
Chapter 5

FIT OF THE UNITARITY TRIANGLE

PARAMETERS

Conveners : A.J. Buras, F. Parodi.
Contributors : M. Ciuchini, G. Dubois-Felsmann, G. Eigen, P. Faccioli, E. Franco, A. Hocker, D. Hitlin,
H. Lacker, S. Laplace, F. LeDiberder, V. Lubicz, G. Martinelli, F. Porter, P. Roudeau, L. Silvestrini,
A. Stocchi, M. Villa

1. Introduction

In this Chapter we will discuss the determination of the Unitarity Triangle (UT) using as input the values
of |Vus|, |Vcb|, and |Vub| from Chapters 2 and 3 and the constraints from εK and ΔMd,s with the values

of the non-perturbative parameters B̂K , FBd

√
B̂Bd

, FBs

√
B̂Bs and ξ determined in Chapter 4. We will

also include in this analysis the most recent results for the CP asymmetry in Bd → J/ψKS that allows to
determine the angle β of the UT essentially without any theoretical uncertainty. The list of the common
quantities which have been used for the analyses performed in this Chapter are summarised in Table 5.1.

A very important issue in constraining the apex (�̄, η̄) of the UT is the treatment of the experimen-
tal and especially the theoretical uncertainties. In the literature five different approaches can be found:
Gaussian approach [1], Bayesian approach [2], frequentist approach [3], 95% C.L. scan method [4] and
the simple (naive) scanning within one standard deviation. Moreover the fact that different authors often
use different input parameters makes the comparison of various analyses very difficult.

This situation is clearly unsatisfactory as different analyses give generally different allowed ranges
for (�̄, η̄). While all these analyses find presently the SM consistent with all the available data, the
situation may change in the future when the experimental and theoretical uncertainties will be reduced
and additional decays relevant for the determination of the UT will be available.

It is then conceivable that some approaches will find the SM consistent with the data whereas
other will claim an indication for new physics contributions. This clearly would be rather unfortunate.
However, even in the absence of new physics contributions, the increasing accuracy of the data and the
expected reduction of theoretical uncertainties calls for an extensive comparison of the different methods
to gain the best understanding on the UT.

Another important issue is the sensitivity of the UT analysis to theoretical uncertainties. Some
theoretical parameters have more impact on this analysis than others and it is important to identify those
for which the reduction of errors through improved non-perturbative calculations can contribute to the
quality of the determination of the UT most efficiently.
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Parameter Value Gaussian Theory

σ uncertainty

λ 0.2240(0.2210) 0.0036 (0.0020) -

|Vcb| (×10−3) (excl.) 42.1 2.1 -

|Vcb| (×10−3) (incl.) 41.4 (40.4) 0.7 0.6(0.8)

|Vub| (×10−4) (excl.) 33.0(32.5) 2.4(2.9) 4.6(5.5)

|Vub| (×10−4) (incl.) 40.9 4.6 3.6

ΔMd (ps−1) 0.503 (0.494) 0.006 (0.007) -

ΔMs (ps−1) > 14.4 (14.9) at 95% C.L. sensitivity 19.2 (19.3)

mt (GeV) 167 5 -

mc (GeV) 1.3 - 0.1

FBd

√
B̂Bd

(MeV) 223 (230) 33 (30) 12 (15)

ξ = FBs

√
B̂Bs

FBd

√
B̂Bd

1.24(1.18) 0.04 (0.03) 0.06 (0.04)

B̂K 0.86 0.06 0.14

sin 2β 0.734 (0.762) 0.054 (0.064) -

Table 5.1: Latest values of the relevant quantities entering into the expressions of εK , ΔMd and ΔMs. In the third and fourth

columns the Gaussian and the flat part of the uncertainty are given, respectively. The values within parentheses are the ones

available at the time of the Workshop and used when comparing different fitting procedures. In case of asymmetric theoretical

errors, like for |Vub| exclusive, the central values have been shifted to make them symmetric.

The goals of this Chapter are:

• to describe in some detail two of the most developed methods: the Bayesian approach and the
frequentist approach,

• to compare the resulting allowed regions for (�̄, η̄) obtained from the Bayesian and frequentist
approaches for the same input parameters,

• to identify those non-perturbative parameters for which the reduction of the uncertainty is most
urgent.

This Chapter is organized as follows. In Section 2. we express the constraints from |Vub/Vcb|, εK
and ΔMd,s in terms of Wolfenstein parameters [5] including the generalization of [6]. The Bayesian
method and the frequentist methods are discussed in Sections 3.1. and 3.2., respectively. The discussion
in the frequentist case includes the Rfit and the scanning methods. In Section 4. the impact of the
uncertainties of theoretical parameters on the determination of the UT is discussed in detail using both
the Bayesian approach and the scanning method. Finally in Section 5. we compare the Bayesian and
Rfit methods and draw conclusions. In Section 6. we show some important results obtained in testing
the consistency of the CKM picture of the Standard Model.

2. Constraints on the Unitarity Triangle parameters

Five measurements restrict at present the range of (�̄, η̄) within the SM:

• The |Vub| constraint:
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The length of the side AC of the UT (see Fig. 5.1) is determined from

Rb =
√
�̄2 + η̄2 = (1 − λ2

2
)
1
λ

∣∣∣∣VubVcb

∣∣∣∣ . (1)

The constraint in the (�̄, η̄) plane resulting from (1) is represented by a circle of radius Rb that is
centered at (�̄, η̄) = (0, 0) ( for the visualisation of this and following constraints see Fig. 5.1).

• The εK–constraint:

η̄
[
(1 − �̄)A2η2S(xt) + Pc(ε)

]
A2B̂K = 0.187

(
0.224
λ

)10

, (2)

that follows from the experimental value for εK and the formula (Eq. (12) of Chapter 4). Here

Pc(ε) = [η3S0(xc, xt) − η1xc]
1
λ4
, xt =

m2
t

M2
W

. (3)

Pc(ε) = 0.29 ± 0.07 [7] summarizes the contributions of box diagrams with two charm quark
exchanges and the mixed charm-top exchanges. We observe a very strong dependence of the r.h.s.
in (2) on the parameter λ = |Vus|. However, this dependence is cancelled to a large extent by the
λ dependence of Pc(ε) and of A = |Vcb|/λ2 that enter the l.h.s of (2). The main uncertainties
in the constraint (2) reside then in B̂K and to some extent in the factor A4 or equivalently |Vcb|4
which multiplies the dominant term. The status of B̂K has been reviewed in Chapter 4. Eq. (2)
specifies an hyperbola in the (�̄, η̄) plane. This hyperbola intersects the circle found from the |Vub|
constraint in two points which correspond to two solutions for the angle γ.

• The ΔMd–constraint:
The length Rt of the side AB of the UT (see Fig. 5.1) can be determined from the observed B0

d−B0
d

mixing, parametrized by ΔMd and given in Eq. 22 (in Chapter 4), with the result

Rt =
√

(1 − �̄)2 + η̄2 =
1
λ

|Vtd|
|Vcb|

= 0.85 ·
[ |Vtd|
7.8 · 10−3

] [
0.041
|Vcb|

]
(4)

where

|Vtd| = 7.8 · 10−3

⎡
⎣ 230MeV√

FBd
B̂Bd

⎤
⎦
√

ΔMd

0.50/ps

√
0.55
ηB

√
2.34
S0(xt)

. (5)

Since mt, ΔMd and ηB are already rather precisely known, the main uncertainty in the determina-

tion of Rt and |Vtd| from B0
d − B0

d mixing comes from FBd

√
B̂Bd

. Its theoretical status has been
reviewed in Chapter 4. Rt suffers from additional uncertainty in |Vcb|. The constraint in the (�̄, η̄)
plane resulting from (4) is represented by a circle of radius Rt that is centered at (�̄, η̄) = (1, 0).

• The ΔMd/ΔMs–constraint:
The measurement of B0

s − B0
s mixing parametrized by ΔMs together with ΔMd allows to deter-

mine Rt in a different manner:

Rt =
1
λ
ξ

√
MBs

MBd

√
ΔMs

ΔMd
(1 − λ2

2
+ �̄λ2), ξ =

FBs

√
B̂s

FBd

√
B̂d

. (6)

This constraint follows from Eq. (22) (in Chapter 4) with the factor (1−λ2/2+ �̄λ2) representing
the departure of |Vts/Vcb| from unity. For 0 ≤ �̄ ≤ 0.5 this factor deviates from unity by less
than 2%. Neglecting this correction gives (λ = 0.224)

Rt = 0.86

√
ΔMd

0.50/ps

√
18.4/ps
ΔMs

[
ξ

1.18

]
. (7)
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The advantage of determining Rt by means of the ratio ΔMd/ΔMs with respect to the ΔMd

constraint are smaller hadronic uncertainties in ξ than in FBd

√
B̂d and the absence of mt and |Vcb|

dependence. The present status of ξ has been reviewed in Chapter 4.

• The a(ψKS)–constraint:
The mixing induced CP asymmetry aψKS

in B → ψKS allows to determine the angle β of the UT
essentially without any hadronic uncertainties through

(sin 2β)ψKS
= 0.734 ± 0.054 . (8)

The value given in (8) is the world average from [8] and is dominated by the results of the BaBar
[9] and Belle [10] Collaborations.
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Fig. 5.1: Constraints which are contributing to the Unitarity Triangle parameter determination.

3. Statistical methods for CKM fits

In this Section we describe the basic ingredients for the different statistical approaches. The plots and
the results presented here have to be taken as illustrations of the methods. Quantitative results and
comparisons are given in the next Sections.

3.1. Bayesian methods

In this Section we describe the basic ingredients of the Bayesian approach and discuss the role of the
systematic and theoretical uncertainties in deriving probability intervals for the relevant parameters.
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Each of Eqs. (1, 2, 4, 6, 8) relates a constraint cj to the parameters ρ̄ and η̄, via the set of additional
parameters x, where x = {x1, x2, . . . , xN} stand for all experimentally determined or theoretically
calculated quantities on which the various cj depend (mt, ξ ...)

cj = cj(ρ̄, η̄;x). (9)

In an ideal case of exact knowledge of cj and x, each of the constraints provides a curve in the (ρ̄, η̄)
plane. In a realistic case, the analysis suffers from several uncertainties on the quantities cj and x. This
means that, instead of a single curve (9) in the (ρ̄, η̄) plane, we have a family of curves which depends
on the distribution of the set {cj ,x}. As a result, the points in the (ρ̄, η̄) plane get different weights (even
if they were taken to be equally probable a priori) and the confidence on the values of ρ̄ and η̄ clusters in
a region of the plane.

The above arguments can be formalized by using the so called Bayesian approach (see [11] for
an introduction). In this approach, the uncertainty is described in terms of a probability density function
(pdf) which quantifies the confidence on the values of a given quantity. Applying Bayes Theorem in the
case of a single constraint we obtain

f(ρ̄, η̄, cj ,x | ĉj) ∝ f(ĉj | cj , ρ̄, η̄,x) · f(cj , ρ̄, η̄,x) (10)

∝ f(ĉj | cj) · f(cj | ρ̄, η̄,x) · f(x, ρ̄, η̄) (11)

∝ f(ĉj | cj) · δ(cj − cj(ρ̄, η̄,x)) · f(x) · f◦(ρ̄, η̄) , (12)

where ĉj is the experimental best estimate of cj and f◦(ρ̄, η̄) denotes the prior distribution.

The various steps follow from probability rules, by assuming the independence of the different
quantities and by noting that ĉj depends on (ρ̄, η̄,x) only via cj . This is true since cj is unambiguously
determined, within the Standard Model, from the values of ρ̄, η̄ and x.

The extension of the formalism to several constraints is straightforward. We can rewrite Eq. (10) as

f(ρ̄, η̄,x | ĉ1, ..., ĉM) ∝
∏

j=1,M

fj(ĉj | ρ̄, η̄,x) ×
∏
i=1,N

fi(xi) × f◦(ρ̄, η̄) . (13)

M and N run over the constraints and the parameters respectively. In the derivation of (13), we have used
the independence of the different quantities. By integrating Eq. (13) over x we obtain

f(ρ̄, η̄ | ĉ, f) ∝ L(ĉ | ρ̄, η̄, f) × f◦(ρ̄, η̄) , (14)

where ĉ stands for the set of measured constraints, and

L(ĉ | ρ̄, η̄, f) =
∫ ∏

j=1,M

fj(ĉj | ρ̄, η̄,x)
∏
i=1,N

fi(xi) dxi (15)

is the effective overall likelihood which takes into account all possible values of xj , properly weighted.
We have written explicitly that the overall likelihood depends on the best knowledge of all xi, described
by f(x). Whereas a priori all values for ρ̄ and η̄ are considered equally likely (f◦(ρ̄, η̄)=cst), a posteriori
the probability clusters around the point which maximizes the likelihood.

In conclusion, the final (unnormalized) pdf obtained starting from a uniform pdf for ρ̄ and η̄ is

f(ρ̄, η̄) ∝
∫ ∏

j=1,M

fj(ĉj | ρ̄, η̄,x)
∏
i=1,N

fi(xi) dxi . (16)

The integration can be performed by Monte Carlo methods and the normalization is trivial. Starting from
the pdf for ρ̄ and η̄, probability regions P (w) are defined by the conditions:

(ρ̄, η̄) ∈ P (w) if f(ρ̄, η̄) > zw∫
P (w) f(ρ̄, η̄)dρ̄dη̄ = w
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Fig. 5.2: The contours at 68%, 95% probability regions in ρ̄ and η̄ as obtained using the Bayesian method, superimposed to

the experimental constraints.

An example of the typical output of this fit approach is shown in Fig. 5.2 where the probability
regions at 68% and 95% are shown together with the experimental constraints.

It is important to note that this method does not make any distinction on whether the individual
likelihood associated with some constraint is different from zero only in a narrow region (and we usually
refer to this case as “measurement”), or if it goes to zero only on one side (e.g. when cj → ∞ or 0). In
the latter case, the data only provide an upper/lower bound to the value of the constraint. This is precisely
what happens, at present, with ΔMs. Therefore, the experimental information about this constraint enters
naturally in the analysis.

One of the feature of the Bayesian approach is that there is no conceptual distinction between
the uncertainty due to random fluctuations, which might have occurred in the measuring process, the
uncertainty about the parameters of the theory, and the uncertainty about systematics of not-exactly-
known value, which can be both of experimental or theoretical origin (in the Bayesian jargon there are
often indicated as influence parameters).

We can simply extend the notation to include in x these influence parameters responsible for the
systematic uncertainty, and use Eq. (15) in an extended way. Irrespectively of the assumptions made on
the pdf of x, the overall likelihoods f(ĉj) are approximately Gaussian because of a mechanism similar
to the central limit theorem (i.e. just a matter of combinatorics). This makes the results largely stable
against variations within choices of the distributions used to describe the uncertainties due to theory or
systematics. For this reason we simplify the problem, by reducing the choice to only two possibilities.
We choose a Gaussian model when the uncertainty is dominated by statistical effects, or there are many
comparable contributions to the systematic errors, so that the central limit theorem applies (G(x − x0)).
We choose a uniform pdf if the parameter is believed to be (almost) certainly in a given interval, and
the points inside this interval are considered as equally probable. The second model is applied to some
theoretical uncertainties. U(x) = 1/2σtheo for x ∈ [x0−σtheo, x0+σtheo] and U(x) = 0 elsewhere. The
combined pdf P is then obtained by convoluting the Gaussian pdf G with the uniform pdf U : P = G⊗U .
When several determinations of the same quantity are available, the final p.d.f, in the Bayesian approach,
is obtained by the product of the single pdfs.

202



An important point is how to evaluate the compatibility among individual constraints. In the CKM
fits based on χ2 minimization, a conventional evaluation of compatibility stems automatically from the
value of the χ2 at its minimum.

The compatibility between constraints in the Bayesian method is evaluated by comparing partial
pdfs obtained when removing each constraint at a time. The integral over the overlap between the pdf
with and without a given constraint quantifies the compatibility. In case of poor overlap the difference
Δj between the two pdfs can be determined, for each constraint cj , by substituting

cj → cj(1 + Δj). (17)

Further investigation (based on physics and not on statistics) will be necessary to tell if the difference Δj
comes from an incorrect evaluation of the input parameters or from new physics.

3.2. Frequentist methods

As said in the introduction theoretical quantities play an important role in the formulae relating the mea-
sured quantities to the UT parameters. These quantities are often inferred from theoretical calculations
with uncertainties which can be associated to approximations. Uncertainties due to approximations are
often estimated from more or less educated guesswork. For example, we recall that i) The quenched
approximation in Lattice QCD calculations; ii) Model calculations of form factors where model parame-
ters are varied within some range; iii) Higher order terms neglected in a power series for which the error
is estimated from the “natural size” of the expansion parameter or a scale dependence in a perturbative
series where the error is estimated by varying the scale within some reasonable range. This has driven
the developments of statistical approaches based on a frequentist understanding of systematic theoretical
uncertainties, which cannot be treated as statistically distributed quantities.

In this framework two approaches are presented: the Rfit method and the Scanning method. In
both methods, the “theoretically allowed” values for some theoretical parameters are “scanned”, i.e.
no statistical weight is assigned to these parameters as long as their values are inside a “theoretically
allowed” range.

The Rfit method starts by choosing a point in a parameter subspace of interest, e.g. a point in the
ρ̄-η̄ plane, and ask for the best set of theoretical parameters for this given point. This set is determined
by minimizing a χ2 function with respect to all model parameters, except ρ̄ and η̄. The theoretical pa-
rameters are free to vary inside their theoretically allowed range without obtaining any statistical weight.
In this way, upper limits of confidence levels in the parameter subspace of interest can be determined.

The basic idea of the Scanning method is to choose a possible set of values for the theoretical
parameters and to ask whether this particular model leads to an acceptable fit for the given data set. If
so, a confidence contour is drawn in a parameter subspace of interest, e.g. the ρ̄-η̄ plane, representing the
constraints obtained for this particular set of model parameters. This procedure is repeated for a large
number of possible theoretical models by scanning allowed ranges of the non-perturbative parameters.
The single confidence level contours cannot be compared from a statistical point of view. This method
has been extended to facilitate an analysis of the relative influence of experimental and theoretical uncer-
tainties in determining the consistency of the measurements with theory.

3.2.1. The Rfit approach

The CKM analysis using the Rfit method ∗ is performed in three steps: 1. Testing the overall consistency
between data and the theoretical framework, here the SM. 2. If data and the SM are found to be in rea-
sonable agreement, confidence levels (CL) in parameter subspaces are determined. 3. Testing extensions
of the SM.

∗The Rfit method is implemented in the software package CKMfitter [12]. More details can be found in [3].
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Fig. 5.3: Determination of CL(SM). The histograms show the test statistics F (χ2) built from the Monte Carlo technique as

described in the text for two different fits, including or excluding the sin 2β measurement. Integration of the distributions above

χ2
min provides CL(SM).

The quantity χ2 = −2 lnL(ymod) is minimized in the fit, where the likelihood function is defined
by L(ymod) = Lexp(xexp − xtheo(ymod)) · Ltheo(yQCD). The experimental part, Lexp, depends on
measurements, xexp, and theoretical predictions, xtheo, which are functions of model parameters, ymod.
The theoretical part, Ltheo, describes our “knowledge” of the theoretical parameters, yQCD ∈ {ymod}.
We set Ltheo = 1 within an “allowed range” R provided by a theoretical estimate, and Ltheo = 0 outside
R. That is, the yQCD are free to vary within R without changing the Ltheo part of the χ2 function.
It should be kept in mind that the choice of R is statistically not well-defined and reflects an intrinsic
problem of all statistical analyses when dealing with theoretical uncertainties.

It is worthwhile to emphasize that a uniform likelihood function is not identical to a uniform pdf.
Whereas a uniform likelihood means that the theoretical parameter is free to vary within R, a uniform
pdf states that each value within R has equal probability and hence introduces a statistical weight. This
has important consequences if more than one theoretical parameter enter a constraint or if the constraint
depends on a nonlinear function of a theoretical parameter. For example, the εK constraint depends
on the product P = B̂K · |Vcb|4. The theoretical likelihood for |Vcb|4 reads Ltheo(|Vcb|4) = 1 for all
theoretically allowed |Vcb| values given by Ltheo(|Vcb|) = 1. The theoretical likelihood for the product
P reads Ltheo(P ) = 1 for any value of B̂K and |Vcb| given by Ltheo(B̂K) = 1 and Ltheo(|Vcb|) = 1,
respectively. That is, in Rfit, no statistical weight is introduced for any value of P , independent of the
fact whether the single theoretical parameters are bound or unbound and independent of the particular
parametrization chosen. On the contrary, the pdf for the theoretical part of |Vcb|4 is proportional to
(|Vcb|)−3/4 if the theoretical pdf for |Vcb| is chosen to be uniform. The pdf for the product P would be
proportional to − log |P | in leading order if the pdfs forB̂K and |Vcb|4 were chosen to be uniform [3].

The agreement between data and the SM is gauged by the global minimum χ2min;ymod
, determined

by varying freely all model parameters ymod. For χ2
min;ymod

, a confidence level CL(SM) is computed
by means of a Monte Carlo simulation. For the optimal set of model parameters ymod, a large number
of pseudo-measurements is generated using the experimental likelihood function Lexp. For each set of
pseudo-measurements, the minimum χ2

min is determined and used to build a test statistics F (χ2). The
CL is then calculated as CL(SM) =

∫∞
χ2

min;ymod

F (χ2)dχ2 as illustrated in Fig. 5.3. If there is a hint of

an incompatibility between data and the SM one has to investigate in detail which constraint leads to a
small value for CL(SM).
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If the hypothesis “the CKM picture of the SM is correct” is accepted, CLs in parameter subspaces
a, e.g. a = (ρ̄, η̄), sin 2β, ..., are evaluated. For a given point in a, one determines the best agreement
between data and theory. One calculates Δχ2(a) = χ2

min;μ(a) − χ2
min;ymod

, by varying freely all model
parameters μ (including yQCD) with the exception of a. The corresponding CL is obtained from CL(a) =
Prob(Δχ2(a), Ndof ) (see e.g. Fig. 5.3) where Ndof is the number of degrees of freedom, in general the
dimension of the subspace a. It has to be stressed that CL(a) depends on the choice of R. The usage of
Prob(Δχ2(a), Ndof ) assumes Gaussian shapes for Lexp. The CL obtained has been verified for several
examples using a Monte Carlo simulation similar to the one described in the last section.

If the SM cannot accommodate the data, the analysis has to be repeated within extensions of
the SM. Even in the case of a good agreement between data and the SM, it is worthwhile to perform
the analysis for possible extensions of the SM in order to constrain New Physics parameters, see e.g.
Ref. [13], or to determine the precision needed to study or exclude certain models.
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Fig. 5.4: Different single constraints in the ρ̄ − η̄ plane shown at 95 % CL contours. The 95 % and 10 % CL contours for the

combined fit are also shown.

3.2.2. The Scanning Method

In the scanning method the following procedure is set to deal with “not-statistically” distributed quanti-
ties: we select a specific set of theoretical parameters called a “model”,

M ≡ {FD∗(1), Γ̃cincl, Γ̃uexcl, Γ̃
u
incl, FBd

√
B̂Bd

, B̂K , ξ, η1, η2, η3, ηB}, (18)

where FD∗(1) is the Isgur-Wise function of B → D∗�ν at zero recoil corrected for finite b-quark mass,
Γ̃cincl denotes the reduced decay rate for b → c�ν, Γ̃uexcl (Γ̃uincl) represents the reduced decay rate for
B → ρ�ν (b → u�ν), FBd

(FBs) is the B0
d (B0

s) decay constant, BBd
, BBs and B̂K parameterize the

values of the hadronic matrix elements appearing in B0
d − B0

d mixing, B0
s − B0

s mixing and K0 − K0

mixing, respectively, ξ = FBs/FBd

√
(B̂Bs/B̂Bd

), and η1, η2, η3, and ηB denote QCD parameters.
Such a set of theoretical parameters carries by definition non-probabilistic uncertainties but still may
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involve probabilistic errors. By choosing many different “models” we map out the allowed ranges of
these theoretical parameters.

For each “model” M we construct and minimize the function

χ2
M(A, ρ̄, η̄) =

∑
i

[
Ei − Ei(A, ρ̄, η̄;Ck;M)

σEi

]2
, (19)

where the Ei are observables based on measured quantities, Ei(A, ρ̄, η̄;Ck;M) is their parameterization
in terms of A, ρ̄, and η̄, Ck denotes measured quantities that possess experimentally derived or other
probabilistic uncertainties, such as masses and lifetimes, and the σEi denote all measurement uncertain-
ties contributing to both Ei and Ei(A, ρ̄, η̄;Ck;M). This includes all uncertainties on the theoretical
parameters that are statistical in nature.

The inputs used are those given in Table 5.1. To incorporate results on ΔMs searches we include
a χ2-term defined as the maximum between the log-likelhood ratio used in [2] and 0:

−2lnL∞(ΔMs) = max

(
(1 − 2A)
σ2
A

, 0

)
(20)

A is the amplitude spectrum as function of ΔMs.

The minimization solution (A, ρ̄, η̄)M for a particular “model” M incorporates no prior distribu-
tion for non-probabilistic uncertainties of the theoretical parameters and meets the frequency interpreta-
tion. All uncertainties depend only on measurement errors and other probabilistic uncertainties including
any probabilistic component of the uncertainties on the theoretical parameters relevant to each particular
measurement. At the moment, for practical reasons, we have treated the comparatively small uncertain-
ties arising from η1, η2, η3, and ηB as probabilistic. The effects of this simplification will be explored in
future fits.

A “model” M and its best-fit solution are kept only if the probability of the fit satisfies P(χ2M) >
Pmin, which is typically chosen to be 5%. For each “model” M accepted, we draw a 95% C.L. contour in
the (ρ̄, η̄) plane. The fit is repeated for other “models” M by scanning through the complete parameter
space specified by the theoretical uncertainties. This procedure derives from the technique originally
described in [14].

The χ2 minimization thus serves three purposes:

1. If a “model” M is consistent with the data, we obtain the best estimates for the three CKM param-
eters, and 95% C.L. contours are determined.

2. If a “model” M is inconsistent with the data the probability P(χ2M) will be low. Thus, the re-
quirement of P(χ2

M)min > 5% provides a test of compatibility between data and its theoretical
description.

3. By varying the theoretical parameters beyond their specified range we can determine correlations
on them imposed by the measurements. The first results of this study are shown in Section 4.2.

If no “model” were to survive we would have evidence of an inconsistency between data and
theory, independent of the calculations of the theoretical parameters or the choices of their uncertainties.
Since the goal of the CKM parameter fits is to look for inconsistencies of the different measurements
within the Standard Model, it is important to be insensitive to artificially produced effects and to separate
the non-probabilistic uncertainties from Gaussian-distributed errors.

In order to demonstrate the impact of the different theoretical quantities on the fit results in the
(ρ̄, η̄) plane, Figs. 5.5a–f show contours for fits in which only one parameter was scanned while the others
were kept at their central values. These plots demonstrate the impact of the model dependence in |Vub|
and |Vcb| as well as that of FBd

√
B̂Bd

and B̂K , ξ, and η1, respectively. For each parameter we consider
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Fig. 5.5: Contours of different models in the (ρ̄, η̄) plane, by varying only one theoretical parameter at a time, a) Γ̃excl,

b) FD∗(1), c) FBd

√
B̂Bd , d) B̂K , e) ξ (where ΔMs is included in the fit), and f) η1. In each plot nine different models are

considered by varying the theoretically-allowed range from the minimum value to the maximum value. The figures are arranged

with a) in the upper left, b) in the upper right, etc..

nine different models which span its range equidistantly, starting with the smallest allowed value. Since
these plots just serve illustrative purposes we use only the measurements of |Vub|, |Vcb|, ΔMd, and εK
in the fits, except for Fig. 5.5e where the information of ΔMs has been included in addition. To guide
the eye we show the boundaries of the three bands for |Vub/Vcb|, |Vtd/Vcb|, and εK . Since the theoretical
parameters are kept at their central values except for the one being varied, the bands corresponding to
the other parameters reflect only experimental uncertainties.

We now turn to scanning all parameters simultaneously within their theoretically “allowed” ranges.
Figure 5.6 shows the resulting contours for a set of representative “models”, when all available con-
straints are included. Note that there is no frequency interpretation for comparing which models are to
be “preferred”, other than the statement that at most one model is correct. In this analysis we cannot,
and do not, give any relative probabilistic weighting among the contours, or their overlap regions. In-
deed, the entire purpose of the scanning method is to make clear the relative importance of measurable
experimental errors and a-priori unknown theoretical uncertainties.
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Fig. 5.6: Contours in the (ρ̄, η̄) plane for different models, scanning theoretical parameters Γ̃excl, FD∗(1), FBd

√
B̂Bd , B̂K ,

and ξ, based on measurements of |Vub|, |Vcb|, ΔMd, εK , the amplitude for ΔMs, and sin 2β.

4. Impact of the uncertainties on theoretical quantities in CKM Fits

As described in the previous sections, the “correct” way to treat the theoretical parameters is not unam-
biguously defined but depends on the adopted statistical approach. In this section we will not discuss
the problems and the virtues of the different statistical approaches on this point, and concentrate on the
impact of the uncertainties on theoretical parameters in constraining ρ̄ and η̄.

Two numerical analyses will be presented: one in the Bayesian framework and one in the frequen-
tist framework. In the first analysis we study the effect on the UT fit from a modification (or a removal) of
some theoretical parameter used as input parameter. The second analysis introduces a graphical method
to represent, in the space of the theoretical parameters, the goodness of the UT fit and to evaluate the
relevance of the knowledge on these parameters.

4.1. Bayesian analysis

In the framework of the Bayesian method the input knowledge is expressed in terms of pdfs for all
quantities (theoretical and experimental parameters). Following the procedure described in Section 3.1.,
the output pdf can be computed for ρ̄, η̄ and for any other quantity of interest.

The impact of the uncertainty on a given quantity, which enters as a parameter in a given constraint,
is naturally evaluated by comparing the results obtained excluding the corresponding constraint or by
varying the error of the input parameter. When the information on a certain quantity is excluded the
corresponding input pdf is taken as uniform. The common set of inputs used for this analysis are the
ones available at the time of the Workshop (Table 5.1).

4.1.1. Determination of FBd

√
B̂Bd

First we consider the FBd

√
B̂Bd

parameter. Quite remarkably the remaining constraints determine pre-
cisely this quantity and, from the output distribution shown in the left part of Fig. 5.7, we get

FBd

√
B̂Bd

= (223 ± 12) MeV (21)

This is in perfect agreement with the results from lattice calculation (see Table 5.1) and has a significantly

smaller error. This suggests that, unless the lattice error on FB

√
B̂B does not become smaller than

12 MeV, the theoretical knowledge of this quantity is not quite relevant in UT fits. The Table in Fig. 5.7

quantifies the effect of changing the uncertainty on FBd

√
B̂Bd

(keeping the same central value).
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Fig. 5.7: Left: output distribution for FBd

√
B̂Bd assuming a flat input distribution. Right: table reporting the results of the

UT fit for ρ̄ and η̄ assuming different input values for the errors on FBd

√
B̂Bd (in MeV) (σ is the Gaussian error and Δ/2 is

the half-width of the systematic range). The last column (“infinite error”) is obtained with a uniform input distribution.

4.1.2. Determination of B̂K

Here the same exercise has been repeated with the parameter B̂K . Assuming for B̂K a uniform input
distribution between 0 and 2, from the output distribution shown in Fig. 5.8 we obtain

B̂K = 0.73+0.13
−0.07 (22)

The fitted value is again in perfect agreement with the lattice value (see Table 5.1), but in this case the
fitted (output) uncertainty is similar to the theoretical (input) one. We then expect that “lattice informa-
tion” plays a non negligible role, in particular in the determination of η̄ (because of simple geometrical
arguments). Table in Fig. 5.8 shows that, in fact, removing the information coming from Lattice QCD
(last row) the error on η̄ increases by 50%.

B
^

K

P
ro

ba
bi

li
ty

 d
en

si
ty

0

0.05

0.1

0.15

0.2

0 0.5 1 1.5 2

σ ± Δ/2 ρ̄ η̄

±0.03 ± 0.065 0.181 ± 0.040 0.349 ± 0.025

±0.06 ± 0.13 0.173 ± 0.046 0.357 ± 0.027

±0.12 ± 0.26 0.163 ± 0.052 0.365 ± 0.030
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Fig. 5.8: Left: output distribution for B̂K assuming a flat input distribution. Right: table reporting the results of the CKM Fits

for ρ̄ and η̄ assuming different input values for the errors on B̂K (σ is the Gaussian error and Δ/2 is the half-width of the

systematic range). The last column (”infinite error”) is obtained with a flat input distribution.
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4.1.3. Determination of ξ

Since ΔMs has not yet been measured, ξ cannot be determined by the data. Assuming a uniform dis-
tribution between 0.6 and 2 (the upper bound is obviously arbitrary), the output distribution shown in
Fig. 5.9 is obtained. The tail on the right part of the plot shows that, at present, ξ is only weakly con-
strained by experimental data; for this reason the information on the ξ parameter is very important, in
particular in the determination of ρ̄, as shown in the table in Fig. 5.9.
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Fig. 5.9: Left: output distribution for ξ assuming a flat input distribution between 0.6 and 2. Right: table reporting the results of

the CKM Fits for ρ̄ and η̄ assuming different input values for the errors on ξ (σ is the Gaussian error and Δ/2 is the half-width

of the systematic range). The last column is obtained with a flat input distribution between 0.6 and 2.

4.2. Scan analysis

In the study of the sensitivity of the UT fit to a given theoretical parameter one should define how to treat
the remaining parameters. In the Bayesian approach (described in the previous section) the remaining
parameters are integrated using their input pdf while in the standard frequentist approach the confidence
level for a parameter is computed irrespectively of the values of all the remaining parameters (logical
“OR” over the values of the parameters).

The technique presented here aims at studying and visualizing the sensitivity of UT fits to theo-
retical uncertainties, in the theoretical parameters space (T), minimizing a priori inputs and intermediate
combinations of parameters. The method tries to represent pairs or triplets of theoretical parameters
while keeping some information on the remaining (undisplayed) parameters. The input knowledge on a
theoretical parameter is described by a ”nominal central value” and a ”theoretical preferred range”. In
two dimensions the procedure is as follows:

• Pick two of the parameters T for display. Call these the primary parameters, T1 and T2.

• Pick a third T parameter, the secondary parameter Ts. This parameter is singled out for special
attention to the effects of projecting over it.

• Call all the other T parameters the undisplayed parameters, TX .

• For each point P in the grid of scanned values of T1⊗T2, a number of fits will have been attempted,
covering all the scanned values of Ts and TX . For each P, evaluate the following hierarchy of
criteria against the ensemble of results of these fits, deriving for the point a value, we call it the
“Level”, which is an integer between 0 and 5 inclusive:

1. Define a minimum acceptable value for P (χ2). Did any of the fits for P pass this cut? If not,
assign Level = 0 and stop; otherwise assign Level = 1 and continue.

2. Did any of the remaining fits lie within the ”theoretically preferred region” for all the undis-
played parameters TX? If not, stop; if yes, assign Level = 2 and continue.
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3. Did any of the remaining fits have the secondary parameter Ts within its ”theoretically pre-
ferred region”? If not, stop; if yes, assign Level = 3 and continue.

4. Did any of the remaining fits have Ts equal to its ”nominal central value”? (That value
must have been included in the scan grid for this to make sense.) If not, stop; if yes, assign
Level = 4 and continue.

5. Did any of the remaining fits have all the undisplayed parameters TX also at their ”nominal
central values”? If not, stop; if yes, assign Level = 5 and stop.

• Now display contours of the quantity Level over the grid in the T1⊗T2 plane. Assign a unique color
to each parameter T, so the contours for Ts at Level = 3,4 are drawn in the color corresponding
to that parameter. The contours for Level = 4,5, which correspond to restrictions of parameters
exactly to their central values, are also drawn distinctively, with dashing.
The Level 3 contour (solid, colored), in particular, displays the allowed region, at the selected
confidence level, for T1 and T2, based on the experimental data and on limiting all other theoretical
parameters to their preferred ranges. Study of the relative spacing of the Level 2, 3, and 4 contours
readily reveals the effects of the application of the Ts bounds on the fit results.

• Overlay the contours with straight lines showing the theoretically preferred ranges and nominal
central values for T1 and T2, in their respective unique colors, again with dashing for the central
value. This allows the theoretical bounds on T1 and T2 to be evaluated directly for consistency
against all other available data, yet avoiding any convoluted use of priors for these two parameters.
Comparison of these theoretical bounds for T1 and T2 with the Level 3 contour that shows the
experimental information, constrained by the application of the theoretical bounds on Ts and the
Tx, allows a direct visual evaluation of the consistency of all available information, with the effects
of the application of all theoretical bounds manifest, not obscured by convolutions performed in
the fit itself.

Figure 5.10 shows the results of the previous procedure, using FB
√
B̂B and Vub as primary param-

eters, B̂K as secondary parameter, while the undisplayed parameter (there is just one in this case) is ξ.
What can be seen immediately is that the entire theoretically allowed region for the primary parameters,
shown by the crossing of the solid lines, is consistent with all the other data, including the theoretical
bound on B̂K , and that even when all parameters are constrained to their central values the resulting fit
(there can be only one at that point) is fully consistent. Changing the role of primary, secondary, and
undisplayed parameters in many different ways, helps to understand the role of these parameters in the fit.

These plots can be extended in three dimensions by drawing the three bi-dimensional projections
of the allowed region. Several three dimensional plots and further details can be found in [15].

5. Fit comparison

In this section we compare the results on the CKM quantities obtained following two approaches:
Bayesian and Rfit. The common set of inputs are the ones available at the time of the Workshop (Ta-
ble 5.1). The Scan method has not been included in the comparison because it does not evaluate overall
allowed regions for the CKM parameters. As explained in the previous sections, the main difference
between the Bayesian and the Rfit analyses originates from the computation of the Likelihood functions
(identified with pdfs in the Bayesian case) for each parameter and in the treatment of the Likelihood fit.

5.1. Input likelihoods and combination of likelihoods

In general a determination of a given quantity is characterized by a central value, a statistical error and a
systematical error. Starting from such a splitting of the errors Bayesian and frequentist approaches may
describe this quantity according to different likelihood functions.
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Fig. 5.10: Results of the procedure described in the text, using FBd

√
B̂Bd and Vub as primary parameters, B̂K as secondary

parameter, and ξ as undisplayed parameter.

In the Bayesian approach, the basic assumption is that the value of any quantity is distributed
according to a pdf. The final pdf of a certain quantity is obtained by convoluting the pdfs corresponding
to the different uncertainties affecting the quantity. In particular, the uncertainty on a quantity is usually
splitted in two parts: a statistical part which can be described by a Gaussian pdf, G(x − x0) (this part
may contain many sources of uncertainties which have been already combined into a single pdf) and
another part which is usually of theoretical origin and is often related to uncertainties due to theoretical
parameters. In the following we will denote it as theoretical systematics. It is often described using an
uniform pdf: U(x) = 1/2σtheo for x ∈ [x0 −σtheo, x0 + σtheo] and U(x) = 0 elsewhere. The combined
pdf P is then obtained by convoluting the Gaussian pdf G with the uniform pdf U : P = G ⊗ U .

In the frequentist analysis, no statistical meaning is attributed to the uncertainties related to theo-
retical systematics. The likelihood function L for the quantity x contains a statistical part, Lexp(x−x′0),
described by a Gaussian with mean value x′0, and a “not-statistical” part, Ltheo(x′0). The function
Ltheo(x′0), as denoted Rfit likelihood, is a uniform function Ltheo(x′0) = 1 for x′0 ∈ [x0 − σtheo, x0 +
σtheo] and Ltheo(x′0) = 0 elsewhere. The final likelihood is given by the product L = Lexp(x − x′0) ·
Ltheo(x′0). In conclusion, when a quantity contains an uncertainty to which the frequentists do not
attribute any statistical meaning, the likelihood which describes this quantity is obtained as a product
between this uncertainty and the statistical one.

When several determinations of the same quantity are available one may combine them to obtain
a single input for a quantity entering the fit (these considerations apply for example to the determina-
tions of |Vub| and |Vcb|). We suppose, in the following, that these determinations are not correlated. In
addition, it is assumed that the various determinations of these quantities are compatible. Then, for the
combination, the Bayesian approach calculates the product of the single pdfs, whereas the frequentist
approach calculates the product of the individual likelihoods. Hence, the mathematical concepts for the

212



0

1

2

3

4

38 40 42 44

Vcbx10-3

Δl
og

L

RFit
Bayesian

Vubx10-4

Δl
og

L

0

1

2

3

4

20 30 40 50

Fig. 5.11: The ΔLikelihood for |Vcb| and |Vub| using the Bayesian and frequentist approaches when combining the inclusive

and the exclusive determinations.

0

1

2

3

4

100 150 200 250 300 350

FB√B

Δl
og

L

RFit
Bayesian

B
^

K

Δl
og

L

0

1

2

3

4

0.6 0.8 1 1.2

ξ

Δl
og

L
0

1

2

3

4

1 1.1 1.2 1.3

Fig. 5.12: The ΔLikelihood for FBd

√
B̂Bd , B̂K and ξ using the Bayesian and frequentist approaches.

combination procedure of the two statistical approaches are identical.

5.2. Distributions for the relevant quantities in the CKM fits

The relevant quantities entering the fit are summarized in Table 5.1 given at the beginning of this Chapter.
Figures. 5.11 and 5.12 show the Δ Log(Likelihood) for |Vcb| ,|Vub| and for the non-perturbative QCD

parameters, FBd

√
B̂Bd

, ξ and B̂K as obtained following the Bayesian and the frequentist methods. To
be more explicit, in Table 5.2. we show the 68% and 95% ranges as obtained following the Bayesian and
the Rfit methods. It can be noticed that differences on the input quantities between the two approaches
can be important and depend upon the chosen splitting of the errors. In the Bayesian approach the
splitting of the total error in two errors is not really important, since, the two errors are often, already,
the results of the convolution of many different source of errors. It has been also shown that the choice
of the shape of the pdf to be attributed to the error has a moderate impact on the final results [16], once
the central value and the r.m.s. of the pdf has been fixed. In the Rfit this splitting is crucial and a careful
breakdown of the sources of the errors which contribute to it should be done. For this comparison we
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have decided to keep this splitting and to classify certain errors as a flat pdf and “non statistical” for the
Bayesian and Rfit approaches, respectively.

Parameters 68% range 95% range

B̂K Rfit (Bayes) [ratio R/B] 0.68-1.06 (0.76-0.98) [1.70] 0.62-1.12 (0.67-1.06) [1.25]

Table 5.2: 68% and 95% ranges for some relevant quantities used in the CKM fits in the Rfit and Bayes approaches.

5.3. Results and Comparison

Rfit Method

Parameter ≤ 5% CL ≤ 1% CL ≤ 0.1% CL

ρ̄ 0.091 - 0.317 0.071 - 0.351 0.042 - 0.379

η̄ 0.273 - 0.408 0.257 - 0.423 0.242 - 0.442

sin 2β 0.632 - 0.813 0.594 - 0.834 0.554 - 0.855

γ◦ 42.1 - 75.7 38.6 - 78.7 36.0 - 83.5

Bayesian Method

Parameter 5% CL 1% CL 0.1% CL

ρ̄ 0.137 - 0.295 0.108 - 0.317 0.045 - 0.347

η̄ 0.295 - 0.409 0.278 - 0.427 0.259 - 0.449

sin 2β 0.665 - 0.820 0.637 - 0.841 0.604 - 0.863

γ◦ 47.0 - 70.0 44.0 - 74.4 40.0 - 83.6

Ratio Rfit/Bayesian Method

Parameter 5% CL 1% CL 0.1% CL

ρ̄ 1.43 1.34 1.12

η̄ 1.18 1.12 1.05

sin 2β 1.17 1.18 1.16

γ◦ 1.46 1.31 1.09

Table 5.3: Ranges at difference C.L for ρ̄, η̄, sin 2β and γ. The measurements of |Vub| / |Vcb| and ΔMd, the amplitude spectrum

for including the information from the B0
s − B

0
soscillations, |εK | and the measurement of sin 2β have been used.

For the comparison of the results of the fit we use ρ̄, η̄, sin 2β and γ. Those quantities are
compared at the 95%, 99% and 99.9% C.L. It has to be stressed that in the frequentist approach those
confidence levels correspond to ≥95%, ≥99% and ≥99.9%. All the available constraints have been
used: the measurements of |Vub| / |Vcb|, ΔMd, the amplitude spectrum for including the information
from the B0

s − B0
s oscillations, |εK | and the measurement of sin 2β. It has to be stressed once more that

the inputs used are the same in the two approaches (in term of Gaussian and uniform uncertainties), but
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they correspond to different input likelihoods, for |Vcb|, |Vub|, FBd

√
B̂Bd

, B̂K and ξ as shown in the
previous figures. Figure 5.13 shows the comparison on the (ρ̄, η̄) plane. The numerical results are given
in Table 5.3. Figure 5.14 shows the comparison between the allowed regions obtained using Bayesian or
Rfit methods if the constraint from the direct measurement of sin2β is removed from the fit.
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Fig. 5.13: Comparison Bayesian/Rfit Methods. Allowed regions for ρ̄ and η̄ at 95% (left plot) and 99% (right plot) using the
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and the measurement of sin 2β.
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Fig. 5.14: Comparison Bayesian/Rfit Methods. Allowed regions for ρ̄ and η̄ at 95% (left plot) and 99% (right plot) using

the measurements of |Vub| / |Vcb|, ΔMd, the amplitude spectrum for including the information from the B0
s − B

0
s oscillations

and |εK |

5.3.1. Further comparisons

To further the orogin of the residual difference between the two methods, we have performed the fol-
lowing test: both methods use the distributions as obtained from Rfit or from the Bayesian method to
account for the information on input quantities. The results of the comparison using the input distribu-
tions as obtained from Rfit are shown in Figs. 5.15 (Table 5.4). In some cases (0.1% C.L.) the ranges
selected by the Bayesian approach are wider. The comparison using the input distributions, as obtained
from the Bayesian method, give a maximal difference of 5%. These two tests show that, if same input
likelihood are used, the results on the output quantities are very similar. The main origin of the residual
difference on the output quantities, between the Bayesian and the Rfit method comes from the likelihood
associated to the input quantities.

5.3.2. Some conclusions on the fit comparison

The Bayesian and the Rfit methods are compared in an agreed framework in terms of input and output
quantities. For the input quantities the total error has been splitted in two errors. The splitting and the
p.d.f distribution associated to any of the errors is not really important in the Bayesian approach. It
becomes central in the Rfit approach where the systematic errors are treated as “non statistical” errors.
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Parameter 5% CL 1% CL 0.1% CL

ρ̄ 1.20 1.13 0.96

η̄ 1.03 0.99 0.94

sin 2β 1.07 1.08 1.07

γ◦ 1.24 1.12 0.95

Table 5.4: Comparison. Ratio for confidence levels Rfit/Bayesian using the distributions as obtained from Rfit to account for

the information on input quantities
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Fig. 5.15: Comparison Bayesian/Rfit Methods using the distributions as obtained from Rfit to account for the information on

input quantities. Allowed regions for ρ̄ and η̄ at 95% (left plot) and 99%(right plot) using the measurements of |Vub| / |Vcb|

and ΔMd the amplitude spectrum for including the information from the B0
s − B

0
s oscillations, |εK | and the measurement of

sin 2β.

The result is that, even if the same central values and errors are used in the two methods, the likelihood
associated to the input parameters, which are entering in the fitting procedure, can be different. The
output results (ρ̄,η̄, sin2 β, γ) differ by 15%-45%, 10%-35% and 5-15% if the 95%, 99% and 99.9%
confidence regions are compared, respectively, with ranges from the frequentist method being wider. If
the same likelihoods are used the output results are very similar.

6. Test of the CKM picture in the Standard Model

After comparing different statistical methods, in this final Section we show how the present data can be
used to test the CKM picture of the Standard Model. The results presented here have been obtained with
a Bayesian fit to the latest inputs of Table 5.1. The central values, errors and 68% (95%) [and 99%] C.L.
ranges obtained for various quantities of interest are collected in Table 5.5.

The most crucial test is the comparison between the UT parameters determined with quantities
sensitive to the sides of the UT (semileptonic B decays and oscillations) with the measurement of CP
violation in the kaon sector (|εK |) and, also with the one in the B (sin2β) sector. This test is shown in
Fig. 5.16. It can be translated quantitatively into a comparison between the values of sin2β obtained
from the measurement of the CP asymmetry in the J/ψK0

S decays and the one determined from “sides“
measurements:

sin 2β = 0.685 ± 0.052 (0.581, 0.789) indirect − sides only
sin 2β = 0.734 ± 0.054 (0.628, 0.840) B0 → J/ψK0

S ,

where, within parentheses, we give also the 95% probability region. The spectacular agreement between
these values shows the consistency of the Standard Model in describing the CP violation phenomena
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|Vcb| × 103 41.5 ± 0.8 (39.9,43.1) [39.1,43.9]

η̄ 0.341 ± 0.028 (0.288,0.397) [0.271,0.415]

ρ̄ 0.178 ± 0.046 (0.085,0.265) [0.052,0.297]

sin 2β 0.705 ± 0.037 (0.636,0.779) [0.612,0.799]

sin 2α –0.19 ± 0.25 (–0.62,0.33) [–0.75,0.47]

γ(degrees) 61.5 ± 7.0 (49.0,77.0) [44.3,82.1]

ΔMs(ps−1) 18.3 ± 1.7 (15.6,22.2) [15.1,27.0]

Table 5.5: Values and errors for different quantities using the present knowledge summarized in Table 5.1. Within parentheses

and brackets the 95% and 99% probability regions are, respectively, given.
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Fig. 5.16: The allowed regions for ρ and η (contours at 68%, 95%) as selected by the measurements of |Vub| / |Vcb|, ΔMd,

and by the limit on ΔMs/ΔMd are compared with the bands (at 68% and 95% C.L.) from CP violation in the kaon (εK) and

in the B (sin2β) sectors.

in terms of one single complex parameter η. Conversely, assuming the validity of the SM, this is also
an important test of the OPE, HQET and LQCD theories which have been used to extract the CKM
parameters. It has to be noted that the test is significant provided that the errors on sin 2β from the two
determinations are comparable. Presently, the accuracy of both is at the 10% level. It is also of interest
to explicitly make predictions for quantities which will be measured in the next future. We concentrate
on ΔMs which will be soon measured at Tevatron. The results obtained by excluding (or including) the
information from the B0

s − B̄0
s analyses are:

ΔMs(with ΔMs included) = 18.3 ± 1.7 (15.6, 22.2) [15.1, 27.0] ps−1

ΔMs(without ΔMs ) = 20.6 ± 3.5 (14.2, 28.1) [12.8, 30.7] ps−1 .

where, within parentheses, we give the 95% and the 99% regions.

It will be interesting to compare these results with future measurements with the goal of identify-
ing new physics contributions. Moreover a precise measurement of ΔMs will reduce significantly the
uncertainties in the output quantities in Table 5.5.
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