
Chapter 6

FUTURE DIRECTIONS

This chapter contains a few contributions related to future possibilities for the extraction of the CKM
elements and of the CP violating phases. They include general strategies for the determination of the
CKM matrix elements, radiative rare B decays, weak phase determination from hadronic B decays and
rare K → πνν̄ decays. Since these topics have not been the subject of a dedicated working group at this
meeting of the Workshop, we present them in the form of collected papers under individual authorship.

1. General strategies for the CKM matrix

A.J. Buras, F. Parodi and A. Stocchi

During the last two decades several strategies have been proposed that should allow one to deter-
mine the CKM matrix and the related unitarity triangle (UT). We have already discussed a number of
processes that can be used for the determination of the CKM parameters in Chapters 2–4. Additional
processes and the related strategies will be discussed in this part. They are also reviewed in [1–5]. In this
first opening section we want to address the determination of the CKM matrix and of the UT in general
terms leaving the discussion of specific strategies to the following sections.

To be specific let us first choose as the independent parameters

|Vus|, |Vcb|, �̄, η̄ . (1)

The best place to determine |Vus| and |Vcb|, as discussed already in detail in Chapters 2 and 3, are the
semi-leptonic K and B decays, respectively. The question that we want address here is the determination
of the remaining two parameters (�̄, η̄).

There are many ways to determine (�̄, η̄). As the length of one side of the rescaled unitarity
triangle is fixed to unity, we have to our disposal two sides, Rb and Rt and three angles, α, β and γ.
These five quantities can be measured by means of rare K and B decays and in particular by studying
CP-violating observables. While until recently only a handful of strategies could be realized, the present
decade should allow several independent determinations of (�̄, η̄) that will test the KM picture of CP
violation and possibly indicate the physics beyond the Standard Model (SM).

The determination of (�̄, η̄) in a given strategy is subject to experimental and theoretical errors
and it is important to identify those strategies that are experimentally feasible and in which hadronic
uncertainties are as much as possible under control. Such strategies are reviewed in [1–5] and in the
following sections below.

Here we want to address a different question. The determination of (�̄, η̄) requires at least two
independent measurements. In most cases these are the measurements of two sides of the UT, of one side
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and one angle or the measurements of two angles. Sometimes η̄ can be directly measured and combining
it with the knowledge of one angle or one side of the UT, �̄ can be found. Analogous comments apply
to measurements in which �̄ is directly measured. Finally in more complicated strategies one measures
various linear combinations of angles, sides or �̄ and η̄.

Restricting first our attention to measurements in which sides and angles of the UT can be mea-
sured independently of each other, we end up with ten different pairs of measurements that allow the
determination of (�̄, η̄). The question then arises which of the pairs in question is most efficient in the
determination of the UT? That is, given the same relative errors on Rb, Rt, α, β and γ, we want to find
which of the pairs gives the most accurate determination of (�̄, η̄).

The answer to this question depends necessarily on the values of Rb, Rt, α, β and γ but as we will
see below just the requirement of the consistency of Rb with the measured value of |Vub/Vcb| implies a
hierarchy within the ten strategies mentioned above.

During the 1970’s and 1980’s αQED, the Fermi constant GF and the sine of the Weinberg angle
(sin θW ) measured in the ν-N scattering were the fundamental parameters in terms of which the elec-
troweak tests of the SM were performed. After the Z0 boson was discovered and its mass precisely
measured at LEP-I, sin θW has been replaced by MZ and the fundamental set used in the electroweak
precision studies in the 1990’s has been (αQED, GF ,MZ). It is to be expected that when MW will be
measured precisely this set will be changed to (αQED,MW ,MZ) or (GF ,MW ,MZ).

We anticipate that an analogous development will happen in this decade in connection with the
CKM matrix. While the set (1) has clearly many virtues and has been used extensively in the literature,
one should emphasize that presently no direct independent measurements of η̄ and �̄ are available. |η̄|
can be measured cleanly in the decay KL → π0νν̄. On the other hand to our knowledge there does not
exist any strategy for a clean independent measurement of �̄.

Taking into account the experimental feasibility of various measurements and their theoretical
cleanness, the most obvious candidate for the fundamental set in the quark flavour physics for the coming
years appears to be [6]

|Vus|, |Vcb|, Rt, β (2)

with the last two variables describing the Vtd coupling that can be measured by means of the B0 − B̄0

mixing ratio ΔMd/ΔMs and the CP-asymmetry aψKS
, respectively. In this context, we investigate [6],

in analogy to the (�̄, η̄) plane and the planes (sin 2β, sin 2α) [7] and (γ, sin 2β) [8] considered in the
past, the (Rt, β) plane for the exhibition of various constraints on the CKM matrix. We also provide the
parametrization of the CKM matrix given directly in terms of the variables (2).

While the set (2) appears to be the best choice for the coming years, our analysis shows that in
the long run other choices could turn out to be preferable. In this context it should be emphasized that
several of the results and formulae presented here are not entirely new and have been already discussed
by us and other authors in the past. In particular in [9] it has been pointed out that only a moderately
precise measurement of sin 2α can be as useful for the UT as a precise measurement of the angle β.
This has been recently reemphasized in [10–12], see contribution in this Chapter, Sec. 3.3.. Similarly
the measurement of the pair (α, β) has been found to be a very efficient tool for the determination of the
UT [13,14] and the construction of the full CKM matrix from the angles of various unitarity triangles
has been presented in [15]. Next, the importance of the pair (Rt, sin 2β) has been emphasized recently
in a number of papers [16–20]. Many useful relations relevant for the unitarity triangle can also be found
in [21,22]. Finally, in a recent paper [6] we have presented a systematic classification of the strategies in
question and their comparison. In fact the results of this paper constitute the main part of this section.

220



1.1. Basic formulae

Let us begin our presentation by listing the formulae for �̄ and η̄ in the strategies in question that are
labeled by the two measured quantities as discussed above.
Rt and β

�̄ = 1 −Rt cosβ, η̄ = Rt sin β . (3)

Rb and γ
�̄ = Rb cos γ, η̄ = Rb sin γ . (4)

Rb and Rt

�̄ =
1
2
(1 +R2

b −R2
t ), η̄ =

√
R2
b − �̄2 (5)

where η̄ > 0 has been assumed.

Rt and γ
This strategy uses (4) with

Rb = cos γ ±
√
R2
t − sin2 γ . (6)

The two possibilities can be distinguished by the measured value of Rb.

Rb and β
This strategy uses (3) and

Rt = cos β ±
√
R2
b − sin2 β . (7)

The two possibilities can be distinguished by the measured value of Rt.

Rt and α

�̄ = 1 −R2
t sin2 α+Rt cosα

√
1 −R2

t sin2 α, (8)

η̄ = Rt sinα
[
Rt cosα+

√
1 −R2

t sin2 α

]
(9)

where cos γ > 0 has been assumed. For cos γ < 0 the signs in front of the square roots should be
reversed.

Rb and α

�̄ = R2
b sin2 α−Rb cosα

√
1 −R2

b sin2 α, (10)

η̄ = Rb sinα
[
Rb cosα+

√
1 −R2

b sin2 α

]
(11)

where cos β > 0 has been assumed.

β and γ

Rt =
sin γ

sin(β + γ)
, Rb =

sin β
sin(β + γ)

(12)

and (5).

α and γ

Rt =
sin γ
sinα

, Rb =
sin(α+ γ)

sinα
(13)

and (5).
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α and β

Rt =
sin(α+ β)

sinα
, Rb =

sin β
sinα

(14)

and (5).

Finally we give the formulae for the strategies in which η̄ is directly measured and the strategy
allows to determine �̄.
η̄ and Rt or Rb

�̄ = 1 −
√
R2
t − η̄2, �̄ = ±

√
R2
b − η̄2 , (15)

where in the first case we have excluded the + solution in view of Rb ≤ 0.5 as extracted from the
experimental data on |Vub|.
η̄ and β or γ

�̄ = 1 − η̄

tan β
, �̄ =

η̄

tan γ
. (16)

1.2. CKM matrix and the fundamental variables

It is useful for phenomenological purposes to express the CKM matrix directly in terms of the parameters
selected in a given strategy. This can be easily done by inserting the formulae for �̄ and η̄ presented
here into the known expressions for the CKM elements in terms of these variables [23,13] as given
in Chapter 1.

Here we give explicit result only for the set (2). In order to simplify the notation we use λ instead
of |Vus| as Vus = λ+ O(λ7). We find

Vud = 1 − 1
2
λ2 − 1

8
λ4 + O(λ6), Vub =

λ

1 − λ2/2
|Vcb|

[
1 −Rte

iβ
]
, (17)

Vcd = −λ+
1
2
λ|Vcb|2 − λ|Vcb|2

[
1 −Rte

−iβ
]
+ O(λ7), (18)

Vcs = 1 − 1
2
λ2 − 1

8
λ4 − 1

2
|Vcb|2 + O(λ6), (19)

Vtb = 1 − 1
2
|Vcb|2 + O(λ6), Vtd = λ|Vcb|Rte−iβ + O(λ7), (20)

Vts = −|Vcb| +
1
2
λ2|Vcb| − λ2|Vcb|

[
1 −Rte

−iβ
]
+ O(λ6) . (21)

1.3. Hierarchies of the various strategies

The numerical analysis of various strategies listed above was performed using the Bayesian approach as
described in the previous Chapter. The main results of this analysis are depicted in Figs. 6.1, 6.2, 6.3 and
6.4. In Figs. 6.1 and 6.2 we plot the correlation between the precisions on the variables relevant for a
given strategy required to reach the assumed precision on η̄ and �̄, respectively. For this exercise we have
used, for η̄ and ρ̄, the central values obtained in the previous Chapter. Obviously strategies described
by curves in Figs. 6.1 and 6.2 that lie far from the origin are more effective in the determination of the
unitarity triangle than those corresponding to curves placed close to the origin.

222



0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0.225

0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225

10 % on σ(η
–
)/η

–

1- σ(γ) vs. σ(β)
2- σ(γ) vs. σ(Rb )
3- σ(α) vs. σ(β)
4- σ(α) vs. σ(Rb )
5- σ(Rt ) vs. σ(β)
6- σ(Rt ) vs. σ(Rb )
7- σ(Rb ) vs. σ(β )

Fig. 6.1: The plot shows the curves of the 10% relative precision on η̄ as a function of the precision on the variables of the

given strategy.
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Fig. 6.2: The plot shows the curves of the 15% relative precision on �̄ as a function of the precision on the variables of the

given strategy.
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Figures 6.1 and 6.2 reveal certain hierarchies within the strategies in question. In order to find
these hierarchies and to eliminate the weakest ones not shown in these figures we divided first the five
variables under consideration into two groups:

(Rt, α, γ), (Rb, β) . (22)

It turned out then that the four strategies (Rt, α), (Rt, γ), (α, γ) and (Rb, β) which involve pairs
of variables belonging to the same group are not particularly useful in the determination of (�̄, η̄). In
the case of (Rb, β) this is related to the existence of two possible solutions as stated above. If one of
these solutions can easily be excluded on the basis of Rt, then the effectiveness of this strategy can be
increased. We have therefore included this strategy in our numerical analysis. The strategy (Rt, γ) turns
out to be less useful in this respect. Similarly the strategy (γ, α) is not particularly useful due to strong
correlation between the variables in question as discussed previously by many authors in the literature.

The remaining six strategies that involve pairs of variables belonging to different groups in (22)
are all interesting. While some strategies are better suited for the determination of η̄ and the other for �̄,
as clearly seen in Figs. 6.1 and 6.2, on the whole a clear ranking of strategies seems to emerge from our
analysis.

If we assume the same relative error on α, β, γ, Rb and Rt we find the following hierarchy:

1) (γ, β), (γ,Rb) 2) (α, β), (α,Rb) 3) (Rt, β), (Rt, Rb), (Rb, β). (23)

We observe that in particular the strategies involving Rb and γ are very high on this ranking list.
This is related to the fact that Rb < 0.5 < Rt and consequently the action in the (�̄, η̄) plane takes place
closer to the origin of this plane than to the corner of the UT involving the angle β. Consequently the
accuracy on Rb and γ does not have to be as high as for Rt and β in order to obtain the same accuracy
for (�̄, η̄). This is clearly seen in Figs. 6.1 and 6.2.

This analysis shows how important is the determination of Rb and γ in addition to β that is already
well known. On the other hand the strategy involving Rt and β will be most probably the cleanest one
before the LHC experiments unless the error on angle γ from B factories and Tevatron can be significantly
decreased below 10% and the accuracy on Rb considerably improved. The explicit strategies for the
determination of γ are discussed in the following sections.

The strategies involving α are in our second best class. However, it has to be noticed that in order
to get 10%(15%) relative precision on η̄(ρ̄) it is necessary (see Figs. 6.1 and 6.2) to determine α with
better than 10% relative precision. If sin 2α could be directly measured this could be soon achieved due
to the high sensitivity of sin 2α to α for α in the ball park of 90◦ as obtained from the standard analysis
of the unitarity triangle. However, from the present perspective this appears to be very difficult in view of
the penguin pollution that could be substantial as indicated by the most recent data from Belle [24]. On
the other hand, as the BaBar data [25] do not indicate this pollution, the situation is unclear at present.
These issues are discussed in detail in the following sections.

We have also performed a numerical analysis for the strategies in which |η̄| can be directly mea-
sured. The relevant formulae are given in (15) and (16). It turns out that the strategy (γ, η̄) can be put in
the first best class in (23) together with the strategies (γ, β) and (γ,Rb).

In Fig. 6.3 we show the resulting regions in the (�̄, η̄) plane obtained from leading strategies
assuming that each variable is measured with 10% accuracy. This figure is complementary to Figs. 6.1
and 6.2 and demonstrates clearly the ranking given in (23).

While at present the set (2) appears to be the leading candidate for the fundamental parameter set
in the quark flavour physics for the coming years, it is not clear which set will be most convenient in the
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second half of this decade when the B-factories and Tevatron will improve considerably their measure-
ments and LHC will start its operation. Therefore it is of interest to investigate how the measurements
of three variables out of α, β, γ ,Rb and Rt will determine the allowed values for the remaining two
variables. We illustrate this in Fig. 6.4 assuming a relative error of 10% for the constraints used in each
plot. While this figure is self explanatory a striking feature consistent with the hierarchical structure in
(23) can be observed. While the measurements of (α,Rt, Rb) and (α, β,Rt) as seen in the first two plots
do not appreciably constrain the parameters of the two leading strategies (β, γ) and (Rb, γ), respectively,
the opposite is true in the last two plots. There the measurements of (Rb, γ, α) and (β, γ, α) give strong
constraints in the (β,Rt) and (Rb, Rt) plane, respectively. The last two plots illustrate also clearly that
measuring only α and γ does not provide a strong constraint on the unitarity triangle.

Fig. 6.3: The plots show the allowed regions (68% and 95%) in the (�̄, η̄) plane obtained from the leading strategies assuming

that each variable is measured with 10% accuracy.
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Fig. 6.4: The plots show the different constraints (assuming a relative error of 10%) in the different planes corresponding to the

leading stategies of equation 23. The small arrow indicates the range corresponding to an increase of 10% of the corresponding

quantity.
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1.4. Results for the presently available strategies

At present the concrete results can be obtained only for the strategies (Rt, β), (Rb, Rt) and (Rb, β) as no
direct measurements of γ and α are available.

The results for ρ̄ and η̄ for the three strategies in question are presented in Table 6.1 and in Figs.
6.5, 6.6 and 6.7. To obtain these results we have used the direct measurement of sin 2β [26], Rt as
extracted from ΔMd and ΔMd/ΔMs by means of the formulae in [5,27] and Rb as extracted from |Vub|.

Strategy ρ̄ η̄

(Rt, β) 0.157 +0.056
−0.054 0.367 +0.036

−0.034

[0.047-0.276] [0.298-0.439]

(Rt, Rb) 0.161+0.055
−0.057 0.361 +0.041

−0.045

[0.043-0.288] [0.250-0.438]

(Rb, β) 0.137 +0.135
−0.135 0.373 +0.049

−0.063

[-0.095-0.357] [0.259-0.456]

Table 6.1: Results for ρ̄ and η̄ for the three indicated strategies using the present knowledge summarized in Table 5.1 in

Chapter 5. For the strategy (Rt, β), the solution compatible with the region selected by the Rb constraint has been considered.

In squared brackets the 95% probability regions are also given.
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Fig. 6.5: The plot shows the presently allowed regions (68%,95%,99% and 99.9%) in the (ρ̄, η̄) plane using the (Rt, β) strategy:

the direct measurement of sin 2β and Rt from ΔMd and ΔMd/ΔMs.

The experimental and theoretical inputs are summarized in Chapter 4 It should be emphasized
that these three presently available strategies are the weakest among the leading strategies listed in (23).
Among them (Rt, β) and (Rt, Rb) appear to be superior to (Rb, β) at present. We expect that once ΔMs

has been measured and the error on sin 2β reduced, the strategy (Rt, β) will be leading among these
three. Therefore in Fig. 6.8 we show how the presently available constraints look like in the (Rt, β)
plane.
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Fig. 6.6: The plot shows the allowed regions (68%,95%,99% and 99.9%) in the (ρ̄, η̄) plane using the (Rt, Rb) strategy: Rt

from ΔMd and ΔMd/ΔMs and Rb from |Vub|.
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Fig. 6.7: The plot shows the allowed regions (68%,95%,99% and 99.9%) in the (ρ̄, η̄) plane using the (Rb, β) strategy: direct

measurement of sin 2β and Rb from |Vub/Vcb|.
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1.5. Summary

We have presented a numerical analysis of the unitarity triangle from a different point of view, that em-
phasizes the role of different strategies in the precise determination of the unitarity triangle parameters.
While we have found that the pairs (γ, β), (γ,Rb) and (γ, η̄) are most efficient in determining (�̄, η̄), we
expect that the pair (Rt, β) will play the leading role in the UT fits in the coming years, in particular,
when ΔMs will be measured and the theoretical error on ξ decreased. For this reason we have proposed
to plot available constraints on the CKM matrix in the (Rt, β) plane.

It will be interesting to compare in the future the allowed ranges for (�̄, η̄) resulting from different
strategies in order to see whether they are compatible with each other. Any discrepancies will signal the
physics beyond the SM. We expect that the strategies involving γ will play a very important role in this
comparison.

For the fundamental set of parameters in the quark flavour physics given in (2) we find within
the SM

|Vus| = 0.2240 ± 0.0036, |Vcb| = (41.3 ± 0.7)10−3, Rt = 0.91 ± 0.05, β = (22.4 ± 1.4)◦,

where the errors represent one standard deviations and the result for β corresponds to sin 2β = 0.705 ±
0.035.

A complete analysis of the usefulness of a given strategy should also include the discussion of its
experimental feasibility and theoretical cleanness. Extensive studies of these two issues can be found
in [1–5] and in these proceedings. Again among various strategies, the (Rt, β) strategy is exceptional as
the theoretical uncertainties in the determination of these two variables are small and the corresponding
experiments are presently feasible. In the long run, when γ will be cleanly measured in Bd → Dπ and
Bs → DsK decays and constrained through other decays as reviewed in the following sections, we expect
that the strategy (γ, β) will take over the leading role. Eventually the independent direct determinations
of the five variables in question will be crucial for the tests of the SM and its extensions.
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2. Radiative rare B decays

A. Ali and M. Misiak

The transitions b→ s(d)γ and b→ s(d)+− receive sizable contributions from loops involving the top
quark (Fig. 6.9). Their dependence on Vts and Vtd may be used to test unitarity of the CKM matrix and
to overconstrain the Wolfenstein parameters ρ̄ and η̄. The considered transitions manifest themselves
in exclusive B-meson decays like B → K�γ, B → K∗+−, B → ργ and B → ρ+−. The
corresponding inclusive decays B → Xs(d)γ and B → Xs(d)

+− are experimentally more challenging,
but the theoretical predictions are significantly more accurate, thanks to the use of OPE and HQET.
The exclusive processes remain interesting due to possible new physics effects in observables other than
just the total branching ratios (photon polarization, isospin- and CP-asymmetries), as well as due to
information they provide on non-perturbative form-factors. This information is particularly required in
analyzing exclusive modes generated by the b → dγ transition, in which case there is little hope for an
inclusive measurement.

γ γ

u, c, t u, c, t W± W±

b W± s(d) b u, c, t s(d)

Fig. 6.9: Leading-order Feynman diagrams for b → s(d)γ in the SM.

In this section we discuss briefly the generic features of the CKM phenomenology in the consid-
ered rare B-decays. The transitions b → sγ and b → s+− involve the CKM matrix elements from
the second and third column of this matrix, with the unitarity constraint taking the form

∑
u,c,t λi = 0,

with λi = VibV
∗
is. This equation yields a unitarity triangle which is highly squashed, as one of the sides

of this triangle λu = VubV
∗
us � Aλ4(ρ̄ − iη̄) is doubly Cabibbo suppressed, compared to the other two

sides λc � −λt = Aλ2 + .... Hence, the transitions b → sγ and b → s+− are not expected to yield
useful information on the parameters ρ̄ and η̄, which define the apex of the unitarity triangle of current
interest (see Chapt. 1). The test of unitarity for the b → s transitions in rare B-decays lies in checking
the relation λt � −λc, which holds up to corrections of order λ2.

The impact of the decays b → dγ and b → d+− on the CKM phenomenology is, however,
quite different. These transitions involve the CKM matrix elements in the first and third column, with
the unitarity constraints taking the form

∑
u,c,t ξi = 0, with ξi = VibV

∗
id. Now, all three matrix elements

are of order λ3, with ξu � Aλ3(ρ̄ − iη̄), ξc � −Aλ3, and ξt � Aλ3(1 − ρ̄ − iη̄). This equation leads
to the same unitarity triangle as studied through the constraints Vub/Vcb, ΔMBd

(or ΔMBd
/ΔMBs).

Hence, the transitions b → dγ and b → d+− lead to complementary constraints on the CKM pa-
rameters ρ̄ and η̄, as illustrated in the following. Thus, the role of rare B-decays is that they provide
complementary constraints on the CKM matrix elements, hence test the CKM unitarity, but they also
constrain extensions of the Standard Model, and by that token can act as harbinger of new physics.

A theoretical framework for analyzing the b → sγ transition is set by the effective interaction
Hamiltonian

Heff = −4GF√
2
V ∗
tsVtb

8∑
i=1

Ci(μ)Qi. (24)

230



The generic structure of the operators Qi is as follows:

Qi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(s̄Γic)(c̄Γ′
ib), i = 1, 2,

(s̄Γib)
∑
q(q̄Γ

′
iq), i = 3, 4, 5, 6, (q = u, d, s, c, b)

emb
16π2 s̄Lσ

μνbRFμν , i = 7,

gsmb
16π2 s̄Lσ

μνT abRG
a
μν , i = 8.

(25)

Here, Γi and Γ′
i denote various combinations of the colour and Dirac matrices. Everything that is not

important for b → sγ at the leading order in αem, mb/mW , ms/mb and Vub/Vcb has been neglected
in Eq. (24).

Perturbative calculations (see Ref. [28] and refs. therein) are used to find the Wilson coefficients
in the MS scheme, at the renormalization scale μb ∼ mb

Ci(μb) = C
(0)
i (μb) +

αs(μb)
4π

C
(1)
i (μb) +

(
αs(μb)

4π

)2

C
(2)
i (μb) + . . . . (26)

Here, C(n)
i (μb) depend on αs only via the ratio η ≡ αs(μ0)/αs(μb), where μ0 ∼ mW . In the Leading

Order (LO) calculations, everything but C(0)
i (μb) is neglected in Eq. (26). At the Next-to-Leading Order

(NLO), one takes C(1)
i (μb) into account. The Wilson coefficients contain information on the short-

distance QCD effects due to hard gluon exchanges between the quark lines of the leading one-loop
electroweak diagrams (Fig. 6.9). Such effects enhance the perturbative branching ratio B(b → sγ) by
roughly a factor of three [29].

The same formalism applies to b → dγ, too. The corresponding operators Qi are obtained by
replacing s̄ → d̄ in Eq. (25), and by including the u-quark analogues of Q1,2. The latter operators are
no longer CKM-suppressed. The matching conditions Ci(μ0) and the solutions of the RG equations,
yielding Ci(μb), coincide with those needed for the process b→ sγ.

2.1. Inclusive B → Xs(d)γ decay

The inclusive branching ratio B(B → Xsγ) was measured for the first time by CLEO in 1995 [30]. The
present world averages

B(B → Xsγ (Eγ > 1.6 GeV)) =
(
3.28 +0.41

−0.36

)
× 10−4, (27)

B(B → Xsγ (Eγ > 1
20mb )) =

(
3.40 +0.42

−0.37

)
× 10−4 (28)

are found from the following four measurements

B(B → Xsγ (Eγ > 1
20mb)) =

[
3.88 ± 0.36stat ± 0.37sys

(
+0.43
−0.23

)
theory

]
× 10−4, (BABAR [31]),

B(B → Xsγ (Eγ > 1
20mb)) =

[
3.21 ± 0.43stat ± 0.27sys

(
+0.18
−0.10

)
theory

]
× 10−4, (CLEO [32]),

B(B → Xsγ (Eγ > 1
20mb)) =

[
3.36 ± 0.53stat ± 0.42sys

(
+0.50
−0.54

)
theory

]
× 10−4, (BELLE [33]),

B(b→ sγ) = (3.11 ± 0.80stat ± 0.72sys) × 10−4, (ALEPH [34]),

in which full correlation of the “theory” errors has been assumed. The averages (27) and (28) are per-
fectly consistent with the SM predictions [35,36]

B(B → Xsγ (Eγ > 1.6 GeV))SM = (3.57 ± 0.30) × 10−4, (29)

B(B → Xsγ (Eγ > 1
20mb ))SM = 3.70 × 10−4. (30)
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By convention, contributions to B → Xsγ from the intermediate real ψ and ψ′ are treated as background,
while all the continuum cc̄ states are included assuming quark-hadron duality. Non-continuum states
other than ψ and ψ′ have negligible effect.

When the theoretical result (29) is reevaluated without use of the CKM unitarity in the domi-
nant contributions (i.e. everywhere except for three small (< 2.5%) corrections), comparison with the
experiment (27) leads to the following constraint on the CKM matrix elements

| 1.69 λu + 1.60 λc + 0.60 λt | = ( 0.94 ± 0.07 ) |Vcb|. (31)

After using the numerical values of λc � |Vcb| = (41.0 ± 2.1) × 10−3 and λu from the PDG [37], this
equation yields λt � −47 × 10−3 with an error of around 17%. This is consistent with the unitarity
relation λc � −λt. This relation, however, holds in the SM with much better accuracy than what has just
been derived from Eq. (31). On the other hand, if the SM with 3 generations is not valid, Eq. (31) is not
valid either.

Contrary to B(B → Xsγ), the branching ratio B(B → Xdγ), if measured, would provide us
with useful constraints on the Wolfenstein parameters ρ̄ and η̄. After using the CKM unitarity, it can be
written as

B(B → Xdγ) =
|ξt|2
|Vcb|2

Dt +
|ξu|2
|Vcb|2

Du +
Re(ξ∗t ξu)
|Vcb|2

Dr +
Im(ξ∗t ξu)
|Vcb|2

Di . (32)

The factors ξi have been defined earlier. The quantities Da (a = t, u, r, i), which depend on various input
parameters such as mt, mb, mc, μb and αs, are given in Ref. [38]. Typical values of these quantities (in
units of λ4) are: Dt = 0.154,Du = 0.012,Dr = −0.028, and Di = 0.042, corresponding to the scale
μ = 5 GeV, and the pole quark mass ratio mc/mb = 0.29. The charge-conjugate averaged branching
ratio 〈B(B → Xdγ)〉 is obtained by discarding the last term on the right hand side of Eq. (32).

It is convenient to consider the ratio

〈B(B → Xdγ)〉
〈B(B → Xsγ)〉

=
|ξt|2
|λt|2

+
Du

Dt

|ξu|2
|λt|2

+
Dr

Dt

Re(ξ∗t ξu)
|λt|2

= λ2
[
(1 − ρ̄)2 + η̄2 +

Du

Dt
(ρ̄2 + η̄2) +

Dr

Dt
(ρ̄(1 − ρ̄) − η̄2)

]
+O(λ4)

� 0.036 [for (ρ̄, η̄) = (0.22, 0.35)] . (33)

The above result together with Eq. (30) implies 〈B(B → Xdγ)〉 � 1.3 × 10−5 in the SM. Thus, with
O(108) BB events already collected at the B factories, O(103) b → dγ decays are already produced.
However, extracting them from the background remains a non-trivial issue.

Apart from the total branching ratios, the inclusive decays B → Xs(d)γ provide us with other
observables that might be useful for the CKM phenomenology. First, as discussed in Chapt. 3, the
B → Xsγ photon spectrum is used to extract the HQET parameters that are crucial for the determination
of Vub and |Vcb|. Second, CP-asymmetries contain information on the CKM phase. These asymmetries
can be either direct (i.e. occur in the decay amplitudes) or induced by the BB mixing.

The mixing-induced CP-asymmetries in B → Xs(d)γ are very small (O(ms(d)/mb)) in the SM, so
long as the photon polarizations are summed over. It follows from the particular structure of the dominant
operator Q7 in Eq. (25), which implies that photons produced in the decays of B and B have opposite
circular polarizations. Thus, in the absence of new physics, observation of the mixing-induced CP-
violation would require selecting particular linear photon polarization with the help of matter-induced
photon conversion into e+e− pairs [39].

The SM predictions for the direct CP-asymmetries read

ACP(B → Xsγ) ≡
Γ(B → Xsγ) − Γ(B → Xs γ)
Γ(B → Xsγ) + Γ(B → Xs γ)

� Im(λ∗tλu)Di

|λt|2Dt
� 0.27λ2η̄ ∼ 0.5%, (34)
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ACP(B → Xdγ) ≡
Γ(B → Xdγ) − Γ(B → Xd γ)
Γ(B → Xdγ) + Γ(B → Xd γ)

� Im(ξ∗t ξu)Di

|ξt|2 Dt
� −0.27 η̄

(1−ρ̄)2 + η̄2
∼ −13%, (35)

where ρ̄ = 0.22 and η̄ = 0.35 have been used in the numerical estimates. As stressed in Ref. [38],
there is considerable scale uncertainty in the above predictions, which would require a NLO calculation
of Di to be brought under theoretical control. The smallness of ACP(B → Xsγ) is caused by three
suppression factors: λu/λt, αs/π and m2

c/m
2
b . This SM prediction is consistent with the CLEO bound

−0.27 < ACP(B → Xsγ) < +0.10 at 95% C.L. [40].

No experimental limit has been announced so far on either the branching ratio B(B → Xdγ) or
the CP asymmetry ACP(B → Xdγ). While experimentally challenging, the measurement of these quan-
tities might ultimately be feasible at the B-factories which would provide valuable and complementary
constraints on the CKM parameters.

2.2. Exclusive radiative B decays

The effective Hamiltonian sandwiched between the B-meson and a single meson state (say, K∗ or ρ
in the transitions B → (K�, ρ)γ) can be expressed in terms of matrix elements of bilinear quark cur-
rents inducing heavy-light transitions. These matrix elements are dominated by strong interactions at
small momentum transfer and cannot be calculated perturbatively. They have to be obtained from a
non-perturbative method, such as the lattice-QCD and the QCD sum rule approach. As the inclusive
branching ratio B(B → Xsγ) in the SM is in striking agreement with data, the role of the branch-
ing ratio B(B → K∗γ) is that it will determine the form factor governing the electromagnetic penguin
transition, TK∗

1 (0).
To get a firmer theoretical prediction on the decay rate, one has to include the perturbative QCD

radiative corrections arising from the vertex renormalization and the hard spectator interactions. To
incorporate both types of QCD corrections, it is helpful to use a factorization Ansatz for the heavy-light
transitions at large recoil and at leading order in the inverse heavy meson mass, introduced in Ref. [41].
Exemplified here by the B → V γ∗ transition, a typical amplitude fk(q2) can be written in the form

fk(q2) = C⊥kξ⊥(q2) + C‖kξ‖(q
2) + ΦB ⊗ Tk(q2) ⊗ ΦV , (36)

where ξ⊥(q2) and ξ‖(q2) are the two independent form factors in these decays remaining in the heavy
quark and large energy limit; Tk(q2) is a hard-scattering kernel calculated to O(αs); ΦB and ΦV are
the light-cone distribution amplitudes of the B- and vector-meson, respectively, the symbol ⊗ denotes
convolution with Tk, and Ck = 1 +O(αs) are the hard vertex renormalization coefficients. In a number
of papers [42–44], the factorization Ansatz of Eq. (36) is shown to hold in O(αs), leading to the explicit
O(αs) corrections to the amplitudes B → V γ and B → V +−.

Experiment Bexp(B0(B0) → K∗0(K∗0) + γ) Bexp(B± → K∗± + γ)

CLEO [45] (4.55+0.72
−0.68 ± 0.34) × 10−5 (3.76+0.89

−0.83 ± 0.28) × 10−5

BELLE [46] (3.91 ± 0.23 ± 0.25) × 10−5 (4.21 ± 0.35 ± 0.31) × 10−5

BABAR [47] (4.23 ± 0.40 ± 0.22) × 10−5 (3.83 ± 0.62 ± 0.22) × 10−5

Table 6.2: Experimental branching ratios for the decays B0(B
0
) → K∗0(K

∗0
)γ and B± → K∗±γ.

We first discuss the exclusive decay B → K∗γ, for which data from the CLEO, BABAR, and
BELLE measurements are available and given in Table 6.2 for the charge conjugated averaged branching
ratios. We note that the BELLE data alone has reached a statistical accuracy of better than 10%.
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Adding the statistical and systematic errors in quadrature, we get the following world averages for
the branching ratios:

B(B0 → K∗0γ) = (4.08 ± 0.26) × 10−5 ,

B(B± → K±γ) = (4.05 ± 0.35) × 10−5 . (37)

The two branching ratios are completely consistent with each other, ruling out any significant isospin
breaking in the respective decay widths, which is not expected in the SM [48] but anticipated in some
beyond-the-SM scenarios. Likewise, the CP asymmetry in B → K∗γ decays, which in the SM is ex-
pected to be of the same order of magnitude as for the inclusive decay, namely ACP(B → K∗γ) ≤ 1%,
is completely consistent with the present experimental bounds, the most stringent of which is posted by
the BELLE collaboration [46]: ACP(B → K∗γ) = −0.022 ± 0.048 ± 0.017. In view of this, we shall
concentrate in the following on the branching ratios in B → K∗γ decays to determine the form factors.

Ignoring the isospin differences in the decay widths of B → K∗γ decays, the branching ratios for
B± → K∗±γ and B0(B0) → K∗0(K∗0)γ can be expressed as:

Bth(B → K∗γ) = τB Γth(B → K∗γ) (38)

= τB
G2
Fα|VtbV ∗

ts|2
32π4

m2
b,poleM

3
[
ξ
(K∗)
⊥

]2(
1 − M2

K∗

M2

)3 ∣∣∣C(0)eff
7 +A(1)(μ)

∣∣∣2 ,
where GF is the Fermi coupling constant, α = α(0) = 1/137 is the fine-structure constant, mb,pole is
the pole b-quark mass, M and MK∗ are the B- and K∗-meson masses, and τB is the lifetime of the B0- or
B+-meson. The quantity ξK

∗
⊥ is the soft part of the form factor TK

∗
1 (q2 = 0) in the B → K∗γ transition,

to which the symmetries in the large energy limit apply. The two form factors ξK
∗

⊥ and TK
∗

1 (q2 = 0)
are related by perturbative (O(αs)) and power (O(ΛQCD/mb)) corrections [50]. Thus, one could have
equivalently expressed the O(αs)-corrected branching ratio for B → K∗γ in terms of the QCD form
factor TK

∗
1 (q2 = 0), and a commensurately modified expression for the explicit O(αs) correction in

the above equation [43]. In any case, the form factor TK
∗

1 (q2 = 0) or ξK
∗

⊥ has to be determined by a
non-perturbative method.

The function A(1) in Eq. (38) can be decomposed into the following three components:

A(1)(μ) = A
(1)
C7

(μ) +A(1)
ver(μ) +A(1)K∗

sp (μsp) . (39)

Here, A(1)
C7

and A(1)
ver are the O(αs) (i.e. NLO) corrections due to the Wilson coefficient Ceff

7 and in

the b → sγ vertex, respectively, and A(1)K∗
sp is the O(αs) hard-spectator correction to the B → K∗γ

amplitude computed in [42–44]. This formalism leads to the following branching ratio for B → K∗γ
decays:

Bth(B → K∗γ) � (7.2 ± 1.1) × 10−5
(

τB
1.6 ps

)(
mb,pole

4.65 GeV

)2
(
ξ
(K∗)
⊥
0.35

)2

, (40)

where the default values of the three input parameters are made explicit, with the rest of the theoretical
uncertainties indicated numerically; the default value for the form factor ξ(K

∗)
⊥ (0) is based on the light-

cone QCD sum rule estimates [49].

The non-perturbative parameter ξ(K
∗)

⊥ (0) can now be extracted from the data on the branching
ratios for B → K∗γ decays, given in Eq. (37), leading to the current world average 〈B(B → K∗γ)〉 =
(4.06 ± 0.21) × 10−5, which then yields

ξ̄
(K∗)
⊥ (0) = 0.25 ± 0.04,

[
T̄

(K∗)
1 (0, m̄b) = 0.27 ± 0.04

]
, (41)
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where we have used the O(αs) relation between the effective theory form factor ξ(K
∗)

⊥ (0) and the full

QCD form factor T (K∗)
1 (0, m̄b), worked out in [50]. This estimate is significantly smaller than the

corresponding predictions from the QCD sum rules analysis T(K∗)
1 (0) = 0.38±0.06 [51,49] and from the

lattice simulations T(K∗)
1 (0) = 0.32+0.04

−0.02 [52]. Clearly, more work is needed to calculate the B → K∗γ
decay form factors precisely.

As already discussed, inclusive b→ dγ transitions are not yet available experimentally. This lends
great importance to the exclusive decays, such as B → ργ, ωγ, to whose discussion we now turn. These
decays differ from their B → K∗γ counterparts, in that the annihilation contributions are not Cabibbo-
suppressed. In particular, the isospin-violating ratios and CP-asymmetries in the decay rates involving
the decays B± → ρ±γ and B0(B0) → ρ0γ are sensitive to the penguin and annihilation interference in
the amplitudes.

We recall that ignoring the perturbative QCD corrections to the penguin amplitudes the ratio of
the branching ratios for the charged and neutral B-meson decays in B → ργ can be written as [53,54]

B(B− → ρ−γ)
2B(B0 → ρ0γ)

�
∣∣∣∣∣1 + εAeiφA

VubV
∗
ud

VtbV
∗
td

∣∣∣∣∣
2

, (42)

where εAeiφA includes the dominant W -annihilation and possible sub-dominant long-distance contribu-
tions. We shall use the value εA � +0.30 ± 0.07 for the decays B± → ρ±γ [55,56], obtained assuming
factorization of the annihilation amplitude. The corresponding quantity for the decays B0 → ρ0γ is
suppressed due to the electric charge of the spectator quark in B0 as well as by the unfavourable colour
factors. Typical estimates for εA in B0 → ρ0γ put it at around 5% [55,56]. The strong interaction
phase φA vanishes in O(αs) in the chiral limit and to leading twist [54], giving theoretical credibility to
the factorization-based estimates. Thus, in the QCD factorization approach the phase φA is expected to
be small and one usually sets φA = 0. Of course, O(αs) vertex and hard spectator corrections gener-
ate non-zero strong phases, as discussed later. The isospin-violating correction depends on the unitarity
triangle phase α due to the relation:

VubV
∗
ud

VtbV
∗
td

= −
∣∣∣∣∣VubV

∗
ud

VtbV
∗
td

∣∣∣∣∣ eiα . (43)

The NLO corrections to the branching ratios of the exclusive decays B± → ρ±γ and B0 → ρ0γ are
derived very much along the same lines as outlined for the decays B → K∗γ. Including the annihilation
contribution, the B → ργ branching ratios, isospin- and CP-violating asymmetries are given in [43,44].

Concentrating on the decays B± → ρ±γ, the expression for the ratio R(ργ/K∗γ) ≡ B(B± →
ρ±γ)/B(B± → K∗±γ) (where an average over the charge-conjugated modes is implied) can be written
as [44]

R(ργ/K∗γ) = Sρ

∣∣∣∣VtdVts
∣∣∣∣
2 (M2

B −M2
ρ )3

(M2
B −M2

K∗)3
ζ2(1 + ΔR) , (44)

where Sρ = 1 for the ρ± meson, and ζ = ξρ⊥(0)/ξK
∗

⊥ (0), with ξρ⊥(0)(ξK
∗

⊥ (0)) being the form factors (at
q2 = 0) in the effective heavy quark theory for the decays B → ργ(B → K∗γ). The quantity (1 + ΔR)
entails the explicit O(αs) corrections, encoded through the functions A(1)K∗

R , A(1)t
R and AuR, and the

long-distance contribution LuR. For the decays B± → ρ±γ and B± → K∗±γ, this can be written after
charge conjugated averaging as

1 + ΔR± =

∣∣∣∣∣C
d
7 + λuL

u
R

Cs7

∣∣∣∣∣
2 (

1 − 2A(1)K∗
R

�Cs7
|Cs7 |2

)

+
2

|Cs7 |2
�
[
(Cd7 + λuL

u
R)(A(1)t

R + λ∗uA
u
R)
]
. (45)
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ζ = 0.76 ± 0.10 LuR = −0.095 ± 0.022

A(1)K∗
= −0.113 − i0.043 A(1)t = −0.114 − i0.045

Au = −0.0181 + i0.0211

ηtt = 0.57 ηcc = 1.38 ± 0.53

ηtc = 0.47 ± 0.04 B̂K = 0.86 ± 0.15

ηB = 0.55 FBd

√
B̂Bd

= 235 ± 33+0
−24 MeV

ξs = 1.18 ± 0.04+0.12
−0

λ = 0.221 ± 0.002 |Vub/Vcb| = 0.097 ± 0.010

εK = (2.271 ± 0.017) 10−3 ΔMBd
= 0.503 ± 0.006 ps−1

aψKs = 0.734 ± 0.054 ΔMBs ≥ 14.4 ps−1 (95% C.L.)

Table 6.3: Theoretical parameters and measurements used in B → ργ observables and in the CKM unitarity fits. For details

and references, see [57,17]

In the SM, Cd7 = C7, as in the b → sγ decays; however, in beyond-the-SM scenarios, this may not
hold making the decays B → ργ interesting for beyond-the-SM searches [57]. The definitions of the
quantities A(1)K∗

, A(1)t, Au and LuR = εAC
(0)eff
7 can be seen in [44]. Their default values together with

that of ζ are summarized in Table 6.3, where we have also specified the theoretical errors in the more
sensitive parameters ζ and LuR.

What concerns the quantity called ζ , we note that there are several model-dependent estimates of
the same in the literature. Some representative values are: ζ = 0.76 ± 0.06 from the light-cone QCD
sum rules [55]; a theoretically improved estimate in the same approach yields [49]: ζ = 0.75 ± 0.07;
ζ = 0.88 ± 0.02(!) using hybrid QCD sum rules [58], and ζ = 0.69 ± 10% in the quark model [59].
Except for the hybrid QCD sum rules, all other approaches yield a significant SU(3)-breaking in the
magnetic moment form factors. In the light-cone QCD sum rule approach, this is anticipated due to the
appreciable differences in the wave functions of the K∗ and ρ-mesons. To reflect the current dispersion
in the theoretical estimates of ζ , we take its value as ζ = 0.76 ± 0.10. A lattice-QCD based estimate of
the same is highly desirable.

The isospin breaking ratio

Δ(ργ) ≡ (Δ+0 + Δ−0)
2

, Δ±0 =
Γ(B± → ρ±γ)

2Γ(B0(B0) → ρ0γ)
− 1 (46)

is given by

Δ(ργ) =

∣∣∣∣∣C
d
7 + λuL

u
R

Cd7

∣∣∣∣∣
2 (

1 − 2�Cd7 (A(1)t
R + λ∗uA

u
R)

|Cd7 |2

)

+
2

|Cd7 |2
�
[
(Cd7 + λuL

u
R)(A(1)t

R + λ∗uA
u
R)
]
− 1 , (47)

and the CP asymmetry A±
CP (ργ) = (B(B− → ρ−γ) − B(B+ → ρ+γ))/(B(B− → ρ−γ) + B(B+ →

ρ+γ)) is

A±
CP (ργ) = −

2
[
(Cd7 + λuL

u
R)(A(1)t

I + λ∗uA
u
I )
]

|Cd7 + λuLuR|2
. (48)

The observables R0(ργ/K∗γ) ≡ B̄(B0 → ρ0γ)/B(B0 → K∗0γ) (where B̄ is the average of the B0 and
B0

modes) and A0
CP (ργ) = (B(B0 → ρ0γ) − B(B0 → ρ0γ))/(B(B0 → ρ−γ) + B(B0 → ρ0γ)) are
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Fig. 6.10: Unitary triangle fit in the SM and the resulting 95% C.L. contour in the ρ̄ - η̄ plane. The impact of the

R(ργ/K∗γ) < 0.047 constraint is also shown (from Ref. [57]).

obtained from Eqs. (44, 45, 48) in the limit LuR = 0 and Sρ = 1/2. The numerical estimates for the
various observables depend, apart from the hadronic parameters specific to the B → V γ (V = K∗, ρ)
decays, also on the CKM parameters, in particular ρ̄ and η̄. A typical analysis of the constraints in the
(ρ̄, η̄) plane from the unitarity of the CKM matrix [57], including the measurements of the CP asymmetry
aψKs in the decays B0/B0 → J/ψKs (and related modes) [60] is shown in Fig. 6.10. Note that for the

hadronic parameters FBd

√
B̂Bd

and ξs, the recent lattice estimates [61] have been adopted that take
into account uncertainties induced by the so-called chiral logarithms [62]. These errors are extremely
asymmetric and, once taken into account, reduce sizeably the impact of the ΔMBs/ΔMBd

lower bound
on the unitarity triangle analysis, as shown in Fig. 6.10. The 95% CL contour is drawn taking into account
chiral logarithms uncertainties. The fitted values for the Wolfenstein parameters are ρ̄ = 0.22 ± 0.07
and η̄ = 0.35 ± 0.04. This yields ΔR± = 0.055 ± 0.130 and ΔR0 = 0.015 ± 0.110 [44,57]. The
impact of the current upper limit R(ργ/K∗γ) ≤ 0.047 [63] is also shown. While not yet competitive
to the existing constraints on the unitarity triangle, this surely is bound to change with the anticipated
O(1 (ab)−1)) Υ(4S) → BB data over the next three years at the B-factories.

Taking into account these errors and the uncertainties on the theoretical parameters presented in
Table 6.3, leads to the following SM expectations for the B → (K∗, ρ)γ decays [57]:

R±(ργ/K∗γ) = 0.023 ± 0.012 , (49)

R0(ργ/K∗γ) = 0.011 ± 0.006 , (50)

Δ(ργ) = 0.04+0.14
−0.07 , (51)

A±
CP (ργ) = 0.10+0.03

−0.02 , (52)

A0
CP (ργ) = 0.06 ± 0.02 . (53)

The above estimates of R±(ργ/K∗γ) and R0(ργ/K∗γ) can be combined with the measured branching
ratios for B → K∗γ decays given earlier to yield:

B(B± → ρ±γ) = (0.93 ± 0.49) × 10−6 , B(B0 → ρ0γ) = (0.45 ± 0.24) × 10−6 . (54)

The errors include the uncertainties on the hadronic parameters and the CKM parameters ρ̄, η̄, as well
as the current experimental error on B(B → K∗γ). While there is as yet no experimental bounds
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Fig. 6.11: Extremal values of R(ργ/K∗γ) t hat are compatible with the SM unitarity triangle analysis (from Ref. [57]).

on the isospin- and CP-violating quantities, Δ(ργ), A±CP (ργ) and A0
CP (ργ), the upper limits on the

branching ratios R±(ργ/K∗γ) and R0(ργ/K∗γ) have been significantly improved by the BABAR [63]
and BELLE [46] collaborations recently. Averaged over the charge conjugated modes, the current best
upper limits are [63]: B(B0 → ρ0γ) < 1.4 × 10−6, B(B± → ρ±γ) < 2.3 × 10−6 and B(B0 → ωγ) <
1.2 × 10−6 (at 90% C.L.). They have been combined, using isospin weights for B → ργ decays and
assuming B(B0 → ωγ) = B(B0 → ρ0γ), to yield the improved upper limit B(B → ργ) < 1.9 × 10−6.
The current measurements of the branching ratios for B → K∗γ decays by BABAR [47], B(B0 →
K∗0γ) = (4.23±0.40±0.22)×10−5 and B(B+ → K∗+γ) = (3.83±0.62±0.22)×10−5 , are then used to
set an upper limit on the ratio of the branching ratios R(ργ/K∗γ) ≡ B(B → ργ)/B(B → K∗γ) < 0.047
(at 90% C.L.) [63]. This bound is typically a factor 2 away from the SM estimates given above [44,57].
However, in beyond-the-SM scenarios, this bound provides highly significant constraints on the relative
strengths of the b→ dγ and b→ sγ transitions [57].

The extremal values of R(ργ/K∗γ) compatible with the SM UT-analysis are shown in Fig. 6.11
where the bands correspond to the values 0.037 ± 0.007 and 0.013 ± 0.003 (the errors are essen-
tially driven by the uncertainty on ζ). The meaning of this figure is as follows: any measurement of
R(ργ/K∗γ), whose central value lies in the range (0.013, 0.037) would be compatible with the SM,
irrespective of the size of the experimental error. The error induced by the imprecise determination of
the isospin breaking parameter ζ limits currently the possibility of having a very sharp impact from
R(ργ/K∗γ) on the UT analysis. This aspect needs further theoretical work.

3. Weak phases from hadronic B decays

M. Beneke, G. Buchalla (coordinator), M. Ciuchini, R. Fleischer, E. Franco, Y.-Y. Keum, G. Martinelli,
M. Pierini, J.L. Rosner and L. Silvestrini

The next five contributions discuss the problem of extracting weak phases from hadronic B decays.
The emphasis is on determining the CKM parameters γ and α, or equivalent constraints on ρ̄ and η̄, from
exclusive modes with two light mesons in the final state, such as B → πK and B → ππ. This problem
is difficult since the underlying weak interaction processes are dressed by QCD dynamics, which is
prominent in purely hadronic decays. Despite the general difficulty, there are several circumstances that
help us to control strong interaction effects and to isolate the weak couplings:
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• Flavour symmetries: The impact of strong interactions may be reduced by eliminating hadronic
matrix elements through a combination of different channels, exploiting approximate flavour sym-
metries of QCD. Important examples are isospin, U -spin (doublet (d, s)) or, more generally,
SU(3)F .

• Heavy-quark limit: The fact that mb � ΛQCD can be used to simplify the theoretical description
of QCD dynamics in B decays. Within this framework amplitudes are expanded in ΛQCD/mb,
long-distance and short-distance contributions are factorized, and the latter can be treated in per-
turbative QCD. As a result the impact of nonperturbative hadronic physics is reduced.

• Rich phenomenology: A large number of decay channels exists, which allows us to explore
different approaches, to apply various strategies based on QCD flavour symmetries and to obtain
cross-checks for dynamical calculations based on factorization.

It has to be emphasized that this field is in a state of ongoing development, both theoretically
and experimentally. On the theory side important questions still need further study (general proof of
factorization, light-cone dynamics of the B meson, numerical accuracy of heavy-quark limit in various
situations, size of SU(3)F -breaking corrections), while many valuable new data continue to be collected
by the experiments. It is worth noting that the approaches based on flavour symmetries and those using
dynamical calculations in the heavy-quark limit are complementary to each other. For instance, correc-
tions from flavour symmetry breaking can be estimated within factorization. One may expect that the
most important results might eventually be obtained from the combined use of all the available options
mentioned above.

The following contributions summarize the status of the subject as it was discussed at this work-
shop. The contributions of J.L. Rosner and R. Fleischer highlight strategies based on QCD flavour
symmetries to extract α and γ from B → πK, ππ decays. The status of factorization is outlined by
M. Beneke. A critical point of view on extracting γ from global fits to hadronic modes is presented by
M. Ciuchini et al.. Finally, a phenomenological analysis based on the hypothesis of hard-gluon domi-
nance of B → π form factors is described by Y.-Y. Keum.

3.1. Weak coupling phases

J.L. Rosner∗

The phases of CKM matrix elements describing charge-changing weak couplings of quarks are
fundamental quantities. They are sometimes described in terms of angles α = φ2, β = φ1, and γ = φ3

in the unitarity triangle. Now that BaBar and Belle are converging on a value of sin(2β), attention has
turned to ways of learning α and γ = π − β − α. This summary describes some recent work on the
subject.

In Sec. 3.1.1. we discuss B0 → π+π− in the light of recent measurements at BaBar [64] and
Belle [24] of time-dependent asymmetries. This work was performed in part in collaboration with
M. Gronau [11,65,66] and in part with Z. Luo [12]. We then mention how to learn γ from various
B → Kπ decays (Sec. 3.1.2., collaboration with M. Gronau [11] and with M. Neubert [67,68]), 2β + γ
from B → D(∗)π (Sec. 3.1.3., collaboration with D. Suprun and C.W. Chiang [69]), and α and γ from
tree-penguin interference in B → PP, PV decays, where P is a light pseudoscalar and V a light vector
meson (Sec. 3.1.4., collaboration with C.W. Chiang [70]). Sec. 3.1.5. is a short guide to other recent
work, while we summarize in Sec. 3.1.6.

∗J.L. Rosner would like to thank C.-W. Chiang, M. Gronau, Z. Luo, M. Neubert, and D. Suprun for enjoyable collaborations

on these subjects.
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3.1.1. Determination of α from B0 → π+π− decays

We regard α, γ as uncertain to about π/4: 126◦ ≥ α ≥ 83◦, 32◦ ≤ γ ≤ 75◦ [11], in accord with
122◦ ≥ α ≥ 75◦, 37◦ ≤ γ ≤ 80◦ [71]. If B0 → π+π− were dominated by the “tree” amplitude T with
phase γ = Arg(V ∗

ubVud), the parameter λππ ≡ e−2iβA(B0 → π+π−)/A(B0 → π+π−) would be just
e2iα and the indirect CP-violating asymmetry Sππ = 2Imλππ/(1 + |λππ|2) would be sin 2α. Here

dΓ
dt

{
B0|t=0 → f

B0|t=0 → f

}
∝ e−Γt[1 ∓ Sππ sin ΔMdt± Cππ cos ΔMdt] , (55)

Cππ = (1−|λππ|2)/(1+ |λππ|2), and ΔΓ � ΔMd/200 has been neglected. In the presence of non-zero
ΔΓ one can also measure Aππ = 2Reλππ/(1 + |λππ|2). Since |Sππ|2 + |Cππ|2 + |Aππ|2 = 1 one has
|Sππ|2 + |Cππ|2 ≤ 1. However, one also has a penguin amplitude P involving a b̄ → d̄ loop transition
involving contributions ∼ V ∗

udVub, V
∗
cdVcb, and V ∗

tdVtb = −V ∗
udVub − V ∗

cdVcb. The decay amplitudes are
then

A(B0 → π+π−) = −(|T |eiδT eiγ + |P |eiδP ), A(B0 → π+π−) = −(|T |eiδT e−iγ + |P |eiδP ), (56)

where the strong phase difference δ ≡ δP − δT . It will be convenient to define Rππ ≡ B(B0 →
π+π−)/B(B0 → π+π−)tree, where B refers to a branching ratio averaged over B0 and B0

. One may
use Sππ and Cππ to learn α, δ, resolving a discrete ambiguity with the help of Rππ [65]. Alternatively,
one may directly use Sππ, Cππ, and Rππ to learn α, δ, and |P/T | [66,72].

Explicit expressions forRππ, Sππ andCππ may be found in [65,66]. In [65] we estimated |P/T | =
0.276 ± 0.064 (see also [10]), obtaining |P | from B+ → K0π+ via (broken) flavor SU(3) and |T | from
B → πν. Plotting Cππ against Sππ for various values of α in the likely range, one obtains curves
parametrized by δ which establish a one-to-one correspondence between a pair (Sππ, Cππ) and a pair
(α, δ) as long as |δ| ≤ 90◦. However, if |δ| is allowed to exceed about 90◦ these curves can intersect
with one another, giving rise to a discrete ambiguity corresponding to as much as 30◦ uncertainty in α
when Cππ = 0. In this case, when δ = 0 or π, one has |λππ| = 1 and Sππ = sin 2(α + Δα), where
tan(Δα) = ±(|P/T | sin γ)/(1± (|P/T | cos γ) is typically ±15◦. One can resolve the ambiguity either
by comparing the predicted Rππ with experiment (see [65] for details) , or by comparing the allowed
(ρ, η) region with that determined by other observables [71]. An example is shown in [11].

Once errors onRππ are reduced to ±0.1 (they are now about three times as large [65]), a distinction
between δ = 0 and δ = π will be possible when Sππ � 0, as appears to be the case for BaBar [64].
For the Belle data [24], which suggest Sππ < 0, the distinction becomes easier; it becomes harder for
Sππ > 0. With 100 fb−1 at each of BaBar and Belle, it will be possible to reduce Δ|T |2/|T |2 from its
present error of 44% and B(B0 → π+π−) from its present error of 21% each to about 10% [12], which
will go a long way toward this goal. In an analysis independent of |P/T | performed since the workshop,
the somewhat discrepant BaBar and Belle values of Sππ and Cππ, when averaged, favor α between about
90◦ and 120◦ (see Fig. 1 of [66]).

3.1.2. Determination of γ from B → Kπ decays

γ from B0 → K+π− and B+ → K0π+

We mention some results of [11] on information provided by B0 → K+π− decays, which involve both
a penguin P ′ and a tree T ′ amplitude. One can use the flavor-averaged branching ratio B and the CP
asymmetry in these decays, together with P′ information from the B+ → K0π+ decay rate (assuming
it is equal to the charge-conjugate rate, which must be checked) and T′ information from B → πν and
flavor SU(3), to obtain constraints on γ. One considers the ratio R ≡ [B(B0 → K+π−)/B(B+ →
K0π+)][τ+/τ0], where the B+/B0 lifetime ratio τ+/τ0 is about 1.07. Once the error on this quantity is
reduced to ±0.05 from its value of ±0.14 as of February 2002, which should be possible with 200 fb−1

240



at each of BaBar and Belle, one should begin to see useful constraints arising from the value of R,
especially if errors on the ratio r ≡ |T′/P ′| can be reduced with the help of better information on |T′|.

γ from B+ → K+π0 and B+ → K0π+

One can use the ratio Rc ≡ 2B(B+ → K+π0)/B(B+ → K0π+) to determine γ [11,67,68]. Given the
values as of February 2002, Rc = 1.25 ± 0.22, Ac ≡ [B(B− → K−π0) − B(B+ → K+π0)]/B(B+ →
K0π+) = −0.13 ± 0.17, and rc ≡ |T ′ + C ′|/|p′| = 0.230 ± 0.035 (here C′ is a color-suppressed am-
plitude, while p′ is a penguin amplitude including an electroweak contribution), and an estimate [67,68]
of the electroweak penguin contribution, one finds γ ≤ 90◦ or γ ≥ 140◦ at the 1σ level, updating an
earlier bound [11] γ ≥ 50◦. A useful determination would involve ΔRc = ±0.1, achievable with 150
fb−1 each at BaBar and Belle.

3.1.3. Determination of 2β + γ from B → D(∗)π decays

The “right-sign” (RS) decay B0 → D(∗)−π+, governed by the CKM factor V ∗
cbVud, and the “wrong-

sign” (WS) decay B0 → D(∗)−π+, governed by V ∗
cdVub, can interfere through B0–B0

mixing, leading
to information on the weak phase 2β + γ. One must separate out the dependence on a strong phase δ
between the RS and WS amplitudes, measuring time-dependent observables

A±(t) = (1 +R2) ± (1 −R2) cos Δmt, B±(t) = −2R sin(2β + γ ± δ) sin Δmt, (57)

where R ≡ |WS/RS| = r|V ∗
cdVub/V

∗
cbVud| � 0.02r, with r a parameter of order 1 which needs to

be known better. In Ref. [69] we use the fact that R can be measured in the decay B+ → D∗+π0 to
conclude that with 250 million BB̄ pairs one can obtain an error of less than ±0.05 on sin(2β + γ),
which is expected to be greater than about 0.89 in the standard model. Thus, such a measurement is not
likely to constrain CKM parameters, but has potential for an interesting non-standard outcome.

3.1.4. Determination of α and γ from B → PP, PV decays

Some other processes which have a near-term potential for providing information on tree-penguin inter-
ference (and hence on α and γ) are the following [70: (1) the CP asymmetries in B+ → π+η and π+η′;
(2) rates in B+ → η′K+ and B0 → η′K0; (3) rates in B+ → ηK∗+ and B0 → ηK∗0; and (4) rates
in B+ → ωK+ and B0 → ωK0. Other interesting branching ratios include those for B0 → π−K∗+,
B0 → K+ρ−, B+ → π+ρ0, B+ → π+ω, and B(+,0) → η′K∗(+,0), with a story for each [70]. In order
to see tree-penguin interference at the predicted level one needs to measure branching ratios at the level
of ΔB = (1 − 2) × 10−6.

3.1.5. References to other work

For other recent suggestions on measuring α and γ, see the review of [73] and the contributions of [74]
on the isospin triangle in B → ππ (α), [75,76] on B+ → DK+ (γ), [77] on B0 → DKS (2β+γ), [78] on
B0 → Kπ (γ), [79] on B0 → π+π− and Bs → K+K− (γ), and [80] on B0 → K+π− and Bs → K−π+

(γ). These contain references to earlier work.

3.1.6. Summary

CKM phases will be learned in many ways. While β is well-known now and will be better-known soon,
present errors on α and γ are about 45◦. To reduce them to 10◦ or less, several methods will help.
(1) Time-dependent asymmetries in B0 → π+π− already contain useful information. The next step
will come when both BaBar and Belle accumulate samples of at least 100 fb−1. (2) In B0 → π+π−
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an ambiguity between a strong phase δ near zero and one near π (if the direct asymmetry parameter
Cππ is small) can be resolved experimentally, for example by better measurement of the B0 → π+π−

branching ratio and the B → πν spectrum. (3) Several B → Kπ modes, when compared, can constrain
γ through penguin-tree interference. This has been recognized, for example, in [71]. (4) The rates in
several B → PP, PV modes are sensitive to tree-penguin interference. One needs to measure branching
ratios with errors less than 2 × 10−6 to see such effects reliably.

3.2. Extracting γ through flavour-symmetry strategies

R. Fleischer†

An important element in the testing of the Kobayashi–Maskawa picture of CP violation is the
direct determination of the angle γ of the unitarity triangle of the CKM matrix. Here the goal is to
overconstrain this angle as much as possible. In the presence of new physics, discrepancies may arise
between different strategies, as well as with the “indirect” results for γ that are provided by the usual fits
of the unitarity triangle, yielding at present γ ∼ 60◦ [6,8,27].

There are many approaches on the market to determine γ (for a detailed review, see Ref. [81]).
Here we shall focus on B → πK modes [11,78], [82–90], which can be analysed through flavour-
symmetry arguments and plausible dynamical assumptions, and the U -spin-related decays Bd → π+π−,
Bs → K+K− [79]. The corresponding flavour-symmetry strategies allow the determination of γ and
valuable hadronic parameters with a “minimal” theoretical input. Alternative approaches, relying on
a more extensive use of theory, are provided by the recently developed “QCD factorization” [41,10]
and “PQCD” [91] approaches, which allow furthermore a reduction of the theoretical uncertainties of
the flavour-symmetry strategies discussed here. Let us note that these approaches are also particularly
promising from a practical point of view: BaBar, Belle and CLEO-III may probe γ through B → πK
modes, whereas the U -spin strategy, requiring also a measurement of the Bs-meson decay Bs → K+K−,
is already interesting for run II of the Tevatron [3], and can be fully exploited in the LHC era [2]. A variant
for the B-factories [92], where Bs → K+K− is replaced by Bd → π∓K±, points already to an exciting
picture [93].

3.2.1. Studies of B → πK decays

Using the isospin flavour symmetry of strong interactions, relations between B → πK amplitudes can be
derived, which suggest the following combinations to probe γ: the “mixed” B± → π±K, Bd → π∓K±

system [83–86], the “charged” B± → π±K, B± → π0K± system [67,68,88], and the “neutral” Bd →
π0K, Bd → π∓K± system [78,88]. Interestingly, already CP-averaged B → πK branching ratios may
lead to non-trivial constraints on γ [84,67,68]. In order to determine this angle, also CP-violating rate
differences have to be measured. To this end, we introduce the following observables [88]:

{
R
A0

}
≡
[

BR(B0
d → π−K+) ± BR(B0

d → π+K−)
BR(B+ → π+K0) + BR(B− → π−K0)

]
τB+

τB0
d

(58)

{
Rc

Ac
0

}
≡ 2

[
BR(B+ → π0K+) ± BR(B− → π0K−)
BR(B+ → π+K0) + BR(B− → π−K0)

]
(59)

{
Rn

An
0

}
≡ 1

2

[
BR(B0

d → π−K+) ± BR(B0
d → π+K−)

BR(B0
d → π0K0) + BR(B0

d → π0K0)

]
. (60)

†R. Fleischer would like to thank Andrzej Buras, Thomas Mannel and Joaquim Matias for pleasant collaborations on the

topics discussed below.
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If we employ the isospin flavour symmetry and make plausible dynamical assumptions, concern-
ing mainly the smallness of certain rescattering processes, we obtain parametrizations of the following
structure [86,88] (for alternative ones, see Ref. [87]):

R(c,n), A
(c,n)
0 = functions

(
q(c,n), r(c,n), δ(c,n), γ

)
. (61)

Here q(c,n) denotes the ratio of electroweak (EW) penguins to “trees”, r(c,n) is the ratio of “trees” to QCD
penguins, and δ(c,n) the strong phase between “trees” and QCD penguins. The EW penguin parameters
q(c,n) can be fixed through theoretical arguments: in the mixed system [83–85], we have q ≈ 0, as EW
penguins contribute only in colour-suppressed form; in the charged and neutral B → πK systems, qc
and qn can be fixed through the SU(3) flavour symmetry without dynamical assumptions [67,68,78,88].
The r(c,n) can be determined with the help of additional experimental information: in the mixed system,
r can be fixed through arguments based on factorization [83,85,41,10] or U -spin [80], whereas rc and
rn can be determined from the CP-averaged B± → π±π0 branching ratio by using only the SU(3)
flavour symmetry [82,67,68]. The uncertainties arising in this programme from SU(3)-breaking effects
can be reduced through the QCD factorization approach [41,10], which is moreover in favour of small
rescattering processes. For simplicity, we shall neglect such FSI effects in the discussion given below.

Since we are in a position to fix the parameters q(c,n) and r(c,n), we may determine δ(c,n) and
γ from the observables given in (61). This can be done separately for the mixed, charged and neutral
B → πK systems. It should be emphasized that also CP-violating rate differences have to be measured
to this end. Using just the CP-conserving observables R(c,n), we may obtain interesting constraints on γ.
In contrast to q(c,n) and r(c,n), the strong phase δ(c,n) suffers from large hadronic uncertainties. However,
we can get rid of δ(c,n) by keeping it as a “free” variable, yielding minimal and maximal values forR(c,n):

Rext
(c,n)

∣∣∣
δ(c,n)

= function
(
q(c,n), r(c,n), γ

)
. (62)

Keeping in addition r(c,n) as a free variable, we obtain another – less restrictive – minimal value

Rmin
(c,n)

∣∣∣
r(c,n),δ(c,n)

= function
(
q(c,n), γ

)
sin2 γ. (63)

These extremal values of R(c,n) imply constraints on γ, since the cases corresponding to Rexp
(c,n) < Rmin

(c,n)

and Rexp
(c,n) > Rmax

(c,n) are excluded. Present experimental data seem to point towards values for γ that are
larger than 90◦, which would be in conflict with the CKM fits, favouring γ ∼ 60◦ [6,8,27]. Unfortu-
nately, the present experimental uncertainties do not yet allow us to draw definite conclusions, but the
picture should improve significantly in the future.

An efficient way to represent the situation in the B → πK system is provided by allowed regions
in the R(c,n)–A

(c,n)
0 planes [89,93], which can be derived within the Standard Model and allow a direct

comparison with the experimental data. A complementary analysis in terms of γ and δc,n was performed
in Ref. [90]. Another recent B → πK study can be found in Ref. [11], where the R(c) were calculated for

given values of A(c)
0 as functions of γ, and were compared with the B-factory data. In order to analyse

B → πK modes, also certain sum rules may be useful [94].

3.2.2. The Bd → π+π− and the Bs → K+K− decays

As can be seen from the corresponding Feynman diagrams, Bs → K+K− is related to Bd → π+π−

through an interchange of all down and strange quarks. The decay amplitudes read as follows [79]:

A(B0
d → π+π−) ∝

[
eiγ − deiθ

]
, A(B0

s → K+K−) ∝
[
eiγ +

(
1 − λ2

λ2

)
d′eiθ

′
]
, (64)
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where the CP-conserving strong amplitudes deiθ and d′eiθ
′

measure, sloppily speaking, ratios of penguin
to tree amplitudes in B0

d → π+π− and B0
s → K+K−, respectively. Using these general parametrizations,

we obtain expressions for the direct and mixing-induced CP asymmetries of the following kind:

Adir
CP(Bd → π+π−) = function(d, θ, γ), Amix

CP (Bd → π+π−) = function(d, θ, γ, φd = 2β) (65)

Adir
CP(Bs → K+K−) = function(d′, θ′, γ), Amix

CP (Bs → K+K−) = function(d′, θ′, γ, φs ≈ 0). (66)

Consequently, we have four observables at our disposal, depending on six “unknowns”. However,
since Bd → π+π− and Bs → K+K− are related to each other by interchanging all down and strange
quarks, the U -spin flavour symmetry of strong interactions implies

d′eiθ
′
= d eiθ. (67)

Using this relation, the four observables in (65,66) depend on the four quantities d, θ, φd = 2β and γ,
which can hence be determined [79]. The theoretical accuracy is only limited by the U -spin symmetry,
as no dynamical assumptions about rescattering processes have to be made. Theoretical considerations
give us confidence into (67), as it does not receive U -spin-breaking corrections in factorization [79].
Moreover, we may also obtain experimental insights into U -spin breaking [79,95].

The U -spin arguments can be minimized, if the B0
d–B0

d mixing phase φd = 2β, which can be
fixed through Bd → J/ψKS, is used as an input. The observables Adir

CP(Bd → π+π−) and Amix
CP (Bd →

π+π−) allow us then to eliminate the strong phase θ and to determine d as a function of γ. Analogously,
Adir

CP(Bs → K+K−) and Amix
CP (Bs → K+K−) allow us to eliminate the strong phase θ′ and to deter-

mine d′ as a function of γ. The corresponding contours in the γ–d and γ–d′ planes can be fixed in a
theoretically clean way. Using now the U -spin relation d′ = d, these contours allow the determination
both of the CKM angle γ and of the hadronic quantities d, θ, θ′; for a detailed illustration, see Ref. [79].
This approach is very promising for run II of the Tevatron and the experiments of the LHC era, where
experimental accuracies for γ of O(10◦) [3] and O(1◦) [2] may be achieved, respectively. It should be
emphasized that not only γ, but also the hadronic parameters d, θ, θ′ are of particular interest, as they
can be compared with theoretical predictions, thereby allowing valuable insights into hadron dynamics.
For other recently developed U -spin strategies, the reader is referred to [80,96].

3.2.3. The Bd → π+π− and the Bd → π∓K± decays and implications for Bs → K+K− decay

A variant of the Bd → π+π−, Bs → K+K− approach was developed for the e+e− B-factories [92],
where Bs → K+K− is not accessible: as Bs → K+K− and Bd → π∓K± are related to each other
through an interchange of the s and d spectator quarks, we may replace the Bs mode approximately
through its Bd counterpart, which has already been observed by BaBar, Belle and CLEO. Following
these lines and using experimental information on the CP-averaged Bd → π∓K± and Bd → π+π−

branching ratios, the relevant hadronic penguin parameters can be constrained, implying certain allowed
regions in observable space [93]. An interesting situation arises now in view of the recent B-factory
measurements of CP violation in Bd → π+π−, allowing us to obtain new constraints on γ as a function
of the B0

d–B0
d mixing phase φd, which is fixed through Amix

CP (Bd → J/ψKS) up to a twofold ambiguity,
φd ∼ 51◦ or 129◦. If we assume that Amix

CP (Bd → π+π−) is positive, as indicated by recent Belle
data, and that φd is in agreement with the “indirect” fits of the unitarity triangle, i.e. φd ∼ 51◦, also
the corresponding values for γ around 60◦ can be accommodated. On the other hand, for the second
solution φd ∼ 129◦, we obtain a gap around γ ∼ 60◦, and could easily accommodate values for γ larger
than 90◦. Because of the connection between the two solutions for φd and the resulting values for γ, it is
very desirable to resolve the twofold ambiguity in the extraction of φd directly. As far as Bs → K+K−

is concerned, the data on the CP-averaged Bd → π+π−, Bd → π∓K± branching ratios imply a very
constrained allowed region in the space of Amix

CP (Bs → K+K−) and Adir
CP(Bs → K+K−) within the

Standard Model, thereby providing a narrow target range for run II of the Tevatron and the experiments
of the LHC era [93]. Other recent studies related to Bd → π+π− can be found in Refs. [11,97].
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3.3. Determining γ with QCD factorization

M. Beneke ‡

3.3.1. Outline of the method

The QCD factorization approach [41,98] puts the well-known factorization ansatz [99] for hadronic
two-body B decay matrix elements on a firm theoretical basis. It replaces the factorization ansatz by a
factorization formula that includes radiative corrections and spectator scattering effects. Where it can be
justified, the factorization ansatz emerges in the simultaneous limit, when mb becomes large and when
radiative corrections are neglected.

The QCD factorization approach uses heavy quark expansion methods (mb � ΛQCD) and soft-
collinear factorization (particle energies � ΛQCD) to compute the matrix elements 〈f |Oi|B̄〉 relevant to
hadronic B decays in an expansion in 1/mb and αs. Only the leading term in 1/mb assumes a simple
form. The basic formula is

〈M1M2|Oi|B〉 = FB→M1(0)
∫ 1

0
duT I(u)ΦM2(u)

+
∫
dξdudv T II(ξ, u, v)ΦB(ξ)ΦM1(v)ΦM2(u), (68)

where FB→M1 is a (non-perturbative) form factor, ΦMi and ΦB are light-cone distribution amplitudes
and T I,II are perturbatively calculable hard scattering kernels. Although not strictly proven to all orders
in perturbation theory, the formula is presumed to be valid when both final state mesons are light. (M1

is the meson that picks up the spectator quark from the B meson.) The formula shows that there is no
long-distance interaction between the constituents of the meson M2 and the (BM1) system at leading
order in 1/mb. This is the precise meaning of factorization. For a detailed discussion of (68) I refer
to [10,98]. A summary of results that have been obtained in the QCD factorization approach is given
in [100].

Factorization as embodied by (68) is not expected to hold at subleading order in 1/mb. Some
power corrections related to scalar currents are enhanced by factors such as m2

π/((mu + md)ΛQCD).
Some corrections of this type, in particular those related to scalar penguin amplitudes nevertheless appear
to be calculable and turn out to be important numerically. On the other hand, attempts to compute
subleading power corrections to hard spectator-scattering in perturbation theory usually result in infrared
divergences, which signal the breakdown of factorization. At least these effects should be estimated and
included into the error budget. All weak annihilation contributions belong to this class of effects and
often constitute the dominant source of theoretical error.

3.3.2. Uses of QCD factorization

If the corrections to (68) were negligible and if all the quantities in (68) were known or computed with
sufficient accuracy, the QCD factorization approach would allow one to determine directly weak CP-
violating phases from branching fraction or CP asymmetry measurements, if the corresponding decay has
two interfering amplitudes with different phases. In practice, depending on the particular decay mode,
one is often far from this ideal situation. Depending on the theoretical uncertainty or one’s confidence in
theoretical error estimates, I can imagine the following uses of the QCD factorization approach, where
in ascending order one makes stronger use of theoretical rather than experimental input.

1) Many strategies to determine γ are based on relating the strong interaction dynamics of different
decay channels such that a sufficient set of measurements yields the weak phase together with the

‡M. Beneke would like to thank Gerhard Buchalla, Matthias Neubert and Chris Sachrajda for collaborations on the topics

discussed in this article.
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strong amplitudes (see the contributions by Fleischer and Rosner in this Chapter). QCD factoriza-
tion can complement this approach where it has to rely on assumptions. For instance, it may be
used to estimate SU(3) flavour symmetry breaking or to provide an estimate of small contributions
to the decay amplitude that one would otherwise have to neglect to make use of the amplitude
relations.

2) The QCD factorization approach generically predicts small strong rescattering phases, because
rescattering is either perturbatively loop-suppressed, or power-suppressed in the heavy-quark limit.
(Exceptions to the rule of small phases occur when the leading term in the αs- or 1/mb-expansion
is suppressed, for instance by small Wilson coefficients.) Even if the quantitative prediction of
the strong phases turns out to be difficult, the qualitative result of small phases can be used to
sharpen the bounds on γ that follow from some amplitude relations, or to turn the bounds into
determinations of γ. An example of this in the context of a method suggested in [68] will be
discussed below.

3) For predicting CP violation the ratio of two strong interaction amplitudes, P/T , (often a ratio of a
pure penguin and a dominantly tree amplitude, which are multiplied by different weak phases) is
a particularly important quantity. While P/T is computed in the QCD factorization approach, one
may decide to use only the calculation of the absolute value |P/T | and to dismiss the quantitative
phase information. The rationale for this procedure could be that the calculation of the imaginary
part is usually less accurate than the real part, because a one-loop calculation determines the phase
only to leading order. For the same reason the value of the phase is more sensitive to uncalculable
power corrections. In this procedure the phase information must be provided by an additional
measurement, for instance a direct CP asymmetry.

4) The full information of the QCD factorization approach is employed to compute two-body branch-
ing fractions as functions of the parameters of the CKM matrix. Since the b quark mass is not very
large it will be important to estimate the theoretical error from power corrections.

The development of QCD factorization has not yet reached the stage where one can decide which of
these strategies will turn out to be most useful. (The strategy of choice obviously also depends on
the amount of experimental information available that would allow one to drop one or the other piece of
theoretical input.) Calculations of ππ and πK final states showed [10] that one obtains naturally the right
magnitude of penguin and tree amplitudes. The accuracy of the calculation of strong phases is less clear
at present, but forthcoming measurements of direct CP asymmetries should shed light on this question.
The current limits favour small strong phases, but a quantitative comparison may require a complete
next-to-leading order calculation of the absorptive parts of the amplitudes. It will also be important to
clarify the relevance of weak annihilation effects in the decay amplitudes. While the current data do not
favour the assumption of large annihilation contributions, they can also not yet be excluded. Bounds on
rare annihilation-dominated decays will limit the corresponding amplitudes.

3.3.3. Results related to the determination of γ

The possibility to determine the CP-violating angle γ by comparing the calculation of branching fractions
into ππ and πK final states with the corresponding data has been investigated in [10] (see also [101]).
In the following I summarize the main results, referring to [10] for details and to [102,103] for partial
updates of the analysis of [10].

γ from CP-averaged charged B → πK decay

The ratio

R∗ =
Br(B+ → π+K0) + Br(B− → π−K̄0)

2[Br(B+ → π0K+) + Br(B− → π0K−)]
, (69)
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currently measured as 0.71 ± 0.10, provides a useful bound on γ [68,87]. The theoretical expression is

R−1
∗ = 1 + 2ε̄3/2 cosφ (q − cos γ) + ε̄23/2(1 − 2q cos γ + q2)

<
(
1 + ε̄3/2 |q − cos γ|

)2
+ ε̄23/2 sin2γ, (70)

where ε̄3/2e
iφ is a tree-to-penguin ratio, whose magnitude can be fixed with SU(3) symmetry, and q an

electroweak penguin contribution, which can be determined theoretically. (In this expression, a rescat-
tering contribution εa, which QCD factorization predicts to be small, is neglected.) The inequality is
obtained by allowing the relative strong phase φ to take any value. If R∗ is smaller than one, the bound
implies an exclusion region for cos γ. The bound can be considerably sharpened, and the requirement
R∗ < 1 relaxed, if the phase is known to be small. QCD factorization as well as bounds on direct CP
asymmetries suggest that cosφ > 0.9. In [10] it was shown that assuming the more conservative range
cosφ > 0.8, the measurement of R∗ combined with |Vub/Vcb| provides a determination of γ with a
theoretical error of about 10◦, if R∗ is close to 1.

γ from Bd(t) → π+π− decay

The QCD factorization approach allows us to interpret directly the mixing-induced and direct CP asym-
metry in Bd → π+π− decay without resort to other decay modes, since the tree and penguin amplitudes
are both computed. The time-dependent asymmetry is defined by

AππCP(t) =
Br(B0(t) → π+π−) − Br(B0(t) → π+π−)

Br(B0(t) → π+π−) + Br(B0(t) → π+π−)

= −Sππ sin(ΔMB t) + Cππ cos(ΔMB t). (71)

Assuming that the BB̄ mixing phase is determined experimentally via the mixing-induced CP asymmetry
in Bd(t) → J/ψK decay, both Sππ and Cππ are measures of CP violation in the decay amplitude and
determine γ. In [10] it was shown that even a moderately accurate measurement of Sππ translates into a
stringent constraint in the (ρ̄, η̄) plane. The predicted correlation between Sππ and Cππ is shown in [102].

3.3.4. γ from CP-averaged B → πK, ππ decay

Since the branching fractions are computed as functions of the Wolfenstein parameters (ρ̄, η̄), one can
perform a fit of (ρ̄, η̄) to the six measured CP-averaged B → ππ, πK branching fractions. The result
of this fit is shown in Fig. 6.12 based on the data as of May 2002. (The details of the fit procedure can
be found in [10], the input data in [102]). The result of the fit is consistent with the standard fit based
on meson mixing and |Vub|. However, the ππ, πK data persistently exhibit a preference for γ near 90◦,
or, for smaller γ, smaller |Vub|. The significance and interpretation of this observation remains to be
clarified.

3.3.5. Weak annihilation

Weak annihilation contributions are power-suppressed and not calculable in the QCD factorization ap-
proach. (This is one of the important differences between the QCD factorization approach and the pQCD
approach described by Y. Keum in this Chapter.) The results discussed above include an estimate of an-
nihilation effects together with an uncertainty derived from a ±100% variation of this estimate, encoded
in the constraint |ρA| < 1 for a certain weak annihilation parameter [10]. Since this constraint is often
a key factor in the overall theoretical uncertainty estimate, it will be important to obtain experimental
information on weak annihilation. The current data on ππ and πK final states do not favour large annihi-
lation contributions, but also do not exclude this possibility. The upper limits on annihilation-dominated

247



�0.6 �0.4 �0.2 0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

��

��

�

Fig. 6.12: 95% (solid), 90% (dashed) and 68% (short-dashed) confidence level contours in the (ρ̄, η̄) plane obtained from a

global fit to the CP averaged B → πK, ππ branching fractions, using the scanning method as described in [8]. The darker dot

shows the overall best fit, whereas the lighter dot indicates the best fit for the default hadronic parameter set. The light-shaded

region indicates the region preferred by the standard global fit [8], including the direct measurement of sin(2β).

charmless decays are not yet tight enough to provide interesting constraints. However, we can adapt the
estimate of annihilation contributions to B̄d → D+π− performed in [98] to the annihilation-dominated
decay B̄d → D+

s K−, recently observed with a branching fraction (3.8±1.1) ·10−5 [104]. This results in
a branching fraction estimate of 1.2 · 10−5 for central parameters, or an upper limit 5 · 10−5 upon assign-
ing a 100% error to the annihilation amplitude. While the annihilation mechanism inB̄d → D+

s K− is
not identical to the dominant penguin annihilation term in B → πK decay, the comparison nevertheless
supports the phenomenological treatment of annihilation suggested in [10,98].

3.4. B → Kπ, charming penguins and the extraction of γ

M. Ciuchini, E. Franco, G. Martinelli, M. Pierini and L. Silvestrini

3.4.1. Main formulae

In this section we collect the main formulae for the amplitudes of B → Kπ, ππ, introducing the
parametrization used in the analysis. We refer the reader to the literature for any detail on the origin
and the properties of these parameters [105,106,107,108]. From Ref. [107], one reads

A(Bd → K+π−) =
GF√

2

(
λstP1 − λsu(E1 − PGIM1 )

)

A(B+ → K+π0) =
GF
2

(
λstP1 − λsu(E1 +E2 − PGIM1 +A1)

)
+ ΔA

A(B+ → K0π+) =
GF√

2

(
− λstP1 + λsu(A1 − PGIM1 )

)
+ ΔA

A(Bd → K0π0) =
GF
2

(
− λstP1 − λsu(E2 + PGIM1 )

)
+ ΔA (72)

A(Bd → π+π−) =
GF√

2

(
λdt (P1 + P3) − λdu(E1 +A2 − PGIM1 ) − PGIM3

)

A(Bd → π+π0) =
GF
2

(
− λdu(E1 + E2)

)
+ ΔA

A(Bd → π0π0) =
GF
2

(
− λst (P1 + P3) − λsu(E2 + PGIM1 + PGIM3 −A2)

)
+ ΔA ,
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|Vcb|×103 |Vub|×103 B̂K FBd

√
Bd (MeV) ξ

40.9±1.0 3.70±0.42 0.86±0.06±0.14 230±30±15 1.16±0.03±0.04

fK(M2
K) B(K+π−)×106 B(K+π0)×106 B(K0π+)×106 B(K0π0)×106

0.32 ± 0.12 18.6 ± 1.1 11.5 ± 1.3 17.9 ± 1.7 8.9 ± 2.3

fπ(M2
π) B(π+π−)×106 B(π+π0)×106 B(π0π0)×106

0.27 ± 0.08 5.2 ± 0.6 4.9 ± 1.1 <3.4 BaBar

Table 6.4: Values of the input parameters used in our analysis. The CP-averaged branching ratios B are taken from Ref. [109].

where λqq′ = Vq′qV
∗
q′b. Neglecting the Ai, these parameters can be rewritten as

E1 = ac1AπK , E2 = ac2AKπ , A1 = A2 = 0 ,
P1 = ac4AπK + P̃1 , PGIM1 = (ac4 − au4)AπK + P̃GIM1 . (73)

The terms proportional to aqi give the parameters computed in the limit mb → ∞ using QCD factoriza-
tion. Their definition, together with those ofAπK ,AKπ, etc., can be found for instance in Refs. [41,98,10],
although power-suppressed terms included there, proportional to the chiral factors rχK,π, should be dis-
carded in eqs. (73). In our case, in fact, terms of O(ΛQCD/mb) are accounted for by two phenomeno-
logical parameters: the charming-penguin parameter P̃1 and the GIM-penguin parameter P̃GIM1 . In
B → Kπ there are no other contributions, once flavour SU(2) symmetry is used and few other doubly
Cabibbo-suppressed terms, including corrections to emission parametes E1 and E2, some annihilations
(A1) and the Zweig-suppressed contractions (ΔA), are neglected [107]. On the contrary, further power-
suppressed terms (A2, P3, PGIM3 ) enter the B → ππ amplitudes, all with the same power of the Cabibbo
angle. Therefore, these modes are subject to a larger uncertainty than the B → Kπ ones.

Using the inputs collected in Table 6.4, we fit the value of the complex parameter P̃1 = (0.13 ±
0.02) e±i(114±35)◦ . Notice that the sign of the phase is practically not constrained by the data. This
result is almost independent of the inputs used for the CKM parameters ρ and η, namely whether these
parameters are taken from the usual unitarity triangle analysis (UTA) [27,110] or only the constraint from
|Vub/Vcb| is used.

Mode UTA |Vub/Vcb|
B (10−6) |ACP | B (10−6) |ACP |

π+π− 8.9 ± 3.3 0.37 ± 0.17 8.7 ± 3.6 0.39 ± 0.20

π+π0 5.4 ± 2.1 – 5.5 ± 2.2 –

π0π0 0.44 ± 0.13 0.61 ± 0.26 0.69 ± 0.27 0.45 ± 0.27

K+π− 18.4 ± 1.0 0.21 ± 0.10 18.8 ± 1.0 0.21 ± 0.12

K+π0 10.3 ± 0.9 0.22 ± 0.11 10.7 ± 1.0 0.22 ± 0.13

K0π+ 19.3 ± 1.2 0.00 ± 0.00 18.1 ± 1.5 0.00 ± 0.00

K0π0 8.7 ± 0.8 0.04 ± 0.02 8.2 ± 1.2 0.04 ± 0.03

Table 6.5: Predictions for CP-averaged branching ratios B and absolute value of the CP asymmetries |ACP |. The left (right)

columns show results obtained using constraints on the CKM parameters ρ and η obtained from the UTA (the measurement of

|Vub/Vcb|). The last four channels are those used for fitting the charming penguin parameter P̃1.
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For the sake of simplicity, we also neglect here the contribution of P̃GIM1 . The B → Kπ data
do not constrain this parameter very effectively, since its contribution is doubly Cabibbo suppressed
with respect to P̃1. The remaining π+π− mode alone is not sufficient to fully determine the complex
parameter P̃GIM1 . It is interesting, however, to notice that the GIM-penguin contribution is potentially
able to enhance the B(B → π0π0) up to few ×10−6 [108].

Table 6.5 shows the predicted values of the CP-averaged branching ratios B and the absolute value
of the CP-asymmetries |ACP | for the B → Kπ and B → ππ modes, since the data are not able to fix the
sign of asymmetries. Charming penguins are able to reproduce the Kπ data and are also consistent with
the only ππ mode measured so far. It is interesting to notice that the latest measurements improve the
consistency, for a comparison see refs. [106,108].

3.4.2. Remarks on different approaches

Since the different approaches aiming at evaluating power-suppressed terms contain phenomenological
parameters, it is natural to ask whether, after all, they are equivalent or not, even if the physical mecha-
nism invoked to introduce the parameters is not the same. To answer this question, it is useful to compute
the parameters P̃1 and P̃GIM1 within improved QCD factorization. They read

P̃1 = rχKa
c
6AπK + b3BπK , P̃

GIM
1 = rχK(ac6 − au6)AπK , (74)

where the functions aqi (bi) contain the complex parameter ρH (ρA), see Ref. [10] for the definitions.
These two parameters account for chirally-enhanced terms, originating from hard-spectator interactions
and annihilations respectively, which are not computable within the improved QCD factorization.

The functional dependence of the amplitudes on the phenomenological parameters in the two
approaches is different. For instance, the GIM-penguin parameter is a pure short-distance correction
in the improved QCD factorization, since the ρH dependence cancels out in the difference ac6 − au6 . In
practice, however, the main contribution of the phenomenological parameters to the B → Kπ amplitudes
comes from the annihilation term b3, i.e. from ρA . This term behaves effectively as the charming-
penguin parameter, enhancing the Cabibbo-favored amplitude.

Notice that a vanishing ρA (and ρH), which turns out to be compatible with the data, does not
mean that the phenomenological contribution is negligible. In fact, the parameters are defined so that
the phenomenological terms are functions of XA(H) = (1 + ρA(H)) log(mB/μh), where the scale μh is
assumed to be 0.5 GeV [10].

3.4.3. On the possibility of extracting γ

The presence of complex phenomenological parameters in the amplitudes makes the extraction of γ very
problematic. Using the |Vub/Vcb|-constrained fit, almost any value of γ is allowed, given the uncertainty
on P̃1, see Fig. 6.13 (left). This seems a general problem which make us doubt recent claims proposing
non-leptonic B decays as an effective tool for the CKM matrix determination. Even more, we think that
the combination of the constraint from B → Kπ decays on γ with the others can even be misleading.
The reason is very simple: γ is looked for through the effect of interefence terms in the branching ratios.
The presence of a competing amplitude with a new phase, i.e. the one containing the phenomenological
parameter, makes the extraction of γ much more complicated. Although weak and strong phases can
be disentangled in principle, in practice we checked that not only the task is very difficult now, but
the situation improves slowly as data become more accurate, even when the CP asymmetries will be
measured.

Concerning various analyses based on the improved QCD factorization claiming to find a “large”
value of γ ∼ 90◦, we just notice that, as far as we know, they all assume the bound |ρA| < 1, suggested
in Ref. [10] as a theoretical prejudice and supported by the observation that even |ρA| = 0 produces a
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Fig. 6.13: Fits of γ from B → Kπ using charming penguins (left) and UTA + improved QCD factorization as a function of

max |ρA| (right).

good fit to B(B → Kπ). A better fit, however, can be obtained letting |ρA| take values up to about 3.
As shown in the right plot of Fig. 6.13, by doing so, the contribution of the constraint from non-leptonic
B decays to a global fit of γ becomes totally negligible. In other words, for |ρA| ∼ 3, the annihilation
amplitude containing ρA becomes competitive with the others, improving the fit to the Bs on the one
hand and weakening the predictivity on γ on the other.

3.5. Determination of the weak phases φ2 and φ3 from B → ππ, Kπ in the pQCD method

Y.-Y. Keum§.

In this section, we focus on the B → π+π− and Kπ processes, providing promising strategies to
determine the weak phases of φ2 and φ3, by using the perturbative QCD method. The perturbative QCD
method (pQCD) has a predictive power demonstrated sucessfully in exclusive two body B-meson decays,
specially in charmless B-meson decay processes[111]. By introducing parton transverse momenta k⊥,
we can generate naturally the Sudakov suppression effect due to resummation of large double logarithms
Exp[−αsCF

4π ln2(Q
2

k2
⊥

)], which suppress the long-distance contributions in the small k⊥ region and give

a sizable average < k2
⊥ >∼ Λ̄MB . This can resolve the end point singularity problem and allow the

applicability of pQCD to exclusive decays. We found that almost all of the contribution to the exclusive
matrix elements come from the integration region where αs/π < 0.3 and the pertubative treatment can
be justified.

In the pQCD approach, we can predict the contribution of non-factorizable term and annihilation
diagram on the same basis as the factorizable one. A folklore for annihilation contributions is that they
are negligible compared to W-emission diagrams due to helicity suppression. However the operators
O5,6 with helicity structure (S − P )(S + P ) are not suppressed and give dominant imaginary values,
which is the main source of strong phase in the pQCD approach. So we have a large direct CP violation
in B → π±π∓,K±π∓, since large strong phase comes from the factorized annihilation diagram, which
can distinguish pQCD from other models (see the previous two subsections).

§Y.-Y. Keum would like to thank G. Buchalla and members of PQCD working group for fruitful collaboration and joyful

discussions.
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3.5.1. Extraction of φ2(= α) from B → π+π− decay

Even though isospin analysis of B → ππ can provide a clean way to determine φ2, it might be difficult
in practice because of the small branching ratio of B0 → π0π0. In reality to determine φ2, we can use
the time-dependent rate of B0(t) → π+π− including sizable penguin contributions. In our analysis we
use the c-convention. The amplitude can be written as:

A(B0 → π+π−) = −(|Tc| eiδT eiφ3 + |Pc| eiδP) (75)

Penguin term carries a different weak phase than the dominant tree amplitude, which leads to generalized
form of the time-dependent asymmetry.

When we define Rππ = Br(B0 → π+π−)/Br(B0 → π+π−)|tree, where Br stands for a branch-
ing ratio averaged over B0 and B̄0, the explicit expression for Sππ and Cππ are given by:

Rππ = 1 − 2Rc cos δ cos(φ1 + φ2) +R2
c , (76)

RππSππ = sin 2φ2 + 2Rc sin(φ1 − φ2) cos δ −R2
csin2φ1, (77)

RππCππ = 2Rc sin(φ1 + φ2) sin δ. (78)

with Rc = |Pc/Tc| and the strong phase difference between penguin and tree amplitudes δ = δP − δT .
The time-dependent asymmetry measurement provides two equations for Cππ and Sππ in terms of Rc, δ
and φ2.

If we know Rc and δ, then we can determine φ2 from the experimental data on Cππ versus Sππ.

Since the pQCD method provides Rc = 0.23+0.07
−0.05 and −41◦ < δ < −32◦, the allowed range of

φ2 at present stage is determined as 55◦ < φ2 < 100◦ as shown in Fig. 6.14. Since we have a relatively
large strong phase in pQCD, in contrast to the QCD-factorization (δ ∼ 0◦), we predict large direct CP
violation effect of Acp(B0 → π+π−) = (23 ± 7)% which will be tested by more precise experimental
measurement in future. Since the data by Belle Collaboration [24] is located outside allowed physical
regions, we only considered in the numerical analysis the recent BaBar measurement[112] with 90%
C.L. interval taking into account the systematic errors:

• Sππ = 0.02 ± 0.34 ± 0.05 [-0.54, +0.58]

• Cππ = −0.30 ± 0.25 ± 0.04 [-0.72, +0.12].

The central point of BaBar data corresponds to φ2 = 78◦ in the pQCD method.
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Fig. 6.14: Plot of Cππ versus Sππ for various values of φ2 with φ1 = 25.5◦, 0.18 < Rc < 0.30 and −41◦ < δ < −32◦ in

the pQCD method. Here we consider the allowed experimental ranges of BaBar measurment whinin 90% C.L. Dark areas is

allowed regions in the pQCD method for different φ2 values.
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3.5.2. Extraction of φ3(= γ) from B0 → K+π− and B+ → K0π+ decays

By using tree-penguin interference in B0 → K+π−(∼ T
′
+ P

′
) versus B+ → K0π+(∼ P

′
), CP-

averaged B → Kπ branching fraction may lead to non-trivial constraints on the φ3 angle [84,67,68]. In
order to determine φ3, we need one more useful information on CP-violating rate differences[11]. Let’s
introduce the following observables :

RK =
Br(B0 → K+π−) τ+
Br(B+ → K0π+) τ0

= 1 − 2 rK cos δ cosφ3 + r2K

A0 =
Γ(B̄0 → K−π+) − Γ(B0 → K+π−)
Γ(B− → K̄0π−) + Γ(B+ → K̄0π+)

= Acp(B0 → K+π−) RK = −2rK sinφ3 sin δ. (79)

where rK = |T ′
/P

′ | is the ratio of tree to penguin amplitudes in B → Kπ and δ = δT ′ − δP ′ is the
strong phase difference between tree and penguin amplitudes. After elimination of sin δ in Eqs. (8)–(9),
we have

RK = 1 + r2K ±
√

4r2K cos2 φ3 −A2
0 cot2 φ3. (80)

Here we obtain rK = 0.201 ± 0.037 from the pQCD analysis[111] and A0 = −0.11 ± 0.065 by
combining recent BaBar measurement on CP asymmetry of B0 → K+π−: Acp(B0 → K+π−) =
−10.2 ± 5.0 ± 1.6% [112] with present world averaged value of RK = 1.10 ± 0.15 [113].
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Fig. 6.15: Plot of RK versus φ3 with rK = 0.164, 0.201 and 0.238.

From Table 2 of Ref. [114], we obtain δP ′ = 157◦, δT ′ = 1.4◦ and the negative cos δ: cos δ =
−0.91. As shown in Fig. 6.15, we can constrain the allowed range of φ3 within 1σ range of World
Averaged RK as follows:

• For cos δ < 0, rK = 0.164: we can exclude 0◦ ≤ φ3 ≤ 6◦.

• For cos δ < 0, rK = 0.201: we can exclude 0◦ ≤ φ3 ≤ 6◦ and 35◦ ≤ φ3 ≤ 51◦.

• For cos δ < 0, rK = 0.238: we can exclude 0◦ ≤ φ3 ≤ 6◦ and 24◦ ≤ φ3 ≤ 62◦.

When we take the central value of rK = 0.201, φ3 is allowed within the ranges of 51◦ ≤ φ3 ≤ 129◦,
which is consistent with the results of the model-independent CKM-fit in the (ρ̄, η̄) plane.
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3.5.3. Conclusion

We discussed two methods to determine the weak phases φ2 and φ3 within the pQCD approach through
1) Time-dependent asymmetries in B0 → π+π−, 2) B → Kπ processes via penguin-tree interfer-
ence. We can already obtain interesting bounds on φ2 and φ3 from present experimental measurements.
Our predictions within pQCD method is in good agreement with present experimental measurements in
charmless B-decays. Specially our pQCD method predicted a large direct CP asymmetry in B0 → π+π−

decay, which will be a crucial touch stone in order to distinguish our approach from others in future pre-
cise measurements. More detail works on other methods in B → Kπ and D(∗)π processes will appear
elsewhere [114].

4. K → πνν̄ decays

G. Isidori and D.E. Jaffe

4.1. Theoretical description

The s → dνν̄ transition is one of the rare examples of weak processes whose leading contribution starts
at O(G2

F ). At the one-loop level it receives contributions only from Z-penguin and W -box diagrams,
as shown in Fig. 6.16, or from pure quantum electroweak effects. Separating the contributions to the
one-loop amplitude according to the intermediate up-type quark running inside the loop, we can write

A(s→ dνν̄) =
∑

q=u,c,t

V ∗
qsVqdAq ∼

⎧⎪⎨
⎪⎩

O(λ5m2
t ) + iO(λ5m2

t ) (q=t)

O(λm2
c) + iO(λ5m2

c) (q=c)

O(λΛ2
QCD) (q=u)

(81)

where Vij denote the elements of the CKM matrix. The hierarchy of these elements would favour up- and
charm-quark contributions; however, the hard GIM mechanism of the perturbative calculation implies
Aq ∼ m2

q/M
2
W , leading to a completely different scenario. As shown on the r.h.s. of (81), where we have

employed the standard CKM phase convention (ImVus = ImVud = 0) and expanded the Vij in powers
of the Cabibbo angle, the top-quark contribution dominates both real and imaginary parts. This structure
implies several interesting consequences for A(s → dνν̄): it is dominated by short-distance dynamics,
therefore its QCD corrections are small and calculable in perturbation theory; it is very sensitive to Vtd,
which is one of the less constrained CKM matrix elements; it is likely to have a large CP-violating phase;
it is very suppressed within the SM and thus very sensitive to possible new sources of quark-flavour
mixing.

s sd d

u� c� t

u� c� tW

W W

� � � �

Z
l

Fig. 6.16: One-loop diagrams contributing to the s → dνν̄ transition.

Short-distance contributions to A(s → dνν̄), are efficiently described, within the SM, by the
following effective Hamiltonian [115]

Heff =
GF√

2
α

2π sin2 ΘW

∑
l=e,μ,τ

[
λcX

l
NL + λtX(xt)

]
(s̄d)V −A(ν̄lνl)V−A , (82)

where xt = m2
t/M

2
W and, as usual, λq = V ∗

qsVqd. The coefficients Xl
NL and X(xt), encoding charm-

and top-quark loop contributions, are known at the NLO accuracy in QCD [116,117] and can be found
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explicitly in [115]. The theoretical uncertainty in the dominant top contribution is very small and it is
essentially determined by the experimental error on mt. Fixing the MS top-quark mass to mt(mt) =
(166 ± 5) GeV we can write

X(xt) = 1.51
[
mt(mt)
166 GeV

]1.15
= 1.51 ± 0.05 . (83)

The simple structure of Heff leads to two important properties of the physical K → πνν̄ transitions:

• The relation between partonic and hadronic amplitudes is exceptionally accurate, since hadronic
matrix elements of the s̄γμd current between a kaon and a pion can be derived by isospin symmetry
from the measured Kl3 rates.

• The lepton pair is produced in a state of definite CP and angular momentum, implying that the
leading SM contribution to KL → π0νν̄ is CP-violating.

The largest theoretical uncertainty in estimating B(K+ → π+νν̄) originates from the charm sector.
Following the analysis of Ref. [115], the perturbative charm contribution is conveniently described in
terms of the parameter

P0(X) =
1
λ4

[
2
3
Xe
NL +

1
3
Xτ
NL

]
= 0.42 ± 0.06 . (84)

The numerical error in the r.h.s. of Eq. (84) is obtained from a conservative estimate of NNLO correc-
tions [115]. Recently also non-perturbative effects introduced by the integration over charmed degrees
of freedom have been discussed [118]. Despite a precise estimate of these contributions is not possible
at present (due to unknown hadronic matrix-elements), these can be considered as included in the uncer-
tainty quoted in Eq. (84).¶ Finally, we recall that genuine long-distance effects associated to light-quark
loops are well below the uncertainties from the charm sector [119].

With these definitions the branching fraction of K+ → π+νν̄ can be written as

B(K+ → π+νν̄) =
κ̄+

λ2

[
(Imλt)2X2(xt) +

(
λ4ReλcP0(X) + ReλtX(xt)

)2
]
, (85)

where [115]

κ̄+ = rK+
3α2B(K+ → π0e+ν)

2π2 sin4 ΘW
= 7.50 × 10−6 (86)

and rK+ = 0.901 takes into account the isospin breaking corrections necessary to extract the matrix
element of the (s̄d)V current from B(K+ → π0e+ν) [120].

The case of KL → π0νν̄ is even cleaner from the theoretical point of view [121]. Because of the
CP structure, only the imaginary parts in (82) –where the charm contribution is absolutely negligible–
contribute to A(K2 → π0νν̄). Thus the dominant direct-CP-violating component of A(KL → π0νν̄) is
completely saturated by the top contribution, where QCD corrections are suppressed and rapidly conver-
gent. Intermediate and long-distance effects in this process are confined only to the indirect-CP-violating
contribution [9] and to the CP-conserving one [122], which are both extremely small. Taking into ac-
count the isospin-breaking corrections to the hadronic matrix element [120], we can write an expression
for the KL → π0νν̄ rate in terms of short-distance parameters, namely

B(KL → π0νν̄)SM =
κ̄L
λ2

(Imλt)2X2(xt) = 4.16 × 10−10 ×
[
mt(mt)
167 GeV

]2.30 [ Imλt
λ5

]2
, (87)

which has a theoretical error below 3%.
¶ The natural order of magnitude of these non-perturbative corrections, relative to the perturbative charm contribution is

m2
K/(m2

c ln(m2
c/M

2
W )) ∼ 2%.
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At present the SM predictions of the two K → πνν̄ rates are not extremely precise owing to the
limited knowledge of both real and imaginary parts of λt. Taking into account all the indirect constraints
in a global Gaussian fit, the allowed ranges read [123,124]‖

B(K+ → π+νν̄)SM = (0.72 ± 0.21) × 10−10 , (88)

B(KL → π0νν̄)SM = (0.28 ± 0.10) × 10−10 . (89)

The high accuracy of the theoretical predictions of B(K+ → π+νν̄) and B(KL → π0νν̄) in terms
of modulus and phase of λt = V ∗

tsVtd clearly offers the possibility of very interesting tests of flavour
dynamics. Within the SM, a measurement of both channels would provide two independent pieces of
information on the unitary triangle, or a complete determination of ρ̄ and η̄ from ΔS = 1 transitions.
In particular, B(K+ → π+νν̄) defines an ellipse in the ρ̄–η̄ plane and B(K0

L → π0νν̄) an horizontal
line (the height of the unitarity triangle). Note, in addition, that the determination of sin 2β which can
be obtained by combining B(K0

L → π0νν̄) and B(K+ → π+νν̄) is extremely clean, being independent
from uncertainties due to mt and Vcb (contrary to the separate determinations of ρ̄ and η̄) [9].

In principle a very precise and highly non-trivial test of the CKM mechanism could be obtained
by the comparison of the following two sets of data [9]: the two K → πνν̄ rates on one side, the ratio
ΔMBd

/ΔMBs and aCP(B → J/ΨKS) on the other side. The two sets are determined by very different
loop amplitudes (ΔS = 1 FCNCs and ΔB = 2 mixing) and both suffer from very small theoretical
uncertainties. In particular, concerning the K+ → π+νν̄ mode, we can write [123]

B(K+ → π+νν̄) = κ̄+|Vcb|4X2(xt)

⎡
⎣σR2

t sin2 β +
1
σ

(
Rt cos β +

λ4P0(X)
|Vcb|2X(xt)

)2
⎤
⎦ , (90)

where Rt is determined by ΔMBd
/ΔMBs [115],∗∗

Rt =
ξ

λ

√
ΔMBd

ΔMBs

(91)

and sin β from aCP(B → J/ΨKS). In the next few years, when the experimental determination of
aCP(B → J/ΨKS), ΔMBd

/ΔMBs , and B(K+ → π+νν̄) will substantially improve, this relation
could provide one of the most significant tests of the Standard Model in the sector of quark-flavour
dynamics.

Present experimental data on K → πνν̄ rates do not allow yet to fully explore the high-discovery
potential of these CKM tests. Nonetheless, we stress that the evidence of the K+ → π+νν̄ decay
obtained by BNL-E787 already provides highly non-trivial constraints on realistic scenarios with large
new sources of flavour mixing (see e.g. Ref. [123,125,126]).

4.2. Experimental status and future prospects

The Brookhaven experiment E787 [127] searched for the decay K+ → π+νν̄ by stopping approximately
25% of a 670, 710, 730 or 790 MeV/c K+ beam at ∼ 5 MHz with ∼ 25% π+ contamination in
a scintillating-fiber target along the axis of a 1-T solenoidal magnetic spectrometer. The range (R),
momentum (P ) and energy (E) of charged decay products are measured using the target, central drift
chamber and a cylindrical range stack composed of 21 layers of plastic scintillator with two layers of

‖ As pointed out in Ref. [124], the errors in Eqs. (88)–(89) can be reduced if Reλt and Imλt are directly extracted from

aCP(B → J/ΨKS) and εK ; however, this procedure introduces a stronger sensitivity to the probability distribution of the

(theoretical) estimate of BK .
∗∗ As usual we define ξ = (FBs/FBd )

√
BBs/BBd and σ = 1/(1 − λ2

2
)2.
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Fig. 6.17: History and prospects for the study of B(K+ → π+νν̄)(left) and B(K0
L → π0νν̄)(right). The points with error bars

are measured branching fractions, the solid points are upper limits at 90% CL and the open points or squares are single event

sensitivities. The dashed line is a nearly model-independent limit based on the E787’s results for B(K+ → π+νν̄) [126]. The

horizontal bands are the 68% CL SM expectations.

tracking chambers. Detection of the decay sequence π+ → μ+ → e+ in the range stack provided a
powerful tool against K+ → μ+ν(γ) decays. A 4π-sr calorimeter consisting of lead/scintillator layers in
the barrel (14 radiation lengths) and undoped CsI crystals in the endcap (13.5 radiation lengths) were used
to veto photons and suppress K+ → π+π0 background. Incident kaons were detected and identified by
Čerenkov, tracking and energy loss detectors along the beam that aided in the suppression of backgrounds
due to scattered beam pions and the charge exchange process that resulted in K0

L → π+−ν decays
(− = e−,μ−) in the target.

E787 has a long history, summarized in Fig. 6.17, that has lead to the development of a relatively
robust analysis strategy. The strategy begins with a priori identification of background sources and
development of experimental tools to suppress each background source with at least two independent
cuts. In the search for such rare processes, background rejection cannot be reliably simulated, instead it
is measured by alternatively inverting independent cuts and measuring the rejection of each cut taking
any correlations into account. To avoid bias, cuts are determined using 1/3 of the data and then the
backgrounds rates are measured with the remaining 2/3 sample. Background estimates are verified by
loosening cuts and comparing the observed and predicted rates, first in the 1/3 sample, then in the 2/3
sample. Simulated signal events are used to measure the geometrical acceptance for K+ → π+νν̄ and
the acceptance is verified with a measurement of B(K+ → π+π0). The pre-defined signal region inR, P
and E is not examined until all background estimates are verified. It is anticipated that similar strategies
will be employed in further investigations of K → πνν̄ decays.

Brookhaven E787 was completed in 1998 and has observed two candidates for the decay K+ →
π+νν̄ in the pion momentum region 211 to 229 MeV/c with an estimated background of 0.15 ± 0.05 in
a sample of 5.9 × 1012 stopped K+ that corresponds to [127]

B(K+ → π+νν̄) = (15.7+17.5
−8.2 ) × 10−11 . (92)

The probability that the two candidates are entirely due to background is 0.02% . In addition a search
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in the momentum interval 140 to 195 MeV/c in a sample of 1.1 × 1012 stopped K+ yielded a single
candidate upon an estimated background of 0.73 ± 0.18 corresponding to a limit B(K+ → π+νν̄) <
420 × 10−11 at 90% C.L. [128]. Such a search below the peak of the two body K+ → π+π0 decays has
the potential not only to augment the statistics of the higher momentum sample, but also to investigate the
shape of the P (π+) distribution predicted by the SM. In addition, the search is somewhat complementary
to that of the higher momentum interval because the background is dominated by K+ → π+π0 decays
in which the charged pion undergoes a nuclear interaction in the target near the kaon decay vertex.

E949 is an upgraded version of E787 with an expected net increase in sensitivity of at least a
factor of 5 based on 6000 hours of running time or 5-10 SM events [129]. The main detector upgrades
are an increased photon veto capability, both in the endcap and barrel regions, as well as trigger and data
acquisition improvements. E949 recently accumulated 1.9× 1012 stopped kaons (∼ 1/9 of E949’s goal)
and additional running is expected in 2003 assuming sufficient funding is forthcoming.

The CKM experiment at Fermilab expects to attain a single event sensitivity of 1 × 10−12 that
would correspond to ∼ 100 K+ → π+νν̄ events assuming the SM value of the branching fraction [130].
Such a measurement would achieve a statistical precision comparable to the current theoretical uncer-
tainty in the branching fraction. CKM departs from the E787/E949 technique by using kaon decays in
flight in a 22 GeV/c, 50 MHz debunched beam with 60% kaon purity. The experiment will use photon
veto technology similar to E787 and KTeV with the addition of ring-imagingČerenkov detectors to aid
in kinematic suppression of backgrounds. The use of in-flight kaon decays means that the dominant
K+ → π+π0 background in E787’s search in the lower momentum region should not be present at
CKM [131]. CKM should be taking data in the second half of this decade.

The progress concerning the neutral mode is much slower. No dedicated experiment has started
yet and the best direct limit is more than four orders of magnitude above the SM expectation [132]. An
indirect model-independent upper bound on Γ(KL → π0νν̄) can be obtained by the isospin relation [126]

Γ(K+ → π+νν̄) = Γ(KL → π0νν̄) + Γ(KS → π0νν̄) (93)

which is valid for any s → dνν̄ local operator of dimension ≤ 8 (up to small isospin-breaking cor-
rections). Using the BNL-E787 result (92), this implies B(KL → π0νν̄) < 1.7 × 10−9 (90% CL).
Any experimental information below this figure can be translated into a non-trivial constraint on possible
new-physics contributions to the s→ dνν̄ amplitude.

The first KL → π0νν̄ dedicated experiments are E391a at KEK [133] and KOPIO at Brookha-
ven [134]. E391a is envisioned as a two-stage experiment and will attempt to use a highly collimated K0

L

beam and a hermetic veto to observe high transverse momentum π0 near the endpoint of the K0
L → π0νν̄

spectrum with a technique similar to previous searches [132]. The first stage of E391a is regarded
as a pilot experiment and will use the KEK 12 GeV/c proton beam and should begin data taking in
2003. If successful, it could push the limit on B(K0

L → π0νν̄) to within an order of magnitude of the
SM expectation (Fig. 6.18). An aggressive second stage envisions use of the high intensity 50 GeV/c
proton beam from the Japanese Hadron Facility(JHF) to reach a single event sensitivity of 3 × 10−14 or,
equivalently, ∼ 1000 SM events.

The KOPIO experiment will attempt a new approach, using a microbunched, low momentum
beam, time-of-flight and a high precision electromagnetic preradiator and calorimeter to fully reconstruct
the kinematics of the K0

L → π0νν̄ decay. Coupled with highly efficient charged particle and photon
vetoes, KOPIO will be able to exploit the E787 strategy of independent kinematic and veto cuts to
measure all backgrounds with the data. The goal of KOPIO is a single event sensitivity of 7.5 × 10−13

or the capability to obtain 40 SM events with a signal to background of 2 corresponding to a precision
on J or η̄ of ∼ 10%.

As anticipated, one of the most interesting test of the CKM mechanism could be obtained by
the comparison of the two K → πνν̄ rates on one side vs. the ratio ΔMBd

/ΔMBs and aCP(B →
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Fig. 6.18: Comparison of the impact of hypothetical measurements of the K → πνν̄ branching fractions by E949 and KO-

PIO(left) or CKM and KOPIO(right) in the ρ̄, η̄ plane with hypothetical measurements of sin 2β and ΔMs/ΔMd. Contours

at 68.3, 95.45 and 99.7% CL are indicated for the K measurements. For the B measurements, the points indicating the three

contours overlap. See text for details.

J/ΨKS) on the other side. As an illustration, in Figure 6.18 we consider the comparison of the two B-
physics measurements, assumed to be aCP(B → J/ΨKS) = 0.75± 0.02 and ΔMBd

/ΔMBs = 17.0±
1.7 ps−1, with the two K → πνν̄ rates, both assumed to be twice the corresponding SM prediction. The
uncertainties on B(K → πνν̄) measurements are those expected by E949, CKM and KOPIO experiments
attaining their expected sensitivities. The corresponding constraints in the ρ̄–η̄ plane have been derived
assuming Gaussian uncertainties for all quantities, using the Bayesian statistics option of the CKM fitter
program [135]. Negligible uncertainty in |Vcb| is assumed in placing the K measurements in this B-
centric rendering of the UT. Note that the alternative, equally fundamental, parametrization of the UT
using the λt plane would remove the need for this assumption [136].
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