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I-50019 Sesto Fiorentino, Florence, Italy

(b)Departamento de F́ısica, FCEYN, Universidad de Buenos Aires,
(1428) Pabellón 1 Ciudad Universitaria, Capital Federal, Argentina

(c)Theory Division, CERN, CH-1211 Geneva 23, Switzerland

(d)Instituto de F́ısica Corpuscular, E-46071 Valencia, Spain

Abstract

We consider the singular behaviour of one-loop QCD matrix elements when
several external partons become simultaneously parallel. We present a new
factorization formula that describes the singular collinear behaviour directly in
colour space. The collinear singularities are embodied in process-independent
splitting matrices that depend on the momenta, flavours, spins and colours
of the collinear partons. We give the general structure of the infrared and
ultraviolet divergences of the one-loop splitting matrices. We also present
explicit one-loop results for the triple collinear splitting, q → qQ̄Q, of a quark
and a quark–antiquark pair of different flavours. The one-loop triple collinear
splitting is one of the ingredients that can be used to compute the evolution of
parton distributions at the next-to-next-to-leading order in QCD perturbation
theory.
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The high precision of experiments at past (LEP), present (HERA, Tevatron) and future
(LHC, e+e− linear colliders) particle colliders demands a corresponding precision in theo-
retical predictions. As for perturbative QCD predictions, this means calculations beyond
the next-to-leading order (NLO) in the strong coupling αS. Recent years have witnessed
much progress in this field (see Ref. [1] and references therein). In particular, a great deal
of work has been devoted to study the properties of QCD scattering amplitudes in the
infrared (soft and collinear) region [2]–[12].

The understanding of the infrared singular behaviour of multiparton QCD amplitudes
is a prerequisite for the evaluation of infrared-finite cross sections (and, more generally,
infrared- and collinear-safe QCD observables) at the next-to-next-to-leading order (NNLO)
in perturbation theory [1]. The information on the infrared properties of the amplitudes are
also exploited to compute large (logarithmically enhanced) perturbative terms and to resum
them to all perturbative orders [13]. Investigations of these properties can also be valuable
to improve the physics contents of Monte Carlo event generators (see e.g. Ref. [14]). In
addition, the results of these studies prove to be useful beyond the strict QCD context,
since they can provide hints on the structure of highly symmetric gauge theories at infinite
orders in the perturbative expansion (see e.g. Ref. [15]).

In this paper we consider the collinear limit of multiparton QCD amplitudes at one-
loop order. We present a general factorization formula, which is valid directly in colour
space, and discuss some properties of its infrared-divergent contributions. These results
apply to the multiple collinear limit of an arbitrary number of QCD partons. As an
example of application beyond the double collinear limit, we present the result of the explicit
evaluation of a triple collinear configuration of three quarks. Besides its interest within
the general framework outlined above, our study of the one-loop triple collinear limit can
have specific relevance to the NNLO calculation of the Altarelli–Parisi kernels that control
the scale evolution of parton densities and fragmentation functions [16]. This formidable
NNLO computation is being completed [17] by using traditional methods. Kosower and
Uwer [18] have proposed to exploit collinear factorization at the amplitude level as an
alternative method to perform the NNLO calculation of the Altarelli–Parisi kernels. To
this purpose, the one-loop triple collinear splitting is one of the necessary ingredients. Two
other ingredients are the tree-level quadruple collinear splitting [11] and the two-loop double
collinear splitting. A detailed discussion of the multiple collinear limit and of the results
presented in this letter will appear in a forthcoming paper [19].

We consider a generic scattering process involving final-state QCD partons (massless
quarks and gluons) with momenta p1, p2, . . . Non-QCD partons (γ∗, Z0, W±, . . .) are always
understood. The corresponding matrix element is denoted by

Mc1,c2,...;s1,s2,...
a1,a2,... (p1, p2, . . .) , (1)

where {c1, c2, . . .}, {s1, s2, . . .} and {a1, a2, . . .} are respectively colour, spin and flavour
indices. To take into account the colour and spin structures, we use the notation of Refs. [3,
20]. We introduce an orthonormal basis {|c1, c2, . . .〉 ⊗ |s1, s2, . . .〉} in colour + spin space,
in such a way that the matrix element in Eq. (1) can be written as

Mc1,c2,...;s1,s2,...
a1,a2,... (p1, p2, . . .) ≡

(
〈c1, c2, . . .| ⊗ 〈s1, s2, . . .|

)
|Ma1,a2,...(p1, p2, . . .)〉 . (2)

Thus |Ma1,a2,...(p1, p2, . . .)〉 is a vector in colour + spin space. It is important to specify
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that the matrix elements M(p1, p2, . . .) that we are considering are the physical ones. Their
external legs are on-mass-shell (p2

i = 0) and have physical spin polarizations.

The matrix element M(p1, p2, . . .) can be evaluated in QCD perturbation theory as a
power series expansion (i.e. loop expansion) in the strong coupling αS (αS = g2

S/(4π)).
Throughout the paper we are mainly interested in the expansion up to one-loop order. We
write

M = (gS)
q
[
M(0) +

αS

2π
M(1) +O(α2

S)
]

, (3)

where the overall power q is integer (q = 0, 1, 2, 3, . . .). In the evaluation of the one-
loop amplitude M(1), one encounters ultraviolet and infrared singularities that have to
be properly regularized. We use dimensional regularization in d = 4 − 2ε space-time
dimensions. The dimensional-regularization scale is denoted by µ.

The multiple collinear limit of the matrix element in Eq. (1) is approached when the
momenta p1, . . . , pm of m partons become parallel. This implies that all the particle suben-
ergies sij = (pi+pj)

2, with i, j = 1, . . . , m, are of the same order and vanish simultaneously.
We thus introduce a pair of back-to-back light-like (P̃ 2 = 0, n2 = 0) momenta P̃ ν and nν ,
and we write

(p1 + . . . + pm)ν = P̃ ν +
s1...m nν

2 n · P̃ , s1...m = (p1 + . . . + pm)2 , (4)

where s1...m is the total invariant mass of the system of collinear partons. In the collinear
limit, the vector P̃ ν denotes the collinear direction, and we have pν

i → ziP̃
ν , where the

longitudinal-momentum fractions zi are

zi =
n · pi

n · P̃ (5)

and fulfil the constraint
∑m

i=1 zi = 1. To be definite, in the rest of the paper we limit
ourselves to explicitly considering the collinear limit in the time-like region (sij > 0, 1 >
zi > 0).

In the limit when the m parton momenta p1, . . . , pm become simultaneously paral-
lel, the matrix element M(p1, . . . , pm, pm+1, . . .) becomes singular. At the tree level, the
dominant singular behaviour is M(0)(p1, . . . , pm, pm+1, . . .) ∼ (1/

√
s)m−1, where s gener-

ically denotes a two-particle subenergy sij , or a three-particle subenergy sijk, and so
forth. At one-loop order, this singular behaviour is simply modified by scaling violation,
M(1)(p1, . . . , pm, pm+1, . . .) ∼ (1/

√
s)m−1(s/µ2)−ε. The dominant singular behaviour can

be captured by universal (process-independent) factorization formulae [5]–[12]. At the ma-
trix element level, the factorization formulae are usually presented upon decomposition in
colour subamplitudes. Nonetheless, collinear factorization is valid directly in colour space
[19], and we present the factorization formulae in this more general form.

The colour-space factorization formulae for the multiple collinear limit of the tree-level
and one-loop amplitudes M(0) and M(1) are:

|M(0)
a1,...,am,am+1,...(p1, . . . , pm, pm+1, . . .)〉 ' Sp(0)

a1...am
(p1, . . . , pm) |M(0)

a,am+1,...(P̃ , pm+1, . . .)〉 ,
(6)
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|M(1)
a1,...,am,am+1,...(p1, . . . , pm, pm+1 . . .)〉 ' Sp(1)

a1...am
(p1, . . . , pm) |M(0)

a,am+1...(P̃ , pm+1, . . .)〉
+ Sp(0)

a1...am
(p1, . . . , pm) |M(1)

a,am+1,...(P̃ , pm+1, . . .)〉 .

(7)

These factorization formulae are valid in any number d = 4− 2ε of space-time dimensions
or, equivalently, at any order in the ε expansion around d = 4. The only approximation
involved on the right-hand side amounts to neglecting terms that are less singular in the
multiple collinear limit. Equations (6) and (7) relate the original matrix element (on the
left-hand side) with m+k partons (where k is arbitrary) to a matrix element (on the right-
hand side) with 1 + k partons. The latter is obtained from the former by replacing the m
collinear partons with a single parent parton, whose momentum is P̃ and whose flavour a
is determined by flavour conservation in the splitting process a → a1 + . . . + am.

The process dependence of the factorization formulae is entirely embodied in the matrix
elements. The tree-level and one-loop factors Sp(0) and Sp(1), which encode the singular
behaviour in the multiple collinear limit, are universal (process-independent). They depend
on the momenta and quantum numbers (flavour, spin, colour) of the m partons that undergo
the collinear splitting. According to the notation in Eq. (2), Sp is a matrix in colour+spin
space, and we name it splitting matrix. Making the dependence on the colour and spin
indices explicit, we have

Sp(c1,...,cm;s1,...,sm)(ca,sa)
a1...am

=
(
〈c1, . . . , cm| ⊗ 〈s1, . . . , sm|

)
Spa1...am

(
|ca〉 ⊗ |sa〉

)
, (8)

so that in Eqs. (6) and (7) Sp(p1, . . . , pm) acts onto the colour and spin indices ({c1, . . . , cm;
s1, . . . , sm}) of the m collinear partons on the left and onto the colour and spin indices
({ca; sa}) of the parent parton on the right.

The essential difference between Eqs. (6) and (7) and the known collinear-factorization
formulae discussed in the literature [5, 9] regards the role of the colour quantum number.
The derivation of the tree-level factorization formula (6) in colour space is quite straight-
forward [7]. Its one-loop extension, Eq. (7), is less straightforward and, in particular, it
exploits colour coherence of QCD radiation [19]. The factorization formulae of Refs. [5, 9]
are written in terms of colour subamplitudes and process-independent splitting amplitudes
denoted by Split(p1, . . . , pm). Generically speaking, the splitting amplitudes Split can be
regarded as colour-stripped components of the splitting matrices Sp. For example, in the
case of the tree-level collinear splitting g → q1 + q̄2, the splitting matrix is

Sp
(0) (β1,β2)(c)
q1q̄2

(p1, p2) = µε tcβ1β2

1

s12
u(p1) /ε∗(P̃ ) v(p2) , (9)

where tc (c = 1, . . . , N2
c − 1) are the SU(Nc) colour matrices in the fundamental represen-

tation (we use the normalization Tr(tatb) = TR δab, TR = 1/2), u, v are customary Dirac
spinors, ε is the physical polarization vector of the parent gluon, and the corresponding
spin indices are understood. The splitting amplitude Split

(0)
q1q̄2

is obtained from Eq. (9) by
simply removing the colour factor tcβ1β2

. Analogous proportionality relations apply to any
tree-level and one-loop splitting process a → a1 + a2. When the splitting involves m ≥ 3
collinear partons, splitting matrices and splitting amplitudes are not simply proportional.
Nonetheless, the two formulations of collinear factorization are related by gauge invariance
and colour algebra, and each formulation has its own practical advantages.

3



Several general properties of the one-loop splitting amplitudes Split(1)(p1, p2) and, con-
sequently, of Sp(1)(p1, p2) were discussed in Refs. [5, 8, 10]. Here, we present an additional
general property of Sp(1)(p1, . . . , pm).

When computed in d = 4 − 2ε space-time dimensions, the one-loop amplitude M(1)

and, hence, Sp(1) have ultraviolet and infrared divergences that show up as ε-poles in the
expansion around the point ε = 0. To make the divergent behaviour explicit, we write the
one-loop contribution to the splitting matrix as

Sp(1)(p1, . . . , pm) = Sp(1) div.(p1, . . . , pm) + Sp(1) fin.(p1, . . . , pm) , (10)

where Sp(1) div. behaves as 1/ε2 and Sp(1) fin. is finite when ε → 0. We also recall that
different regularization schemes (RS) can actually be implemented within the dimensional-
regularization prescription. Two customary RS are the conventional dimensional-regular-
ization (CDR) scheme [21] and the dimensional-reduction (DR) scheme [22]. The RS
dependence of the tree-level and one-loop splitting matrices Sp(0) and Sp(1) starts at O(ε0)
and at O(1/ε), respectively. In Eq. (10), we define Sp(1) fin. in such a way that it is RS-
independent at O(ε0), though it is still RS-dependent at higher orders in the ε-expansion.
Therefore, Sp(1) div. contains the full RS-dependence of Sp(1) at O(1/ε2), O(1/ε) and O(ε0).

The divergent part of the one-loop splitting matrix can be evaluated along the lines
of Refs. [3, 20, 24], and the result can be expressed in terms of a process-independent
factorization formula. We obtain [19]

Sp(1) div.(p1, . . . , pm) =
Γ(1 + ε) Γ2(1− ε)

(4π)−ε Γ(1− 2ε)

1

2

 1

ε2

m∑
i,j=1(i6=j)

T i · T j

(−sij − i0

µ2

)−ε

+

(−s1...m − i0

µ2

)−ε
 1

ε2

m∑
i,j=1

T i · T j

(
2− (zi)

−ε − (zj)
−ε
)

−1

ε

(
m∑

i=1

(γi − εγ̃R.S.

i )− (γa − εγ̃R.S.

a )− m− 1

2

(
β0 − εβ̃R.S.

0

))]}
× Sp(0)(p1, . . . , pm) , (11)

where we have used the same notation as in Ref. [3]. The colour charge (matrix) of the
collinear parton with momentum pi is denoted by T i, and colour conservation implies∑

i T i Sp(0) = Sp(0) T a (T a is the colour charge of the parent parton in the collinear
splitting). The flavour coefficients γi and β0 are γq = γq̄ = 3CF/2 and γg = β0/2 =
(11CA−2Nf )/6. The flavour coefficients γ̃R.S.

i and β̃R.S.
0 are RS-dependent [23]. In particular,

γ̃C.D.R.
i = β̃C.D.R.

0 = 0, while γ̃D.R.
q = γ̃D.R.

q̄ = CF /2 and γ̃D.R.
g = β̃D.R.

0 /2 = CA/6.

Note that, so far, we have not specified whether the one-loop amplitudes M(1) and
splitting matrices Sp(1) are renormalized or unrenormalized quantities. Since the renormal-
ization procedure commutes with the collinear limit, the factorization formula (7) equally
applies to both renormalized and unrenormalized quantities. However, the divergent part
Sp(1) div. explicitly given in Eq. (11) refers to the (charge) unrenormalized splitting matrix
(thus, αS is the bare QCD coupling). In the curly bracket of Eq. (11), the contribution
proportional to β0− εβ̃R.S.

0 is of ultraviolet origin, and it would disappear by working at the
level of renormalized matrix elements and splitting matrices.
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It is straightforward to check that Eq. (11) agrees with the divergent behaviour of the
known [5, 8, 10] one-loop splitting amplitudes for the double collinear limit a → a1 + a2.
The triple collinear splitting process explicitly considered below provides us with a further
check of the general result in Eq. (11).

At the tree level, the splitting amplitudes are known for all possible partonic channels
in the double [25, 26] and triple [11] collinear limits, and for pure gluonic splitting (g → 4g)
also in the quadruple collinear case [11]. In the double collinear case, the square of the
splitting amplitudes gives the leading-order Altarelli–Parisi kernels [27]. The square of the
triple collinear splitting amplitudes was computed in Refs. [6, 7], and checked in Ref. [11].

At the one-loop level, the splitting amplitudes for all partonic channels in the double
collinear limit were computed in Refs. [8, 10] to all orders in ε. In the following we consider
the triple collinear limit and, more precisely, the collinear splitting process q → q1+Q̄2+Q3,
where q and Q denote (massless) quarks of different flavours.

We first recall the tree-level splitting matrix for the process q → q(p1) + Q̄(p2) + Q(p3):

Sp
(0) (β1,β2,β3)(β)

q1Q̄2Q3
(p1, p2, p3) = µ2ε

∑
c

tcβ3β2
tcβ1β (12)

× 1

s123s23
u(p3) γµ v(p2) u(p1) γν u(P̃ ) dµν(p2 + p3, n) ,

where βi (i = 1, 2, 3) and β are respectively the colour indices of the final-state fermions
and of the parent quark, and

dµν(k, n) = −gµν +
kµnν + nµkν

n · k (13)

is the physical polarization tensor of the gluon with momentum k (nµ is the auxiliary
light-like vector introduced in Eq. (4)).

The square of the splitting matrix Spa1...am
, summed over final-state colours and spins

and averaged over colours and spins of the parent parton, defines the m-parton split-
ting function 〈P̂a1···am〉, which is a generalization of the customary (i.e. with m = 2)
Altarelli–Parisi splitting function. Fixing the normalization of the tree-level splitting func-
tion 〈P̂ (0)

a1···am
〉 by

〈P̂ (0)
a1···am

〉 =

(
s1...m

2 µ2ε

)m−1

|Sp(0)
a1...am

|2 , (14)

from Eq. (12) we have

〈P̂ (0)

q1Q̄2Q3
〉 =

1

2
CFTR

s123

s23

[
− t223,1

s23s123
+

4z1 + (z2 − z3)
2

z2 + z3
+(1−2εδR.S.)

(
z2 + z3 − s23

s123

) ]
, (15)

where

tij,k ≡ 2
zi sjk − zj sik

zi + zj
+

zi − zj

zi + zj
sij , (16)

which agrees with the result obtained in Refs. [6, 7]. The parameter δR.S. depends on the
RS: δC.D.R. = 1 and δD.R. = 0.
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To evaluate the one-loop splitting matrix Sp(1)
a1...am

we use a process-independent method

[7, 9, 19]. In the case of the collinear splitting process q → q1 + Q̄2 + Q3, Sp
(1)

q1Q̄2Q3
receives

a contribution from two different colour structures:

Sp
(1) (β1,β2,β3)(β)

q1Q̄2Q3
(p1, p2, p3) = µ4ε 8π2

s123

{∑
c

tcβ3β2
tcβ1β S(p1, p2, p3) (17)

+
∑
b,c

(tbtc + tctb)β3β2(t
ctb)β1β A(p1, p2, p3)

 .

The first term in the curly bracket has the same structure as the tree-level contribution in
Eq. (12). The colour structure of the second term is a new one-loop (quantum) effect.

The one-loop correction P̂ (1) to the tree-level splitting function is obtained by simply
performing the replacement |Sp(0)|2 → (Sp(0))† Sp(1) + (Sp(1))† Sp(0) on the right-hand
side of Eq. (14). From Eqs. (12) and (17), we obtain

〈P̂q1Q̄2Q3
〉 = 〈P̂ (0)

q1Q̄2Q3
〉+

αS

2π

[
〈P̂ (1) (sym.)

q1Q̄2Q3
〉+ 〈P̂ (1) (an.)

q1Q̄2Q3
〉
]
+O(α2

S) . (18)

Note that 〈P̂ (0)

q1Q̄2Q3
〉 is symmetric with respect to the exchange p2 ↔ p3 of the Q̄2 and Q3

momenta (see Eq. (15)). Its one-loop correction has, instead, a symmetric component and

an antisymmetric component, respectively denoted by 〈P̂ (1) (sym.)

q1Q̄2Q3
〉 and 〈P̂ (1) (an.)

q1Q̄2Q3
〉. The anti-

symmetric component is entirely produced by the one-loop splitting amplitude A(p1, p2, p3)
on the right-hand side of Eq. (17).

The expression of the splitting amplitude A(p1, p2, p3) is sufficiently compact to be
explicitly presented in this letter. We have

A(p1, p2, p3) = −1

2
i
∫

ddq

(2π)d
u(p3)

[
γσ(q/+ p/2)γ

µ

(s2q + i0)
− γµ(q/+ p/3)γ

σ

(s3q + i0)

]
v(p2)

× dµν(q, n) dσρ(q + p2 + p3, n)
u(p1) γν(p/1 − q/)γρ u(P̃ )

(q2 + i0)(t1q + i0)(s23q + i0)
, (19)

where
t1q = (p1 − q)2 , siq = (pi + q)2 , s23q = (p2 + p3 + q)2 . (20)

The first and second contributions in the square bracket originate from the one-loop dia-
grams depicted in Figs. 1a and 1b, respectively.

Note that the expression in Eq. (19) is valid in any RS. It is also valid in any number
d = 4−2ε of space-time dimensions or, equivalently, to all orders in ε. To make the depen-
dence on ε explicit, we have to compute the d-dimensional integral over the loop momentum
q. This computation requires the evaluation of a set of basic one-loop (scalar and tensor)
integrals. The corresponding integrands involve, besides the customary Feynman propaga-
tors 1/(q2 + i0), additional propagators of the type 1/(n · q), which come from the physical
polarizations of the virtual gluons (see Eq. (13)). Some of these integrals, which resemble
those encountered in axial-gauge calculations, were evaluated by Kosower and Uwer [10] in
the context of their calculation of the one-loop double collinear splitting a → a1 +a2. More
complicated integrals (higher-point functions) of this type are involved in triple collinear
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(a) (b)

p123 p1p1 − q

p2

p3

q

q + p2 + p3

−(q + p2)

p123 p1p1 − q

p2

p3

q
q + p2 + p3

q + p3

Figure 1: One-loop diagrams contributing to the antisymmetric component of the splitting
matrix Spq1Q̄2Q3

.

splitting processes. We have computed (to high orders in the ε expansion) all the basic
one-loop integrals [19] that appear in any triple collinear splitting a → a1 + a2 + a3. Using
these results, we have obtained explicit expressions up to O(ε0) of the splitting amplitude

A(p1, p2, p3) in Eqs. (17), (19) and of the corresponding splitting function 〈P̂ (1) (an.)

q1Q̄2Q3
〉 in

Eq. (18). We limit ourselves to presenting the expression of 〈P̂ (1) (an.)

q1Q̄2Q3
〉, since the expression

of A(p1, p2, p3) has a very similar structure.

Including terms up to O(ε0), our result for the antisymmetric component of the one-loop
splitting function is

〈P̂ (1) (an.)

q1Q̄2Q3
〉 =

Γ(1 + ε) Γ2(1− ε)

(4π)−ε Γ(1− 2ε)
CF TR

N2
c − 4

4Nc

(−s123 − i0

µ2

)−ε

×
({

1

ε2

[((
s23

s123

)−ε

+ 1

)((
z2

z2 + z3

)−ε

−
(

z3

z2 + z3

)−ε

+
(

s13

s123

)−ε

−
(

s12

s123

)−ε
)

+
(

s12

s123

)−ε ( z3

z2 + z3

)−ε

−
(

s13

s123

)−ε ( z2

z2 + z3

)−ε
]}
〈P̂ (0)

q1Q̄2Q3
〉/(CFTR)

+

{(
â− s13

s123 − s13
b̂
)

ln
(

s13

s123

)
+
(

s23

s123 − s23
â− b̂

)
ln
(

s23

s123

)

+
s123 s12

s12 + s13 − z1 s123

(
z2 â− z1 b̂

s12(1− z1)
+

â + b̂

s123

)
ln
(

s12 z2

s13 z3

)
ln

(
s23

s123(z2 + z3)

)

+
(2s12 + s23) â + (s12 − s13) b̂

s12

×
[
ln
(

s13

s123

)
ln
(

s23

s123

)
+ Li2

(
1− s13

s123

)
+ Li2

(
1− s23

s123

)
− π2

6

]
− (2 ↔ 3)

}
+O(ε)

)
+ complex conjugate , (21)

where

â =
s123

s23

(
z1 s13

s123
+

z1(z1 s23 − z2 s13 − z3 s12)

2(z2 + z3) s12
+

z1 s23 + z2 s13 − z3 s12

2s123

)
, (22)

b̂ =
s123

s23

(
z2 s23

s123
+

z2(z1 s23 − z2 s13 + z3 s12)

2(z2 + z3) s12
+

z1 s23 + z2 s13 − z3 s12

2s123

)
. (23)
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It is quite straightforward to check that the divergent part of the one-loop splitting
function in Eq. (21) fully agrees with the result obtained by using the general formula in
Eq. (11). Note that the double poles 1/ε2 cancel in Eq. (21), so that the most divergent

terms in 〈P̂ (1) (an.)

q1Q̄2Q3
〉 are single poles 1/ε. Note also that, up to terms of O(ε0), the full RS

dependence of 〈P̂ (1) (an.)

q1Q̄2Q3
〉 is embodied in the corresponding dependence (see Eq. (15)) of the

tree-level term 〈P̂ (0)

q1Q̄2Q3
〉 on the right-hand side of Eq. (21).

An additional check of our result can be performed by considering the triple collinear
limit of known one-loop matrix elements, such as the matrix element for the process e+e− →
q̄qQ̄Q [28, 29]. We have evaluated the one-loop splitting amplitude (19) in a spin basis
of definite ±1 helicities of the quarks and antiquarks. We have then compared the result
with that obtained by directly performing the corresponding collinear limit of the one-loop
helicity amplitudes explicitly presented in Ref. [28] up to O(ε0) (note that the expressions
in Ref. [28] refer to the DR scheme). We have found complete agreement.

The splitting function P̂a1···am controls the singular behaviour in the multiple collinear
limit. Moreover, it can have additional singularities (i.e. terms that are not integrable in
d = 4 dimensions) in some subregions of the collinear phase-space. The tree-level splitting

function 〈P̂ (0)

q1Q̄2Q3
〉 in Eq. (15) is indeed singular when the momenta p2 and p3 are parallel

(i.e. when their relative angle is much smaller than the emission angle of p1) and when
they are simultaneously soft. The singularity when p2 and p3 are parallel is, instead,
absent (to any order in the ε expansion [19], and not only at O(ε0)) in the antisymmetric

part, 〈P̂ (1) (an.)

q1Q̄2Q3
〉, of the one-loop splitting function. The singularity when p2 and p3 are

simultaneously soft is still present in 〈P̂ (1) (an.)

q1Q̄2Q3
〉, though its effect vanishes after integration

over the angles of p2 and p3 because of the antisymmetry with respect to the exchange
p2 ↔ p3. The expression in Eq. (21) shows that 〈P̂ (1) (an.)

q1Q̄2Q3
〉 has no other singularities in any

subregions of the phase-space.

For the sake of brevity, we have limited ourselves, in this letter, to presenting few explicit
results for the one-loop triple collinear splitting. These results have mainly an illustrative
purpose. The method and the tools (in particular, the one-loop integrals) used to obtain
them are sufficient and can straightforwardly be applied to evaluate the one-loop splitting
matrix of any splitting process a → a1 + a2 + a3.
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