided the weak mixing angles |Vcs| and |Vcd| are
known. We shall assume in our subsequent analysis that the weak mixing matrix is
determined by the existence of only three generations; the quantities |Vcs| and |Vcd| are
then known with an accuracy that is more than sufficient for our purposes7. Adopting

6We are grateful to V.Braun for presenting explicit arguments in favour of this option and to M.Shifman
for a discussion of this problem.

7There are some direct experimental measurements of these two angles, however they suffer from relatively
large uncertainties for Vcs.
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for the semileptonic widths of D mesons the value of ΓSL = BRSL(D+) · τ−1
D+ ≃

1.06 · 10−13 GeV and assuming 〈~p2〉 ≃ .3 GeV2 we then find

mc = (1.57 ± 0.03) GeV

where we have included only the experimental error, coming mainly from ΓSL. We
used here the values αs(m

2
c) = .33 and ms = 140 MeV.

The smallness of the error in mc quoted above reflects the fact that the width
depends on the fifth power of mc. The value found for mc is then also not very
sensitive to details in the nonperturbative corrections to the spectator picture; these
theoretical uncertainties will be discussed next.

The perturbative O(αs) term reduces the width in eq.(16) by about 25%; the
leading nonperturbative corrections ∼ O(1/m2

c) are of comparable size: the chromo-
magnetic term and the kinetic term yield a reduction by ∼ 25% and by about 6%,
respectively. However all these effects do not generate a prominent change in the value
of mc: the perturbative corrections increase mc by 75 MeV; the chromomagnetic term
and the kinetic energy term force mc up by 85 MeV and by 20 MeV, respectively, for
the stated value of 〈~p2〉. From these numbers we infer that the associated uncertain-
ties in these corrections are rather insignificant. There is some uncertainty concerning
the value of αS(M2

Z) and the scale at which to evaluate αS in charm decays; yet those
effects are quite unlikely to exceed 20% and can be addressed by including O(α2

s)
contributions. Potentially larger errors can be expected from the nonperturbative
effects. As discussed in the previous section the uncertainty in the chromomagnetic
field could conceivably be of order 30% in the charm system. Corrections of similar
size can be expected from higher power terms in the 1/mc expansion. Finally the
exact value of the kinetic term is not known. Yet its impact is generally somewhat
suppressed as compared to the chromomagnetic interaction, and is dominated by the
latter for reasonable sizes [12] of the mean Fermi momentum of the heavy quark; the
dependence on the 〈~p2〉 is illustrated in Table 1. It is worth adding that for obvious
reasons there is no significant dependence of the extracted value for mc on ms when
the latter is varied within reasonable limits for a current quark mass.

Combining all of this we then estimate the present theoretical uncertainty in ex-
tracting mc to be about 30 MeV; to be conservative one may increase it up to say
50 MeV:

mc = (1.57 ± 0.03 ± 0.05) GeV . (18)

A more detailed understanding of the intrinsic limitations on the accuracy of such
approach can be expected [1] in the future from explicit calculations of the higher
order corrections, see e.g. refs. [16, 17].

Quite often another definition of the quark mass is used, namely the MS one
corresponding to a Euclidean renormalization point q2 = −m2

Q. At the one-loop level
they are related by

mMS
Q (−m2

Q) ≃ m
pole
Q · (1 − 4

3

αs(m
2
Q)

π
) ; (19)

eq.(18) then yields 1.35 GeV for this definition of mc.
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It might appear at this point that the fifth power dependence of the decay width on
the mass of the quark allows one to make a rather accurate extraction of mc almost
without any detailed information about the nature of nonperturbative corrections.
Such a conclusion would however overstate the facts: for its validity rests on the
absence of nonperturbative corrections of order 1/mQ in the total widths, as proven in
refs. [1, 2]. This explained a posteriori why simple minded estimates made a long time
ago that ignored nonperturbative corrections yielded a charm quark mass of around
1.5 GeV. The real shortcoming of these estimates was the following more subtle
point: in these models one cannot distinguish between the mass of the charm quark

and of the charm hadron in an unambigous fashion; not surprisingly the estimates
numerically fell somewhere in between. This alternative of course is a reformulation
of the problem of nonperturbative 1/mQ corrections to widths. The QCD approach
ensures that if mc is understood as the (current) quark mass then these corrections
are absent! This is a consequence of the conservation of the colour flow in QCD as
can be seen by simple quantum mechanical arguments (see ref. [17] for details).

Having extracted a value for the charm quark mass one can then determine the
mass of the beauty quark by employing an expansion of the heavy flavour hadron
masses in terms of the heavy quark mass [10]:

mb − mc =
MB + 3MB∗

4
− MD + 3MD∗

4
+ 〈~p2〉 · ( 1

2mc
− 1

2mb
) + O(1/m3

c , 1/m3
b) ;

(20)
unfortunately the accuracy of this expansion is obviously controlled by the charm
quark mass. Note that the absence of the perturbative corrections on the left-hand
side of eq.(20) implies that pole masses are assumed. For the same value of the
kinetic term the central value appears to be 5.0 GeV and 4.5 GeV for the pole and the
MS masses of the b quark, respectively. For such indirectly determined mass of the
beauty quark the dependence on the size of 〈~p2〉 is more significant as is illustrated
by Table 1.

The same consideration fixes also the value of the scale Λ̄ that determines the
asymptotic mass difference between the mass of the heavy flavour hadron and the
mass of the constituent heavy quark. For the family of the lowest lying pseudoscalar
and vector mesons one then has Λ̄ ≈ 300 MeV. This value is also correlated with the
size of the kinetic term, and the latter seems to represent now the main uncertainty
in the value of Λ̄. Note that we have shown in a recent paper [18] that there is no
lower bound on Λ in contrast to a recent claim [19]; a priori Λ could have been even
negative (see also [17]).

Above we have discussed only the most obvious uncertainties that one encounters
in the numerical evaluation of the heavy quark mass. There is a number of additional
purely theoretical corrections that in principle can affect them. Those corrections
were discussed in some detail in a recent paper [16]; a more comprehensive analysis
will be given in a forthcoming publication [17]. We therefore do not dwell on them
here and only comment that they are not expected to affect significantly the values
extracted for the masses.

Turning to the extraction of the quark mixing parameter |Vcb| we first note that
phenomenological studies have shown that the total widths and lepton spectra in
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semileptonic B decays depend mostly on the difference mb − mc rather than on the
absolute values of the heavy quark masses. In the framework of the heavy quark
expansion these findings are the reflection of the fact that the c quark is rather heavy
even as seen from the scale of the b quark mass; they can be understood as meaning
that the error one makes in using the measured masses of the charm and beauty
hadrons rather than those of the charm and beauty quarks is reduced relative to its
natural scale 1/mQ. This error can actually be reduced even further by using values
for the quark masses as they were extracted above from the widths of D mesons. A
value for |Vcb| can then be obtained from the measured semileptonic width.

From a theoretical point of view such an inclusive method has some clear advan-
tages over an extraction of |Vcb| from the exclusive decays B → D, D∗lν suggested
by the Heavy Quark Symmetry – even when taken at the “gold plated” point of zero
recoil [22]. For the accuracy of the symmetry is governed by the lightest quark mass
in the process, namely 1/m2

c ; on the other hand the expansion parameter for the
inclusive widths is an inverse power of mb, and this method can be applied even for
light quarks in the final state.

The necessary expression for the width is given by eq.(16) where the obvious
substitutions b for c and c for s are made. Using the values τB ≃ 1.4 ps and
BRSL(B) ≃ .105 8 we arrive at the results shown in Table 1. The main depen-
dence is again due to the kinetic term, however now it is rather weak; the uncertainty
associated with the value of αs is now smaller owing to the higher energy scale. It is
tempting to conclude then that this method provides us at least three times better
accuracy for the extraction of |Vcb| than other methods discussed so far.

The values for mc and mb that we have obtained in this Section are around the
upper end of existing estimates. More conventional values emerge if one uses a smaller
kinetic energy term of about (.4 GeV)2. It is worth noting that the theoretical pre-
dictions of the QCD sum rules for Λ̄ prefer smaller values of about 400 MeV [21];
using this smaller value of Λ̄ decreases the predicted value of the kinetic term [12].
On the other hand it is most natural to expect [17] the mean value of the Fermi mo-
mentum not to exceed significantly Λ̄. Therefore we think that values for the b quark
mass around 4.95 GeV together with a relatively small scale for the Fermi momenta
of the order of 300 ÷ 500 MeV are both selfconsistent and acceptable phenomenolog-
ically. This hypothesis can and will be cross-checked in detailed study of spectra in
semileptonic and radiative B decays.

4 Conclusion

In this note we have applied a systematic expansion in 1/mQ that exists for the inclu-
sive widths, to a few phenomenologically interesting issues concerning the properties
of charm and beauty mesons. The general method we use has been suggested earlier
[1, 2, 6] and refined in subsequent papers [3, 4, 5, 16, 17]. The main object of our
analysis was the pattern of the charm meson widths, including the Ds width.

Generally the size of preasymptotic nonperturbative effects is almost of order unity
in charm; this makes it difficult to arrive at conclusions that are both definite and

8For the sake of definiteness we used Γsl(b → u) = .01Γsl(b → c).
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reliable. The detailed classification of the corrections enable us to conclude neverthe-
less that the width splitting between Ds and D0 must be reasonably small. There
are four sources for this difference that can produce effects on the few percent level:
1) A larger Lorentz reduction of the decay probability for the c quark inside the Ds

meson due to a more rapid Fermi motion. 2) Destructive interference in the Cabibbo
suppressed decays of Ds; each of these effects are estimated to decrease the width of
Ds by 3 ÷ 5%. 3) The mode Ds → τντ increases it by about 3%. 4) Nonleptonic
decays of both mesons are affected by WA which is present also in semileptonic de-
cays of Ds. According to the analysis of ref. [5] all hadronic parameters governing
the strength of WA in different decays can be obtained by a careful comparison of
the lepton spectra in semileptonic decays of charged and neutral B mesons. However
such data do not exist for now; therefore the size of WA remains an unknown and –
unfortunately – the potentially largest effect numerically in τ(Ds)/τ(D0).

Other lines of reasoning suggest that the impact of WA on inclusive charm decays
can hardly be large: presumably it does not exceed 10 ÷ 20% of the total D0 width;
furthermore it can be of either sign! We see therefore that the data on the lifetimes
of charm mesons fit reasonably well the theoretically expected pattern. On the other
hand the existing experimental determination of the Ds lifetime can be viewed as
some phenomenological constraint on the non-factorizable matrix elements of the
four-fermion operators in charm mesons:

|f
2
Ds

f 2
D

(g
(Ds)

singl − 0.25g
(Ds)
oct ) + 0.03g

(D)

singl − 0.3g
(D)
oct| ∼< 0.01 · (200 MeV

f 2
D

)2 (21)

where we have used the notations introduced in eq.(16) of ref. [5]. Of course the
extremely small number in the rhs of eq.(21) should not be taken too literally.

The theoretical prediction for the Ds lifetime can be further clarified by accurate
measurements of the masses of Bs and B∗

s masses on the one hand and on the other
a better understanding of the scale of Fermi motion in heavy hadrons which can be
obtained from an accurate analysis of spectra in semileptonic and/or radiative decays
of beauty particles.

Similar preasymptotic corrections splitting the widths of beauty particles are ex-
pected to be essentially smaller [7]. A careful analysis of the QCD corrections [23, 7]
has lead to the observation that the width difference between the two mass eigenstates
in the Bs-B̄s sector quite probably represents the largest numerical difference in the
family of beauty mesons:

∆ΓBs

Γ̄
≃ .15

f 2
Bs

(200 MeV)2
(22)

This estimate is valid for fBs
– which acts as an expansion parameter – not too

large. To a very good approximation one can identify the two mass eigenstates as
CP eigenstates. Obviously the upper bound for the width difference is reached when
all final states in the decay channel b → cc̄s for the decays of Bs have the same CP

parity and |∆ΓBs
| ≃ 2Γ(b → cc̄s). The rough estimate for this partial decay width

is given by the parton expression and constitutes about 20%, therefore the estimate
eq.(22) is sensible up to fBs ∼< 300 MeV.
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A straightforward, in principle, application of a 1/mQ expansion of inclusive decay
widths [1, 2] is the determination of the mass of charm quark from the semileptonic D
width, then obtaining the b quark mass from the mass formulae and subsequently ex-
tracting |Vcb| from the B meson semileptonic width. In charm non-perturbative effects
dominate the more familiar perturbative corrections: the former constitute about 35%
whereas O(αs) corrections yield approximately 25%. None of these however produce
a significant change in the resulting value of mc owing to the fifth power dependence
of the decay width on the mass. In fact this conclusion is a consequence of the non-
trivial fact that there are no corrections of order 1/mc to the heavy flavour widths,
as shown in refs. [1, 2]; this is a peculiar feature of the gauge nature of the strong
interaction producing the bound state in the initial state and driving hadronization
dynamics in the final states, and it reflects the conservation of the colour current.
A reasonable estimate for the theoretical uncertainty of the value of the c quark is
about 50 MeV and one can count on it being decreased in the future.

The masses of b and c quarks obtained in such a way naively seem to be some
100 MeV higher than the conventional values inferred from the direct QCD analysis,
and in particular from estimates based on charmonium sum rules. In fact a careful
analysis9 undertaken recently suggested a rational explanation of this difference in
the framework of QCD. We will report on it in the forthcoming paper [17].

Using the observed semileptonic width of B mesons and including the leading
corrections to the parton formulae one obtains the value of the KM mixing angle
defining the strength of the b → c transitions:

|Vcb| ≃ 0.043 .

This method seems to be the most accurate and realiable way to obtain the value
of |Vcb|. For its accuracy is governed by powers of 1/mb as confronted to the decays
into exclusive final state D and D∗ [22] where actually the c quark sets the mass
scale for the corrections to the Heavy Spin-Flavour Symmetry. The corrections to the
inclusive decays have been calculated explicitely through order 1/m3

b and in principle
the expansion can be extended, whereas 1/m2

c effects for the exclusive decays [24]
may already constitute the limiting factor for improving the estimates.

Our expressions for the semileptonic decay widths can be easily translated into
the semi-phenomenological parameters zc and zu that were introduced long ago to
account for the final quark mass suppression in inclusive semileptonic widths as well
as for all other possible corrections to the parton formulae. Their usual definition was

ΓSL(b → q) = zq ·
G2

F (5 GeV)5

192π3
|Vqb|2 , q = u, c . (23)

For the thus defined factor zc we get values varying from .36 at small 〈~p2〉 to .43
for 〈~p2〉 ≃ 0.8 GeV2; these values seem to agree with the estimates obatined from
experiment using fits based on some phenomenological models [25] of a heavy quark
decay. The ratio zu/zc ≃ 2.08 appears to be independent of the scale of the Fermi
motion, which also reproduces the expectations that one inferred from those models.

9It was elaborated in joint discussions with M.Shifman and A.Vainshtein; we are grateful for their per-
mission to mention it prior to publication of that result.
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The phenomenological extraction of mc and mb enables one to determine the
hadronic parameter Λ̄ which in the nonrelativistic description of a heavy hadron plays
a role of the constituent mass of the spectator(s). As was stated in ref. [5] Λ̄ actually
completely defines the leading, 1/mQ, non-perturbative shift in the average invariant
mass of the final hadrons in semileptonic or radiative decays. In the quasi two particle
decays like b → s + γ the correction is given by δm2

np ≃ Λmb + O(µ2
hadr) if one

neglects the mass of strange quark. We see that the average final state hadronic mass
is increased by some 1.5 ÷ 2 GeV2 as compared to a perturbative estimate. We note
that once again the leading nonperturbative effects seem to be at least comparable
in size to the perturbative corrections [26] even in beauty decays. Accordingly they
have to be included in a proper quantitative treatment; together with the effect of
the Fermi motion the Λ parameter describes the significant 1/mb corrections to the
spectrum of photons, which in turn define the relative weight low lying exclusive final
states can command in such decays.

Note added: While this paper was written up we become aware [27] of the work of
ref.[28] which have a significant overlap with the part concerning the determination
of quark masses and the mixing parameter. At that point we present a more detailed
discussion of nonperturbative corrections as they are relevant for extracting mc, mb

and |V (cb)|. The two treatments thus complement each other. As was mentioned in
Section 3 we also believe that using the upper bound of Guralnik and Manohar – that
constitutes an important element of the analysis of paper [28] – is irrelevent [18] in
this context.
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〈D|c̄(i~D)2c|D〉
2MD

mc, GeV mc (MS), GeV mb, GeV mb (MS), GeV Λ, GeV |Vcb|
(0.1 GeV)2 1.55 1.33 4.89 4.43 0.422 0.0442
(0.3 GeV)2 1.56 1.34 4.91 4.45 0.390 0.0437
(0.5 GeV)2 1.57 1.35 4.96 4.50 0.327 0.0427
(0.7 GeV)2 1.59 1.36 5.03 4.56 0.234 0.0413
(0.8 GeV)2 1.60 1.37 5.07 4.60 0.177 0.0404
(0.9 GeV)2 1.61 1.39 5.12 4.64 0.112 0.0395

Table 1: Dependence of the extracted parameters on the size of the kinetic energy
operator in nonstrange mesons. We used here the strength of the QCD running
coupling corresponding to ΛQCD = 180 MeV.
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