Data compression on zero suppressed High Energy Physics Data

H. Beker, M. Schindler
CERN-PPE/ALICFE

Dept. f. Algorithms and Programming Methodology, Technical University
Vienna

Contents
1 General Remarks on compression 2
1.1 How does compression and decompression work? 4
Simple Methods o oo L. 4
Advanced Methods 5
Data specific compression algorithms 6
2 What is zero suppression? 6
3 So how can zero suppressed data be reduced any further? 7
4 Data transformation at the example of the TPC 9
4.1 General considerationso oL 9
Digitisation accuracy 0., 9
Dynamicrange 10
Channel equalisation 11
Digital and analogue filters 11
4.2 Compression modelling for the TPC 11
Lossless Waveform modelling 12
5 Where to implement data compression 13
6 Conclusions 14

Abstract

Future High Energy Physics experiments will produce unprece-
dented data volumes (up to 1 GB/s reference ALICE TP). In most
cases it will be impossible to analyse these data in real time and they
will have to be stored on durable mostly magnetic linear media (e.g.
tapes) for later analysis. This threatens to become a major cost fac-
tor for the running of these experiments. Here we present some ideas

1

developed together with the Department for Algorithms and Program-
ming on how this volume and the related can be reduced significantly.
The algorithms presented are not general ones but aimed in particular
to physics experiments data. Taking advantage of the knowledge of
the data they are highly superior to general ones (Huffman, LZW,
arithmetic coding) both in compression rate but more importantly in
compression as a to keep up with the speed of modern tape drives.
Above standard algorithms are, however, used after the data have been
transferred in a more ’compressible’ data space. These algorithms are
now available in hardware notably from IBM (IBM ALDC1-xxS) with
(de)compressions speeds of up to 40 MB/s which can perform this com-
pression in real time the required transfer rates.

Data may either be compressed just before being written to tape or
it might prove advantageous to compress the data already before the
recording machine and before sending them on various network media
in the distributed Data Acquisition System reducing also the number
and performance requirements on the LDCs, the links, the GDCs and
finally on the number of tape stations.

1 General Remarks on compression

Compression algorithms are divided in two major classes, lossy and
lossless ones. The first category is usable where it is permissible to loose
quality in transmission and storage while retaining the general contents
of the data such as in picture, movie and sound transmission or storage
(e.g- jpg, mpg, various FFTs). The kind of permissible loss is mostly
determined by physiological factors as the capabilities of the human
eye, ear and brain. (frequency response). Without further discussion
we want to assume that this is not permissible for experimental data
and that it is required to have a bit per bit identical copy of the original
data. It should, however, be interesting to investigate which loss would
be permissible on physics data and create according models. Often this
will lead to a partial event reconstruction. It is likely that a profound
knowledge of both the detectors and the studied physics is necessary
for the modelling process and hence physicists should look into this
field rather than computer scientists as myself.

The lossless algorithms use the fact that certain data symbols on
the input data are more frequent than others. Variable length codes
are assigned to the input data with shorter codes being assigned to
more frequent symbols or symbol sequences and longer codes to rare
symbols. We propose some of these algorithm. We refer to LZW,
Huffman, Arithmetic coding.

The best know code using a similar method is the Morse code which
assigns “short” to the frequent letter “e” but “short short short long” to
the infrequent symbol “;”. It is an intuitive even if imperfect example.

Without going into details here we just want to reiterate Shannon’s

2

theorem. He defines the information contents of a message in the fol-
lowing way:

Given a message which is made up of N symbols in total containing
n different symbols the information contents measured in bits of the
message is the following

I= N3, —piloga(p:)
where p; is the occurrence probability of symbol i.

What is regarded a symbol depends on the application, it might be
an ASCII code, 16 or 32 bit words, words in a text etc.

A practical illustration is the following:

Assume you measure a charge or any other quantity using an 8-
bit digitiser. Very often the quantity you measure will be distributed
approximately exponentially. Let’s assume that the mean value of your
distribution is one tenth of the dynamic range i.e. 25.6.

Each value between [0..255] is regarded a symbol. Applying above

i40.5
formula with n = 256, p; = 2> you obtain a mean information con-

tents of 6.11 bits per measur2e5c.16 value which is almost 25 % less than
the 8 bits you need saving the data as a sequence of bytes. Even if you
had increased the dynamic range by a factor of for using a ten bit ADC
it turns out that the mean information contents expressed as the num-
ber of bits per measurement would have been virtually the same and
hence the possible compression gain even higher (39 %). This might
be surprising but considering that an exponential distribution delivers
a value beyond ten times it mean only every e'© = 22.026 samples
it is clear that even a quite long code for such measurements cannot
have an appreciable influence on the on compression rates. Considering
that with all likelihood in a realistic architecture you would have had
to expand the 10 bit to 16 you gain is impressive 62 % in the latter
case.

The exponential distribution is a good approximation of the raw
data in many cases and in particular for the distribution of the time
charge buckets measured in the TPC (before clustering). Above infor-
mation contents does not depend very strongly on the exact form of
the distribution but rather only on the RMS.

Comparing various probability distributions it seems that the ex-
ponential distribution is particularly hard to compress. For instance a
discrete spectrum being distributed according to a Gaussian with the
same RMS as above exponential only has an information contents of
4.75 bits. A bounded Landau distribution corresponding to the charges
sampled in the silicon strips of the MSD of WA97 presenting the same
width as above exponential gives a mean information contents of 5.7
bits per strip.

Synbol

o0 wm>»

Figure 1: Huffman Code Tree

1.1 How does compression and decompression work?

Simple Methods

So far we have only used Shannon’s theorem to establish what the
information contents of our data set is without wondering how to prac-
tically achieve this coding. The formula indicates that we must find
a code for every data word with the code length being about equal to
logzp%.

Apart from the obvious restriction that two different symbols must
have different codes we also need to ensure the Huffman condition
which states that no code must be equal to the beginning sequence of
zeroes and ones of another code, as otherwise the decoding would get
ambiguous.

The best way to achieve this is by imagining the symbol to code
table as a tree as seen in Fig 1

Each node is connected with either exactly two underlying nodes or
none. A node with no further connections is called a leaf and associated
with a symbol of the data to be compressed.

Encoding proceeds as follows:

1. Read a symbol
2. look for the node associated with the presented symbol

3. find a (there is only one) way from the root to the leave. When
ever you pass to the left output 0 when you pass to the right
output 1

4. goto 1l

Decoding is even simpler:

1. Goto the root
2. read 1 bit

3. if the bit is one go to the left else to the right branch

4. if the present node is a leaf output the associated symbol and go
to 1. else go to 2.

The fact that symbols are associated only with leaves assures the
Huffman condition. It is also relatively simple to produce the optimum
code tree.

1. count the frequency of all symbols in the input stream.

2. Sort all symbols by their frequencies. Make leaf nodes for each
occurring symbol. Mark the frequency for every node.

3. Create an intermediate node which points to the two nodes with
the least frequency. The frequency of the new node is the sum of
the frequency of the nodes it points to.

4. Take out the two least frequent node of the list. Add the new
node to the list.

5. resort the list

6. Goto 3 until there are at least two nodes left in your list.

Without proof we state that the produced code compresses messages
very close to there Shannon information contents in almost all practical
cases. It only fails to perform well if the most frequent symbol occurs
significantly more frequent than in 50 % of the cases. In this case the
Shannon criterium would require to assign the symbol a code of less
than one bit length which is evidently impossible. This occurs only on
data which would compress extremely well (;;,80% compression factor
on byte symbols).

A more advanced algorithm (arithmetic coding) calculates in a very
intelligent way the probability of every possible message and assigns
a binary bit stream code whose length is inverse proportional to the
probability of a given symbol stream. The probability is calculated as
the product of the probabilities of each symbol.This algorithm renders
compression rates which are practically identical to the the information
contents even in extreme cases.

Advanced Methods

Above algorithms in typical applications render compression rates of
rarely more than 50% most often 30%. The compression speed can be
pushed up to about 10 MB/s on today’s high end microprocessors.
Their basic defect is that they only consider single symbols and not
their order. In many cases it is highly advantageous to also consider
sequences of data symbols. For instance in compressing this text one
gains a lot in compression by introducing meta symbols being made up
of symbol sequences such as ’the’, ’compression’, ’symbol’ and so forth.

5

The well known Lempel/Ziv/Welch algorithm autonomously
searches for frequent substrings and Huffman codes them. It achieves
compression rates which are typically higher than 60%. One most mod-
ern high end microprocessor the implementation inside the popular
program gzip achieves a throughput of up to 2 MB/s in compression.

Data specific compression algorithms

In general terms above algorithms proceed in the following three steps.

1. create the statistics for symbols and symbol sequences (first pass
through data)

2. Create an optimal but at least good symbol-;code table Output
this table to the output data stream.

3. Encode the data according to this table (second pass thorough
the data)

In most cases step 2) is the most processor time consuming one. In
many cases and notably in experimental data the statistical properties
of the data might be a priori known allowing to immediately perform
step 3) on precalculated symbol code tables.

General algorithms have a basic disadvantage in our application:

They make no assumption on the structure of their input data.
They perform at time tedious searches for features such as symbol
sequences which might not be present at all. They don’t know what to
regard a symbol (1-bit, byte, word, long word etc) and usually assume
bytes; in our case data will more often than not be 32 bit quantities.

As will be shown in many cases it will be possible to transform
the data bijectively into a space where they are less evenly distributed
and hence compress much better. In the following we will show two
examples.

2 What is zero suppression?

Today’s experiments are made up of an enormous number of sensitive
channels (10 9 in ALICE). All these channels should be recorded
for each “event”. With up to thousands of events occurring inside
the detector each second one immediately ends up with completely
unreasonable amounts of data.

Therefore in most cases the analogue front end electronics and con-
nected read out busses record only data above a certain significance
level.

Instead of retrieving all data values in a stream alternating se-
quences of address and measurement are presented to the readout bus
systems. This method is of course not lossless but detector designers
always have a very clear idea on how much above zero a signal must
be as to be distinguishable from the inherent detector noise.

6

In many cases only a few percent at times even only a few per mille
of all connected channels are effected in a given event, therefore enor-
mous reduction factors can be achieved in zero time, as the alogrithms
is executed in hardware and in parallel over all detector channels.

However, the resulting output very often shows little statistical cor-
relation in particular in the address part or the correlation is hard to
detect by standard algorithms as data and addresses often are divided
in compound data words (16 or 32 bits) and the limit often does not
coincide with a byte boundary a byte being the smallest code unit
considered by most standard algorithms. Therefore compression algo-
rithms, - either pure software as gzip, or hardware assisted compressors
in tape stations, - in general perform quite poorly on zero suppressed
data. (no more then 10 -30 % in most experiments)

A minor and sometimes not so minor inconvenience is that in events
which have many data channels firing the amount of data can actually
increase as the addresses are added to the data. Such events occur fre-
quently during the testing and calibration phase of the detector when
one has to lower the significance levels (thresholds) used in zero sup-
pression.

3 So how can zero suppressed data be reduced any further?

To do so it is first advisable to split the measurement values from the
added address. The data values by themselves often follow statistical
distributions which can be exploited in variable length codes assigned
to them. Often it is necessary to perform the statistics on non stan-
dard symbols spaces such as 12 bits corresponding to the resolution
of the sensors (e.g. ADCs). In this chapter instead we present an al-
gorithm which significantly reduces the amount of data constituted by
the addresses coming from zero suppression by a simple transformation

As to keep the following considerations simpler we will make the
example of a detector which produces only addresses and no measure-
ment values as such, the Silicon Pixel Detector (reference Pixel). To
remind you: it is made up of a piece of silicon divided into microscopic
pixels (200x50 microns each).

The front end electronics will produce (refer Chesi, Darbo) only
a list of pixel numbers through which a particle has passed (16 bit
addresses for a so called ladder 6x60mm made up of 64 k pixels). The
binary data value is implicit and zero suppression lossless; if an address
does not show up in the stream it means that the associated data value
is zero.

In ALICE the occupancy (the average percentage of effected pixels)
will in all cases be less than 2 %. It is immediately evident that at more
than 6 % occupancy zero suppression is counter productive because
instead of saving a 16 bit word for every hit pixel one might as well
just save all the 64 Kbits — 8kBytes as a stream of zeros and ones with

7

a fixed event size.

Given the lower occupancy, the envisaged front end electronics in-
stead produces the before mentioned pixel address list. We do not ex-
pect major inhomogeneities of occupancies neither on the single event
level (only a minor clustering effect) or over many events, that is to
say that the hit frequency of each pixel will be close to uniform over a
single ladders. The distribution of addresses will be uniform between
0 and 65535.

Therefore standard compression methods render absolutely no suc-
cess. The only redundancy or useless information in the data is the
order of the pixel numbers. It is therefore licit to sort the pixel ad-
dresses (either rising or falling). In actual fact one does not even have
to sort them as the on detector electronics renders them in sequence
by design.

This useless information can be squeezed out of the data, by instead
of saving

sequence 1:

[addressl] [address2] [address n]

sequence 2:

[addressl] [address2-addressl] [address3-address2]

It is immediately clear that sequence 1 is perfectly reconstructible
from sequence 2) in all cases when the subtraction is performed in the
two complements space.

While sequence 1 has a uniform distribution of symbols the symbols
in sequence sequence 2 are distributed approximately exponentially

with p(i) = - Withd = L

We have tried the algorithm on generated events pixel events. We
chose the typical ALICE values of nr_pixels = 65535 and occupancy =
2%.

It is clear that an optimum Huffman Code on the transformed data
will render compression. With above parameters the compression fac-
tor was indeed 42 %.

With physical events it is likely that there will be some clustering.
Indeed in 20 % of the cases when a pixel is hit also the pixel with an
address difference of 32 will be hit due to the geometry of the detector.
This will produce a peak in the address difference spectrum at 32. The
compressor will automatically assign a shorter code to the value 32
without explicitly using this information in the algorithm.

Due to this effect and other correlations in the data we are confident
that an compression of up to 50 % can be achieved in the pixel data
volume. With higher occupancies the yield will even be bigger as the
exponential distribution will get narrower.

The algorithm is simple enough as to be implemented directly on
the detector in hardware saving not only tape cost but also link band
width. The algorithm uses no information peculiar to the pixel detector

8

and should be easily extendible to the address part of the data of other
detectors in ALICE.

4 Data transformation at the example of the TPC

Presently we assume that the data from the TPC will be zerosupressed.
As the charge time buckets are highly clustered it is not necessary to
apply an address to every word but the following data structure should
suffice:

charge of bucket 1 (10 bit linear or 8 bit logarithmic)

charge of bucket “

of first time slot in cluster (requires 10 bits=[0..1023])

of buckets in cluster (6 bits=[1..64])

next cluster

It is reasonable to assume the structure is back linked as this is
easier to achieve in pipelined hardware and presents no problem to the
decoding software.

Assuming a mean data volume of 35MB /event, about 12.000 tracks
in the acceptance of the TPC, logarithmic 8 bit coding and that a track
crossing one of the 75 planes on average effects 4-5 neighbouring pads
in this plane the mean cluster length should be about:

e —2=55

1610%+3%70

Additional 2 bytes are needed for encoding cluster start and length.

As show in Fig. 2, a cluster can be defined in several different ways:
either a single threshold determines whether a time charge bucket is
inside a cluster; it is possible and advantageous to implement a hys-
teratical behaviour which decreases the threshold once a time charge
bucket exceeds the threshold; an number of samples before and after
a relatively high threshold crossing might be added to the cluster etc.
etc. The latter two refinements avoid that slight oscillations just before
or more often after the actual pulse produce a separate cluster with the
connected overhead. Before adding a cluster to the output stream a
global threshold can be applied to the cluster charge suppressing low
amplitude oscillations The definition of the cluster will have a signifi-
cant influence on the data rate but not so much on the implementation
of compression algorithms.

4.1 General considerations

Digitisation accuracy

Whereas in non compressing mode accuracy is irrelevant as long as a
measurement fits in a given byte/word/long unit, excessive accuracy

9

/ Cluster 1
Cluster 2

‘mm

Char ge

Threshold 1

Threshold 2

2 before + 2 after

Figure 2: Cluster definition

is a cost factor in compressing mode. Measuring the width of the
distribution of the pedestal can easily increase the produced amount of
data by a significant fraction.

In general the digitisation accuracy should be chosen so that the
RMS of the sampled pedestal is no wider than 1 digitiser count. In this
case the digitisation noise introduced is \/% When added in quadrature

to the electronics noise (/1 + 11—2 =1+ 21—4 this increases the RMS by

the totally insignificant amount of 4%. Even when the accuracy is
further reduced by a factor of two, leading to an apparent pedestal
RMS of 0.5 digitiser counts the digitisation noise contributes only to
about 16 % of the total apparent noise, while one bit per measurement
is saved in this way.

Dynamic range

In non-compressing mode the width of the dynamic range often sensi-
tively determines the net amount of data. In most cases going from 8
to 9 or 10 bit dynamic range will mean to double the data rate (you
will have to pass anyway to 16 bit data words).

As stated already in the initial example this is not the case in
compressing mode: If, as almost invariably is the case, the frequency
of measurements at the upper limit of the dynamic range is low, the
length of the Huffman code assigned to these values will be very long

10

but on the other hand this long codes will be used very rarely and not
contribute significantly to the average compression rate.

Once you have decided to compress your data it makes very little
difference whether your ADC has an 8 or 10 bit range. Therefore the
argument for logarithmic coding is much weaker when using compres-
sion.

Channel equalisation

In non compressing mode the equalisation of channels in gain and more
importantly in pedestal can be performed off-line at very little cost.
When compressing data which come from different electronics chan-
nels it is, however, highly preferable to do this on the front end as not
to widen the spectra of the measured quantities which immediately
results in worse compression rate. The alternative of having a sepa-
rate code table modulated to the exact spectrum for every channel is
prohibitive for a number of reasons: decoding and encoding complex-
ity, the bandwidth used for transmitting the code tables can become
important etc. etc.

Digital and analogue filters

While above considerations will be applicable to most detectors the one
on frequency response is peculiar to the TPC data.

The time frequency domain of a valid charge cluster will be rela-
tively narrow somewhere around 1-10 MHz. It is evident that a high
pass will remove base line shifts and low frequency pickups (50 Hz and
harmonic) and actually improve the data quality. It will also prevent
a long duration positive base line shift to produce extremely long fake
clusters as well as loosing detection efficiency with negative base line
shifts.

Low pass filters will remove the noise from high frequency emitters
on the detector and ’on the air’. Also the method presented in the
following will highly benefit in compression rate after high frequency
noise has been eliminated.

The filter can either be implemented analogically or digitally using
a DSP or a custom filter ASIC. In the digital case it is very easy to
adjust the transfer function not only to a given gas and high voltage
but it can be adjusted dynamically over the drift time and take into
account that distant (from the cathode pads) clusters will present lower
frequencies. A digital solution should be able to keep up with the 10
MHz clock rate.

4.2 Compression modelling for the TPC

Based on the assumptions in our initial example it is reasonable to
assume 25% data reduction coming from a naive Huffman Coding of

11

Raw O uster

o

Raw Model function
for cluster length 6

Char ge

Bucket number

Nor mal i zed Mbdel function
for cluster length 6

Raw Ol uster -
Nor mal i zed Mbdel function

Figure 3: Lossless Waveform modelling

the time charge buckets. The cluster addresses and length might be
encoded using their own specific code trees. The incremental address
storing approach shown for the pixel detector might also reduce the
amount of data coming from addresses.

We suggest to try the algorithms on experimental data (coming
from NA49) and compare them to the results of standard compression
programs such as gzip. It is not necessary to implement the specific
algorithms in detail but the Shannon information contents applied to
the spectra can give a quick idea on attainable compression rates you
can trust that arithmetic coding will yield a practically identical com-
pression rate.

To obtain higher compression rates it will be necessary to develop
detector specific models. In the following we present an first idea and
invite to experiment it on realistic TPC data.

Lossless Waveform modelling

In Fig. 3 We propose to change the cluster data format presented
previously in the following way:

Instead of saving only cluster address, length and the time buckets
as they are, it should be advantageous to add the integral charge of
the cluster or the mean bucket contents (which is the same except for
a multiplicative factor) to the data stream.

Instead of saving the time charge buckets it is better to save the the

12

residuals of the time charge buckets with respect to a model function
which is know to the encoder and decoder (and hence not part of the
data stream). One only needs one model function for each possible
cluster length as the detector response will be in first approximation
linear and the function can be scaled to the total cluster charge stored
in the cluster.

Even though scaling involves (integer) divisions, rounding errors
are not relevant as the encoder and decoder will commit the same
rounding errors and the residuals will reproduce the bit by bit identical
reproduction of the original data.

These model functions can either be derived from analytical con-
siderations or by just measuring the mean normalised wave form of
uncompressed data for every given cluster length. The residuals should
in any case be distributed much narrower than the raw measurements
and hence yield much better compression and more than compensate
the added cluster integral. This will be even more so if high frequency
noise is removed by filters as explained above.

Evidently clusters coming from the overlap of close track will not
compress very well but they should be sufficiently rare as not to con-
tribute to a significant fraction of the total data volume.

It is even conceivable that the residuals form typical sequences
which can be encoded more efficiently by methods such as LZW than
mere Huffmann or arithmetic coding.

Statements on the compression efficiency can be made only after
trying it on realistic data but there is the distinct hope to reduce the
TPC data by at least 50%.

5 Where to implement data compression

Data compression can be implemented directly in front of the tape
station and probably not inside the tape station as commercial devices
will not be re-programmable for our special data features. While this
has a number of architectural advantages (e.g. data never have to be
decompressed for intermediate analysis, code trees are kept in central
points etc.) it does not reduce the requirements on the number and
performance of links and hence not the number and performance of the
GDC and LDCs.

Therefore data should be reduced as close as possible to the detector
or inside the LDC digitiser cards. As the step of proposed data mod-
elling schemes are very experiment and detector specific they should be
handled in software or in re-programmable hardware. The final step
of encoding (and even compression code generation) can be handled
by general purpose chips such as the IBM ALDC1-40s which perform
a combination of LZW and arithmetic coding in real time maybe just
in front of the outgoing data link from the LDC to the GDC via the
switch. A software emulation of this chip exists which allows apriori

13

measurements of achievable compression rates.

6 Conclusions

Even though efficient online data compression increases the complexity
of the experiment and require a not totally insignificant development
effort, the potential cost gain justifies this. The cost of most compo-
nents of the general DAQ (excluding detector front end and detector
link receivers) scales linearly with the achieved compression factors.
Even the robotics used for off-line analysis scales with the same factor.

Maybe more importantly the magnetic media might constitute an
important contribution to the experimental running cost. Even under
the probably optimistic assumption that in the year 2004 it will be
possible to buy linear magnetic media at a price of 1 Sfr / GByte, 1
month of uncompressed running at a rate of of 2.5 GB/s will cost about
5 MSfr.

The additional cost of encoding and decoding computing power will
be totally negligible compared to these sums.

14

