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Abstract

The apparent gap between the measured and the expected value for the semileptonic

branching ratio of B mesons has become more serious over the last year. This is due to the

improved quality of the data and to the increasing maturity of the theoretical treatment

of non-perturbative corrections. We discuss various theoretical options to reduce the

semileptonic B branching ratio; among the more spectacular resolutions of the apparent

puzzle is the possibility of an unorthodox enhancement in non-perturbative corrections or

even of an intervention by `New Physics'. Phenomenological implications of such scenarios

are pointed out.
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1 The Problem

Over the last few years the measured semileptonic branching ratio of B mesons has

consistently turned out to be noticeably smaller than theoretical expectations. Up

until recently this could be waved o� as no worse than an embarrassment for theory

or experiment since both were somewhat uncertain in their pronouncements. Now

the situation has changed in two respects: on the one hand the data became more

mature, both statistically and systematically; on the other hand a theoretical ma-

chinery has been developed that is genuinely based on QCD and that allows treating

non-perturbative corrections to inclusive heavy avour decays in a quantitative and

systematic way [1, 2, 3].

The situation is as follows: A `model-independent' ARGUS analysis yields [4]

BRSL(B) = 9:6� 0:5� 0:4% (1)

whereas the CLEO collaboration �nds [5]

BRSL(B) = 10:65 � 0:05 � 0:33% (2)

using the model of Altarelli et al. [6] for the shape of the lepton spectrum. One
should keep in mind that this model provides a good approximation to the true
QCD lepton spectrum as calculated through a 1=mQ expansion [7]. The present

data thus clearly suggest:
BRSL(B)jexp � 11%: (3)

In a naive parton model where even perturbative QCD is ignored one obtains

BR(b! cl�) ' 15 � 16%; (4)

i.e. a non-leptonic enhancement of � 50% has to be found to reproduce the data.
The main assertions of this paper are:
� Non-perturbative corrections a�ect inclusive non-leptonic widths of B mesons

only on the few per cent level. To �rst approximation they can be ignored in
calculating BRSL(B). They cannot reduce the prediction to the 11% level or below

{ as long as QCD can be treated in a `standard' fashion to be de�ned later.

� It is then mainly the perturbative corrections that control the size of BRSL(B).
They indeed generate a non-leptonic enhancement thus reducing BRSL(B). At

present there are still some missing pieces in the perturbative analysis; yet making
reasonable conjectures about them one can conclude

BRSL(B)jQCD � 12:5%: (5)

� An intriguing problem has arisen, which warrants serious consideration: how

can one �nd an additional non-leptonic enhancement of at least 15 to 20% to satisfy
the bound of eq. (3)?
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� A priori an explanation could invoke one of two major surprises, namely the

existence of `anomalously' large non-perturbative contributions from QCD { the

more conservative of the two options { or the intervention of some new interactions

coupling only to quarks, but not to leptons { clearly the more radical option.

� Neither of these options appears particularly natural. Since they are supposed

to generate at least � 20% of all B decays they could well lead to further phe-

nomenological consequences: lifetimes di�erences between B� and Bd mesons of

20-30% rather than the expected < 10%; likewise lifetime di�erences between �b and

Bd that exceed 10-15%. The features of non-leptonic �nal states { say the charm

content or decay multiplicities { should exhibit some signi�cant di�erences to what

is expected in the standard scenario.

The remainder of this paper will be organized as follows: in Sect. 2 we discuss the

perturbative corrections; in Sect. 3 we analyse the size of various non-perturbative

corrections; in Sect. 4 we describe phenomenological consequences of various possible

resolutions for the puzzle posed by the observed semileptonic branching ratio before

giving an outlook in Sect. 5.

2 General Procedure and The Leading Perturba-

tive Corrections to BRSL(B)

The transition operator T̂ (b! f ! b) describing the forward scattering of b quarks
via an intermediate state f to second order in the weak interactions is given by [8]

T̂ (b! f ! b) = i

Z
d4xfL(x)L(0)gT (6)

with L denoting the relevant e�ective weak Lagrangian and f:gT the time-ordered
product. A Wilson operator expansion (OPE) allows the expression of the non-
local operator T̂ as the in�nite sum of local operators of increasing dimension with
coe�cients that contain higher and higher powers of 1=mb. Long distance dynam-
ics determines the on-shell matrix elements of these local operators whereas short

distance dynamics controls their c number coe�cients. One conventionally com-

putes the latter in perturbative QCD; we refer to this procedure as the `standard'
prescription for QCD. It is by no means exact: there are, even at short distances,
non-perturbative contributions that a�ect the coe�cient functions. They are how-

ever estimated to be of no practical signi�cance in B decays { a point to which we

will return later on.

The lowest dimensional operator that appears in the OPE and dominates for

mb !1 is �bb. Flavour symmetry �xes the leading term in its matrix element:

hBj�bbjBi=(2MB) = 1 +O(1=m2
b
) ; (7)

where we have used the relativistic normalization for the B meson state. It is this
term that reproduces the Spectator Model; the coe�cient of �bb thus represents the

purely perturbative corrections.
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The most detailed perturbative analysis of BRSL(B) in the parton model has

been undertaken in ref. [9] (AP in what follows). We will critically review its main

points.

From the Lagrangian for semileptonic b! c transitions

LSL =
GFVbcp

2
(�c��b)(�e���) (8)

one obtains the semileptonic width of B mesons:

�SL = �(b! cl��l) = �0I0

 
m2

c

m2
b

;
m2

l

m2
b

; 0

!�
1 � 2�s

3�
f

 
m2

c

m2
b

;
m2

l

m2
b

!
+ O(�2

s
)
i
; (9)

where we have used a notation similar to that of AP:

�0 �
G2
F
m5

b
jVbcj2

192�3
; (10)

the phase-space factor I0 accounts for the masses of the fermions in the �nal state
[10]. The subscript 0 indicates that I0 is the phase-space factor in the `parton'
expression for �. In the electronic and muonic semileptonic decay rates we can

neglect the lepton masses; this leads to the simple expression

I0(x; 0; 0) = (1� x2)(1 � 8x+ x2)� 12x2 lnx: (11)

With � leptons in the �nal state we need to know I0(x; y; 0); its explicit expression
can be found in ref. [10]. The function f plays the analogous role in the O(�s) term,

f(0; 0) = �2 � 25

4
:

There are two classes of non-leptonic decays. The e�ective weak Lagrangian for
b! c�ud transitions is given by

L(�) = GFp
2
VbcVud(c1O1 + c2O2) (12)

where O1;2 are operators,

O1 = (�c��b)( �d��u); O2 = (�ci��b
j)( �dj��u

i): (13)

with �� = �(1 + 5). The Wilson coe�cients c1;2 account for the radiative correc-

tions from virtual gluon momenta from � up to MW ; they have been determined

from perturbation theory [11, 12]:

c1 =
1

2
(c+ + c�); c2 =

1

2
(c+ � c�); c� =

"
�s(�)

�s(MW )

#
d�

: (14)
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(The penguin contribution showing up at the 1% level is omitted). The non-leptonic

enhancement factor (beyond the global colour factor NC) is then given by

� =
c2
�
+ 2c2+
3

: (15)

The b ! c�cs transitions are treated in a completely analogous fashion with the

obvious substitutions of �c for �u and s for d.

For the non-leptonic widths one then obtains:

�(b! c�ud) + �(b! c�us) = 3�0 I0

 
m2

c

m2
b

; 0; 0

!
� J: (16)

For the channel b! c�cs an analogous expression holds, with the substitution:

I0

 
m2

c

m2
b

; 0; 0

!
! I0

 
m2

c

m2
b

;
m2

c

m2
b

; 0

!
; (17)

where

I0(x; x; 0) = v(1� 14x � 2x2 � 12x3) + 24x2(1� x2) ln
1 + v

1 � v
; (18)

v =
p
1� 4x:

A few remarks are in order concerning eqs. (16,17):

(i) In the phase-space factor I0 the light quark masses are neglected. To obtain
a self-consistent QCD treatment one has to employ current quark masses; since
m2

s
=m2

b
� 10�3 one can then ignore even the strange quark mass.

(ii) The enhancement factor � is produced by the anomalous dimensions of the
operators in the e�ective weak Lagrangian L(�) (see eq. (12)) in the leading log

approximation, with � the normalization point.
(iii) The last factor, J , represents the next-to-leading corrections. These appear as
�s contributions in the e�ective Lagrangian L (coming, in particular, from next-
to-leading terms in the anomalous dimensions), as well as �s corrections in the
calculation of the non-leptonic width �, eq. (16). For massless quarks in the �nal

state the expression for J simpli�es considerably and is given in AP. We are using

this expression for b! c�ud as well as for b! c�cs transitions.
The e�ective Lagrangian L(�) includes e�ects due to gluon exchanges with vir-

tual momenta from MW to �; loop momenta below � should be taken into account

in the evaluation of �. The physical result, the product �J , must not depend on

�, of course, and it is the � dependence of the factor J that compensates for the �

dependence of �, eq. (14).

The concrete expressions for � and J derived and used in AP satisfy the property
of � independence of �J to order �s, but not �

2
s
. This is the reason why the non-

leptonic widths obtained in AP depend on the choice of �, the variation of �J being
rather signi�cant numerically. It is quite conceivable that there is a single value of
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� which, when substituted in �J , reproduces the correct coe�cient in the �2
s
terms

in �J . Since the �2
s
terms are unknown at the moment, one can only speculate on

what this value of � might be, relying on heuristic arguments.

For years it was assumed that the appropriate choice is � = mb. If one then

uses the anomalous dimensions obtained in the leading [11] and next-to-leading [12]

approximations one arrives at

� � 1:1; J � 1:15: (19)

(Notice that the next-to-leading order e�ect is stronger than the leading one; yet

both are relatively small.)

The aim of the authors of ref. [9] was to push the theory to the extreme values it

can produce. To this end they have chosen the normalization point � as low as mb=2.

Then in the scenario with �s(MZ) = 0:125 { which is somewhat on the large side

of the present world average { the enhancement factors � and J are both increased:

� � 1:27, J � 1:19. The di�erence between 1:1� 1:15 = 1:26 and 1:27� 1:19 = 1:51

measures the uncertainty in the coe�cient of (�s=�)
2. Notice that the two options

considered in AP correspond to the di�erence of roughly 30 in this coe�cient!
It might be tempting to motivate the choice � = mb=2 as follows. In at least a

part of the next-to-leading corrections the characteristic o�-shellness is smaller than
m2

b
. Consider, for instance, the diagram of �g. 1, where the gluon is exchanged

between the u and d lines. (Let us note in passing that for the one-gluon exchange

this is the only correction contributing to the ratio �(b! c�ud)=�SL.) This correction
is identical to the O(�s) term in the ratio R = �(e+e� ! hadrons)=�(e+e� !
�+��) and is equal to

1 +
�s

�
+O(�2

s
): (20)

The � dependence of �s is hidden in the �
2
s
terms. In e+e� it is known that choosing

the argument of �s to be equal to the invariant mass of the quark pair does not lead
to large �2

s
terms. In b decays the invariant mass of the �ud pair is integrated over

a range limited from above by mb. A characteristic value of the invariant mass is
close to mb=2.

The e�ective reduction of � does not apply, however, to other contributions. An

example of a graph with a typical virtual mass of m2
b
is shown in �g. 2, where the

closed circles denote the four-fermion vertices from the e�ective weak Lagrangian,

eq. (12). In this diagram the contribution from gluons with loop momenta below
mb is suppressed in a power-like way.

Setting � = mb=2 in the whole expression for �J thus represents an unnatural
or `twisted arms' scenario. We conclude that this `twisted arms scenario' most

likely yields an overestimate for the enhancement factor �J . Non-extreme estimates

presented in AP, with a lower value of �s(MZ) and the normalization point at mb,

result in a weaker enhancement of the non-leptonic channels corresponding to

BRSL(B) � 12:5% (21)
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with the lower bound attained for

mb ' 4:6 GeV; mc ' 1:2 GeV; ms ' 0:15 GeV; mu;d ' 0 : (22)

Unless one has actually computed the �2
s
terms, one cannot make categoric state-

ments; nevertheless it seems fair to say that the natural prediction of perturbative

QCD for BRSL(B) exceeds the experimental number by at least 1.5 percentage

points.

It would seem natural { and up until recently it would have been quite appro-

priate { to attribute the remaining di�erence between the expectation expressed

in eq. (21) and the data, eq. (3), to non-perturbative corrections further enhanc-

ing the non-leptonic width. In the next section we will show that such a `deus ex

machina' is unlikely to work this time around, at least not in `standard' QCD. This

opens a window for exotic mechanisms which might contribute as much as 20 to

30% of the total non-semileptonic width. Below it will be argued that `standard'

non-perturbative e�ects cannot explain such a large gap.

3 Non-perturbative Corrections to BRSL(B)

As stated in the previous section, non-perturbative corrections due to soft quark-
gluon interactions are incorporated through the appearance of higher-dimensional

local operators in the OPE and through the B meson expectation values of all
operators, including �bb. We have already mentioned that the c-number coe�cients
in the OPE are computed perturbatively and that we refer to this prescription as
the `standard' version of QCD [21].

Since there is no dimension four operator that can contribute to T̂ (b! f ! b)

[13, 1, 2], non-perturbative corrections to totally integrated rates appear �rst at
the 1=m2

b
level through the matrix elements of dimension �ve operators. The ab-

sence of corrections of order 1=mb has two important consequences: (i) The natural
scale for non-perturbative corrections in beauty decays is of order a few per cent:
(�had=mb)

2 � 0:04 for �had � 1 GeV. (ii) It establishes that one has to use current

quark masses for a self-consistent QCD treatment and thus removes a conceptual

ambiguity inherent in phenomenological models.
The 1=m2

b
corrections have already been analysed in the literature and we will

review them here. In addition we will estimate the contributions from dimension

six operators.
The semileptonic and non-leptonic widths through order 1=m2

b
are given by:

�SL(B) = �0 � I0(x; 0; 0)
hBj[�bb]�jBi

2MB

(23a)

�NL(B ! [C = 1]) = �0 �NC �
(
A0I0

hBj[�bb]�jBi
2MB

� 8A2I2(x; 0; 0)

m2
b

hBjOGjBi
2MB

)
;

(23b)

6



[�bb]� = �bb� 2[I0 � 1
2
x d

dx
I0]

I0
� OG

m2
b

; OG =
1

2
�bi� �Gb (23c)

where I0 and I2 are phase-space factors: I0(x; 0; 0) is de�ned in eq. (11) and

I2(x; 0; 0) = (1 � x)3; x = (mc=mb)
2;

A0 = �J and A2 = (c2+ � c2
�
)=2NC represent the radiative QCD corrections. Due to

the colour ow, the operator OG in eq. (23b) arises from the interference of the two

operators O1 and O2, eq. (13), see refs. [1, 2].

The matrix element hBj[�bb]�jBi enters as an overall factor into both the semilep-

tonic and non-leptonic width; its value does therefore not a�ect the branching ratio.

Furthermore hBjOGjBi can be determined from the observed B� � B mass split-

ting since OG represents the chromomagnetic operator (OG ! ��b~� � ~Bb in the

non-relativistic limit):

1

2MB

< BjOGjB >� �2
G
=

3

4
(M2

B�
�M2

B
) ' 0:37 GeV 2: (24)

Altogether one thus �nds through order 1=m2
b

�SL(B) ' �0 �
hBj�bbjBi
2MB

� [I0(x; 0; 0) +
�2
G

m2
b

(x
d

dx
� 2)I0(x; 0; 0)] (25a)

�NL(B) ' �0 �NC �
hBj�bbjBi
2MB

� fA0[�I0(x) +
�2
G

m2
b

(x
d

dx
� 2)�I0(x)]�

8A2

�2
G

m2
b

� [I2(x; 0; 0) + I2(x; x; 0)]g (25b)

with �I0(x) � I0(x; x; 0) + I0(x; 0; 0), see eqs. (11,18). The contributions from
b! c�cs transitions are included through I0(x; x; 0) and

I2(x; x; 0) = v

�
1 +

x

2
+ 3x2

�
� 3x(1 � 2x2) log

1 + v

1 � v
: (26)

It is evident from eq. (25b) that the operator OG generates a non-leptonic enhance-
ment since A2 < 0. We will now discuss how large such an e�ect could be, with a
bias towards enhancing this correction as much as reasonably possible. This bias

expresses itself in the choice of the scale � and the values for mb and mc.

Following ref. [14] we adopt

m
(pole)
b

= 4:8 GeV: (27)

From the observed B �D mass di�erence one deduces m
(pole)
b

�m(pole)
c

' 3:34 GeV
and thus m(pole)

c
' 1:45 GeV. The choice of the pole mass for charm is not quite
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appropriate for B ! D +X decays since the e�ective o�-shellness of charm quark

is of order m2
b
=2. We will therefore use

m(eff)
c

� 1:35 GeV: (28)

Such values for mc lead to quite a sizeable weight for b ! c�cs transitions, namely

close to one half of that for b! c�ud (although it is a little bit smaller than in AP);

we will return to this point later on.

Adopting a scale � as low as mb=2 (and �s(MZ) = 0:125) in the leading-log

expression for c� we get

c+ ' 0:85; c� ' 1:45 : (29)

Putting everything together we �nd

�BRSL(B) � �0:02BRSL(B) � �0:003; (30)

i.e. the leading non-perturbative correction cannot close the gap between the theo-
retical expectation and the present trend in the data.

One then turns to discussing non-perturbative corrections induced by higher-
dimensional operators. There one has to analyse anew only those contributions
that are non-factorizable, i.e. where the �ud quark loop is connected to the rest
of the diagram. Those corrections that are localized `inside' this loop { and these
factorizable non-perturbative corrections certainly do exist { are the same as in
e+e� annihilation cross sections or � decays. In the integrated rate they are known

[15] not to exceed � 2% and can be disregarded. Let us also note in passing that
the factorizable condensate corrections start from m�4

Q
[21], and that the hard non-

perturbative e�ects are suppressed by even higher powers of m�1
Q

[22].
There are two classes of dimension six operators producing 1=m3

b
corrections,

namely
� four-quark operators

O4q = (�b�q)(�q�b); (31)

with q denoting light-quark �elds and � a combination of  and colour matrices;
they are generated by one-loop graphs as shown in �g. 3.

� Quark-gluon operators containing �b and b �elds, the gluon �eld strength tensor

G�� and an additional covariant derivative. These operators arise from two-loop
diagrams, as shown in �g. 4; hence their coe�cients are numerically quite suppressed

relative to those of the four-quark operators. Using the equations of motion, in
particular

iD0b = �(~� ~D)2

2mb

b+O(m�2
b
); (32)

it can be shown [16] there are only two spin-zero quark-gluon operators of dimension
six, namely

�b(D�G��)��b (33)
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and

OE = �b���G���iD�b! �b~� ~E � i ~Db; (34)

where ~E is the chromoelectric �eld. All other dimension six quark-gluon opera-

tors can be shown to be reducible to the operators listed above. The operator
�b(D�G��)��b is actually a four-quark operator since

D�G�� = �g2
X

�q�T
aq: (35)

Since its coe�cient contains an extra factor of �s=�, compared with the four-quark

operators coming from the one-loop graphs, its contribution can be ignored.

(i) To evaluate ��4q, the contributions of the four-quark operators to the width,

we use factorization, or the vacuum saturation approximation,

hBj(�b�q)(�q�b)jBi � hBj(�b�q)j0i � h0j(�q�b)jBi: (36)

In this approximation those four-quark operators that represent the `Weak Annihi-
lation' mechanism give a very small contribution, which is also helicity-suppressed
by m2

c
=m2

b
[17]. Such four-quark operators will be disregarded. The ones that sur-

vive are due to the interference mechanism, see �g. 3b. There are actually two such

operators di�ering in their colour ow with Wilson coe�cients K1 and K2. Their
expressions are given in refs. [19, 18] with the normalization point chosen at mb:

K1 =
1

3
(2c2+ � c2�); K2 = c2+ + c2�:

The matrix element of the four-quark operators is expressed as follows:

�34q =
1

2MB

hBj�b��u�u��bjBi �
1

2
f2
B
MB: (37)

It should be emphasized that the four-quark contribution of this type exists only
for B� and is absent for B0 mesons. There is a technical subtlety involved in
making the factorization ansatz: matrix elements have an implicit dependence on
the normalization scale. As far as the strong interactions are concerned, mb is a

completely foreign parameter. It is much more natural to adopt eq. (37) at a

typical hadronic scale �. The four-fermion operators have then to be evolved down
to �. This is achieved by hybrid renormalization [20] computed in the leading-

log approximation [18]; its e�ects get included in the quantities K1 and K2. The

inclusion of this hybrid renormalization turns out to be numerically relevant, too: for
they remove an accidental cancellation in the strength of the destructive interference.

So far the quantity fB has not been measured yet. Its value is estimated via QCD
sum rules and via QCD simulations on the lattice. The recent and most reliable

estimates cluster around 190 MeV for QCD sum rules [23] and in lattice calculations
[24]. Taking this interval to represent the measure of uncertainty we get

�34q � 0:1 GeV 3: (38)
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and thus
��4q(B

�)

�(B�)
' �0:05 � (fB=200 MeV)2 (39)

��4q(B
0) � 0: (40)

One should notice that this correction suppresses the B� non-leptonic width. There-

fore it works in a direction opposite to the `desired' one { enhancement of the non-

leptonic width!

The correction in the non-leptonic width due to the four-quark operators of

dimension six are not smaller than those due to the dimension �ve operator OG, see

eq. (29). This can be understood in the following way: the Wilson coe�cient c4q
is determined by one-loop graphs while cG is extracted from a two-loop diagram.

For the higher dimensional operators the hierarchy of corrections is expected to be

normal: terms of higher order in 1=mb are numerically smaller.

The four-quark operator considered above is the �rst to di�erentiate between

B� and B0 lifetimes. The estimate given above is quite consistent with recent data
[25] for the ratio of the lifetimes, � (B0)=� (B�) = 1:05 � 0:16� 0:15.

We can estimate the matrix element �3
E
= hBjOEjBi=2MB { where OE denotes

the dimension six quark-gluon operator { in two complementary ways: treating the
light quarks in theB meson in the relativistic limit one �nds that the chromo-electric

�eld in the light cloud is of the same order as the chromo-magnetic �eld. If so, �3
E

di�ers from �2
G
(see eqs. (24,34)) by the average quark momentum ��,

�3
E
� �2

G
��: (41)

It is not di�cult to check that the opposite limit of non-relativistic light quarks leads
to the same estimate.

Accordingly one concludes

��E

��G
� ��

mb

� 0:1; (42)

a small correction to a correction in the non-leptonic width, which by itself is about
3%. Notice that 1=mb terms in the matrix element of OG are of the same order.

Let us summarize the discussion of the last two sections: using our best theoreti-

cal judgement we conclude that BRSL(B) is expected to exceed 12%. In the present
data BRSL(B) is seen to fall below 11%. There are several possible scenarios for

closing the gap between expectation and observation:
(i) Improved data could move BRSL(B) above 12%.

(ii) The width for b! c�cs transitions is larger than anticipated due to larger than
expected non-perturbative corrections in that channel. (One should keep in mind

that our treatment of non-perturbative corrections, which is based on a large energy

release in the decay, is somewhat less reliable in b! c�cs.) If such an enhancement

of �(b! c�cs) were the cause of the puzzle, it would lead to an obvious consequence:
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it would considerably enhance the charm multiplicity over what is expected { and

that already comes out too large compared to what is observed, see below!

(iii) Instead of a single-source resolution of the apparent puzzle, there could be a

`cocktail', i.e. a combination of several small e�ects all working in the same direction:

the experimental number could inch up; higher order non-perturbative corrections

could turn out to be abnormally large and all positive in �NL; last, but not least,

next-to-leading perturbative corrections could be more sizeable than anticipated.

Note, however, that each ingredient of the `cocktail' a�ects the branching ratio at

the level � 0.1 to 0.2%.

(iv) Non-perturbative corrections could be dramatically larger than anticipated.

This certainly would require going beyond the standard version of OPE. As men-

tioned before, in general there are non-perturbative short-distance contributions to

the Wilson coe�cients (which are sometimes referrred to as `hard' non-perturbative

terms [22]). The hard non-perturbative terms can show up in the coe�cient func-

tions of the operators �bb, �b�Gb and/or �bq�qb. In the latter two cases they must

enhance the coe�cients by a factor of � 5 (and change the sign of the four-fermion
coe�cient) to ensure the 20% enhancement of the non-leptonic widths. To attribute
� 20 % non-leptonic enhancement to such `non-standard' terms would be very sur-
prising, since they represent at most a 2-3% e�ect in � decays and should even be
more suppressed at the higher mass scale of B decays.

It is true that in � decays quark-antiquark states necessarily emerge as a colour-
singlet whereas in B decays also colour-octet con�gurations are possible. It would,
however, seem quite contrived to attribute an e�ect of the alleged magnitude to
this distinction. Yet if such an unorthodox and unforeseen feature of QCD were
responsible for an additional non-leptonic enhancement, then it should generate

lifetime di�erences between Bd and B
� mesons and/or between mesons and baryons

at the level of 15 to 30% (if the non-perturbative hard terms enhance �b�Gb or �bq�qb).
(v) The most intriguing possibility would be the intervention of New Physics in

B decays. This might lead to a di�erent charm content in the �nal state.
In the next section we will address the phenomenological implications of these

scenarios in some more detail.

4 Phenomenological Implications

We will discuss here three phenomenological aspects of beauty decays, namely

� the charm content of the �nal state in B decays;
� charmless two-body decays of B mesons;

� lifetime ratios, in particular � (B�) vs. � (Bd) and � (�b) vs. � (Bd).

(i) Lowering mc relative to mb will enhance the weight of the non-leptonic b! c�cs
transition and thus reduce the expected semileptonic branching ratio. By the same

token it will enhance considerably the charm content in the �nal state: for the values
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of mc=mb adopted in eqs. (27,28) one �nds

Ncharm � Number of charm states

B decays
� 1:2� 1:3 (43)

The data exhibit a considerably lower charm content, namely [26]

Ncharm = 0:932 � 0:10 ARGUS (44a)

Ncharm = 1:026 � 0:057 CLEO (44b)

One should keep in mind that there are still considerable uncertainties in the absolute

value of the charm branching ratio, in particular for Ds and �c decays. The errors

quoted above could well be underestimated. Yet even so, there is no sign of an over-

abundance of charm states in B decays { on the contrary there is some evidence

for a serious `charm de�cit' ! It is quite tempting to take this as indirect evidence

for the rather massive intervention of New Physics. If the putative New Physics is

postulated to couple only to non-charm quarks, but not to leptons, and to provide
� 20% of the total decay rate, then BRSL(B) is lowered by � 20%, of course; yet
at the same time the charm de�cit has evaporated. On the other hand there is a

certain constraint on such an exciting scenario; this will be discussed next.
(ii) Strong penguin transitions of the type b ! s + g would seem to �t the bill:
they contribute predominantly to non-leptonic decays without charm states. In the
Standard Model one estimates them to contribute not more than 1% of the total
width. In principle there could be New Physics entering the internal loops inducing

a penguin operator driving 20% of all B decays. Yet if that is the case, one should
wonder about the impact of such an enhanced operator on the exclusive channel
B ! K�. CLEO [27] has found evidence for B ! K� + �� coupled with upper
bounds on the individual channels:

BR(Bd ! �+�� +K+��) = (2:4� 0:7 � 0:2) � 10�5 (45a)

BR(Bd ! �+��) � 2:9 � 10�5 (45b)

BR(Bd ! K+��) � 2:6 � 10�5 (45c)

BR(Bd ! K+K�) � 0:7 � 10�5 (45d)

These numbers are quite consistent with Standard Model expectations, which, how-
ever, su�er from sizeable uncertainties. Nevertheless a `Scylla and Charybdis' co-

nundrum has to be a concern for all New Physics scenarios: if New Physics prefers to
couple to non-charm states in the inclusive rate, where is its impact on the exclusive

two-body modes B ! K�; ��?

(iii) Rather smallish lifetime di�erences have been predicted among beauty hadrons:

� (B�)=� (Bd) ' 1 + 0:05 � (fB=200 MeV)2 and � (�b)=� (Bd) � 0:85 � 0:9. If on

the other hand QCD contains some unforeseen non-perturbative features that can
lower the semileptonic branching ratios by � 20 %, those could impose the lifetime

di�erences of 15 to 30%.
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5 Summary and Outlook

For several years the observed value for BRSL(B) has been below the theoretically

expected one. We think that the data and the relevant theory have reached such

a level of maturity such that the apparent 20% or so gap between BRSL(B)jexp
and BRSL(B)jQCD { while not absolutely conclusive yet { has to be perceived as

a serious problem. If improved data do not move to higher values, there are three

possible resolutions of such a discrepancy:

(i) `The dull way out': Several e�ects { each of order a few per cent { `co-

operate' to generate a 20% correction. There would be no other interesting/clear

phenomenological implication.

(ii) `The tantalizing resolution': Corrections due to higher dimensional operators

and/or non-perturbative contributions in the Wilson coe�cients could conceivably

be much larger than anticipated. Presumably those would also lead to larger lifetime

di�erences among beauty hadrons than anticipated. One would have to understand,

however, why these unorthodox e�ects are larger in B than in � decays, rather than
the other way around. A less exotic possibility would be that the next-to-next-to-
leading perturbative terms in the Wilson coe�cients are considerably larger than
expected on general grounds. In principle this can be checked by a straightfor-

ward analysis. Alas, in practice the necessary computations appear to be rather
forbidding.

(iii) `The exciting resolution': New Physics controls 20% of all B decays! Ob-
viously one would expect that such a massive intervention of new dynamics would
lead to many signatures, like charm content both in inclusive as well as exclusive

decays.
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Figure Captions

Fig.1: Diagram where the average o�-shellness is below m2
b
.

Fig.2: Diagram with a typical o�-shellness around m2
b
.

Fig.3a: Diagram for Weak Annihilation in B0 decays;

Fig.3b: Diagram for Pauli Interference in B� decays.

Fig.4: Diagram generating the operator OE.

13



References

[1] I. Bigi, N. Uraltsev, A. Vainshtein, Phys. Lett. B293 (1992) 430.

[2] B. Blok and M. Shifman, Nucl. Phys. B399 (1993) 441, 459.

[3] See also: I. Bigi, B. Blok, M. Shifman, N. Uraltsev, A. Vainshtein, \A QCD

`Manifesto' on Inclusive Decays of Beauty and Charm", talk given at the APS-

DPF '92 Meeting, Fermilab, November 1992.

[4] H. Albrecht et al. (ARGUS Collab.) \A Model-Independant Determination of

the Inclusive Semileptonic Decay Fraction of B Mesons", DESY Preprint DESY

93-104, 1993.

[5] J. Bartelt et al. (CLEO Collab.) \Inclusive Measurement of B-Meson Semilep-

tonic Branching Fractions", Cornell Univ. Preprint CLEO CONF 93-19, 1993.

[6] G. Altarelli et al., Nucl. Phys. B208 (1982) 365.

[7] I. Bigi, M. Shifman, N. Uraltsev, A. Vainshtein, Phys. Rev. Lett. 71 (1993)

496.

[8] M. Voloshin and M. Shifman, Yad. Fiz. 45 (1987) 463 [Sov. J. Nucl. Phys. 45

(1987) 292]; I. Bigi, N. Uraltsev, A. Vainshtein, Phys. Lett. B293 (1992) 430;
B. Blok and M. Shifman, Nucl. Phys. B399 (1993) 441, 459.

[9] G. Altarelli and S. Petrarca, Phys. Lett. B261 (1991) 303.

[10] J.L. Cortes, X.Y. Pham and A. Tounsi, Phys. Rev. D25 (1982) 188.

[11] G. Altarelli and L. Maiani, Phys. Lett. B52 (1974) 351,
M.K. Gaillard and B. Lee, Phys. Rev. Lett. 33 (1974) 108.

[12] G. Altarelli et al., Phys. Lett. B99 (1981) 141; Nucl. Phys. B187 (1981) 461;
A.J. Buras, P. H. Weisz, Nucl. Phys. B333 (1990) 66.

[13] For semileptonic transitions this observation was �rst made in: J. Chay,

H.Georgi and B. Grinstein, Phys. Lett. B247 (1990) 399.

[14] M. Voloshin, Preprint ITEP-21-1980, unpublished;

M. Voloshin and Yu. Zaitsev, Usp. Fiz. Nauk. 152 (1987) 361 [Sov. Phys.
Uspekhi. 30 (1987) 553 ].

[15] E. Braaten, S. Narison and A. Pich, Nucl. Phys. B373 (1992) 581;
F. Le Diberder and A. Pich, Phys. Lett. B286 (1992) 147, B289 (1992) 165.

[16] I. Bigi, M. Shifman, N. Uraltsev and A. Vainshtein, in preparation.

14



[17] I. Bigi and N. Uraltsev, Phys. Lett. B280 (192) 120; preprint CERN-

TH.7020/93.

[18] M. Voloshin and M. Shifman, Yad. Fiz. 41 (1985) 187 [Sov. J. Nucl. Phys. 41

(1985) 120], ZhETF 91 (1986) 1180 [JETP 64 (1986) 698].

[19] N. Bili�c, B. Guberina and J. Trampeti�c, Nucl. Phys. B248 (1984) 261;

B. Guberina, R. R�uckl and J. Trampeti�c, Z. Phys. C33 (1986) 297.

[20] M. Voloshin and M. Shifman, Yad. Fiz. 45 (1987) 463 [ Sov. J. Nucl. Phys.

45 (1987) 292];

H.D. Politzer and M. Wise, Phys. Lett. B206 (1988) 681.

[21] M. Shifman, A. Vainshtein, V. Zakharov, Nucl. Phys. B147 (1979) 385, 447.

[22] V. Novikov, M. Shifman, A. Vainshtein, V. Zakharov, Nucl. Phys. B191 (1981)

301.

[23] V. Eletsky and E. Shuryak, Phys. Lett. B276 (1992) 191;
E. Bagan, P. Ball, V. Braun and H.G. Dosch, Phys. Lett. B278 (1992) 457;

M. Neubert, Phys. Rev. D45 (1992) 2451;
S. Narison, Phys. Lett. B308 (1993) 365;
C.A.Dominguez, Preprint SISSA 139/93/EP.

[24] C.W. Bernard, J.N. Labrenz and A. Soni, Preprint UW/PT-93-06, 1993.

[25] D. Besson, Talk at 16th International Symposium on Lepton-Photon Interac-

tions, Cornell, August 1993, Cornell Univ. Preprint CLNS 93/1259, 1993.

[26] M. Danilov, Rapporteur Talk at the 1993 EPS Conference, Marseille, 1993.

[27] M. Battle et al., Preprint CLNS 93/1235, 1993.

15



b b

b b

b b

b b

d d

d

d

d

c

c

u

u

c

u

c

d

c

u

u u
(a) (b)

X Soft gluon

Fig. 1

Fig. 2

Fig. 3

Fig. 4


