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1. Setting the scene

The understanding of flavour dynamics, and of the related origin of quark and lepton masses and mix-
ings, is among the most important goals in elementary particle physics. In this context, weak decays of
hadrons, and in particular the CP violating and rare decay processes, play an important role as they are
sensitive to short distance phenomena. Therefore the determination of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix [1,2] that parametrizes the weak charged current interactions of quarks is currently a cen-
tral theme in particle physics. Indeed, the four parameters of this matrix govern all flavour changing
transitions involving quarks in the Standard Model (SM). These include tree level decays mediated by
W bosons, which are essentially unaffected by new physics contributions, as well as a vast number of
one-loop induced flavour changing neutral current (FCNC) transitions responsible for rare and CP vio-
lating decays in the SM, which involve gluons, photons, W±, Z0 and H0, and are sensitive probes of new
physics. This role of the CKM matrix is preserved in most extensions of the SM, even if they contain
new sources of flavour and CP violation.

An important goal is then to find out whether the SM is able to describe the flavour and CP viola-
tion observed in nature. All the existing data on weak decays of hadrons, including rare and CP violating
decays, can at present be described by the SM within the theoretical and experimental uncertainties.
On the other hand, the SM is an incomplete theory: some kind of new physics is required in order to
understand the patterns of quark and lepton masses and mixings, and generally to understand flavour
dynamics. There are also strong theoretical arguments suggesting that new physics cannot be far from
the electroweak scale, and new sources of flavour and CP violation appear in most extensions of the SM,
such as supersymmetry. Consequently, for several reasons, it is likely that the CKM picture of flavour
physics is modified at accessible energy scales. In addition, the studies of dynamical generation of the
baryon asymmetry in the universe show that the size of CP violation in the SM is too small to generate
a matter-antimatter asymmetry as large as that observed in the universe today. Whether the physics re-
sponsible for the baryon asymmetry involves only very short distance scales like the GUT or the Planck
scales, or it is related to CP violation observed in experiments performed by humans, is an important
question that still has to be answered.

To shed light on these questions the CKM matrix has to be determined with high accuracy and
well understood errors. Tests of its structure, conveniently represented by the unitarity triangle, have to
be performed; they will allow a precision determination of the SM contributions to various observables
and possibly reveal the onset of new physics contributions.
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The major theoretical problem in this program is the presence of strong interactions. Although the
gluonic contributions at scales O(MW,MZ,mt) can be calculated within the perturbative framework,
owing to the smallness of the effective QCD coupling at short distances, the fact that hadrons are bound
states of quarks and antiquarks forces us to consider QCD at long distances as well. Here we have to rely
on the existing non-perturbative methods, which are not yet fully satisfactory. On the experimental side,
the basic problem in extracting CKM parameters from the relevant rare and CP violating transitions is the
smallness of the branching ratios, which are often very difficult to measure. As always in the presence of
large theoretical and systematic uncertainties, their treatment in the context of global fits is a problematic
and divisive issue.

In the last decade considerable progress in the determination of the unitarity triangle and the
CKM matrix has been achieved through more accurate experiments, short distance higher order QCD
calculations, novel theoretical methods like Heavy Quark Effective Theory (HQET) and Heavy Quark
Expansion (HQE), and progress in non-perturbative methods such as lattice gauge simulation and QCD
sum rules. It is the purpose of these proceedings to summarize the present status of these efforts, to
identify the most important remaining challenges, and to offer an outlook for the future.

While many decays used in the determination of the CKM matrix are subject to significant hadronic
uncertainties, there are a handful of quantities that allow the determination of the CKM parameters with
reduced or no hadronic uncertainty. The prime examples are the CP asymmetry aψKS

, certain strategies
in B decays relevant for the angle γ in the unitarity triangle, the branching ratios for K+ → π+νν̄ and
KL → π0νν̄, and suitable ratios of the branching ratios for rare decays Bd,s → μ+μ− and B → Xd,sνν
relevant for the determination of |Vtd|/|Vts|. Also the ratio ΔMd/ΔMs is important in this respect.

The year 2001 opened a new era of theoretically clean measurements of the CKM matrix through
the discovery of CP violation in the B system (aψKS

�= 0) and further evidence for the decay K+ →
π+νν̄. In 2002 the measurement of the angle β in the unitarity triangle by means of aψKS

has been
considerably improved. It is an exciting prospect that new data on CP violation and rare decays as well
as B0

s−B0
s mixing coming from a number of laboratories in Europe, USA and Japan will further improve

the determination of the CKM matrix, possibly modifying the SM description of flavour physics.

Recently, there have been several workshops on B physics [3–5] that concentrated on studies at
e+e− machines, at the Tevatron or at LHC, separately. Here we focus instead on the discussion of the
CKM matrix and its determination from all available data at different machines.

2. CKM matrix and the Unitarity Triangle

2.1. General remarks

The unitary CKM matrix [1,2] connects the weak eigenstates (d′, s′, b′) and the corresponding mass
eigenstates d, s, b:

⎛
⎜⎝
d′

s′

b′

⎞
⎟⎠ =

⎛
⎜⎝
Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

⎞
⎟⎠

⎛
⎜⎝
d
s
b

⎞
⎟⎠ ≡ V̂CKM

⎛
⎜⎝
d
s
b

⎞
⎟⎠ . (1)

Several parametrizations of the CKM matrix have been proposed in the literature; they are classified
in [6]. We will use two in these proceedings: the standard parametrization [7] recommended by the
Particle Data Group [8] and a generalization of the Wolfenstein parametrization [9] as presented in [10].
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2.2. Standard parametrization

With cij = cos θij and sij = sin θij (i, j = 1, 2, 3), the standard parametrization is given by:

V̂CKM =

⎛
⎜⎝

c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −s23c12 − s12c23s13e
iδ c23c13

⎞
⎟⎠ , (2)

where δ is the phase necessary for CP violation. cij and sij can all be chosen to be positive and δ may
vary in the range 0 ≤ δ ≤ 2π. However, measurements of CP violation in K decays force δ to be in the
range 0 < δ < π.

From phenomenological studies we know that s13 and s23 are small numbers: O(10−3) and
O(10−2), respectively. Consequently to an excellent accuracy the four independent parameters can be
chosen as

s12 = |Vus|, s13 = |Vub|, s23 = |Vcb| and δ. (3)

As discussed in detail in Chapters 2 and 3, the first three parameters can be extracted from tree level
decays mediated by the transitions s → u, b → u and b → c, respectively. The phase δ can be
extracted from CP violating transitions or loop processes sensitive to |Vtd|. We will analyse this in detail
in Chapters 4–6.

2.3. Wolfenstein parametrization and its generalization

The absolute values of the elements of the CKM matrix show a hierarchical pattern with the diagonal
elements being close to unity, the elements |Vus| and |Vcd| being of order 0.2, the elements |Vcb| and
|Vts| of order 4 · 10−2 whereas |Vub| and |Vtd| are of order 5 · 10−3. The Wolfenstein parametrization [9]
exhibits this hierarchy in a transparent manner. It is an approximate parametrization of the CKM matrix
in which each element is expanded as a power series in the small parameter λ = |Vus| ≈ 0.22,

V̂ =

⎛
⎜⎝

1 − λ2

2 λ Aλ3(	− iη)
−λ 1 − λ2

2 Aλ2

Aλ3(1 − 	− iη) −Aλ2 1

⎞
⎟⎠ + O(λ4) , (4)

and the set (3) is replaced by
λ, A, 	, and η . (5)

Because of the smallness of λ and the fact that for each element the expansion parameter is actually λ2,
it is sufficient to keep only the first few terms in this expansion.

The Wolfenstein parametrization is certainly more transparent than the standard parametrization.
However, if one requires sufficient level of accuracy, the terms of O(λ4) and O(λ5) have to be included
in phenomenological applications. This can be done in many ways [10]. The point is that since (4) is
only an approximation the exact definition of the parameters in (5) is not unique in terms of the neglected
order O(λ4). This situation is familiar from any perturbative expansion, where different definitions of
expansion parameters (coupling constants) are possible. This is also the reason why in different papers in
the literature different O(λ4) terms in (4) can be found. They simply correspond to different definitions
of the parameters in (5). Since the physics does not depend on a particular definition, it is useful to make
a choice for which the transparency of the original Wolfenstein parametrization is not lost.

In this respect a useful definition adopted by most authors in the literature is to go back to the
standard parametrization (2) and to define the parameters (λ,A, 	, η) through [10,11]

s12 = λ , s23 = Aλ2 , s13e
−iδ = Aλ3(	− iη) (6)
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to all orders in λ. It follows that

	 =
s13
s12s23

cos δ, η =
s13
s12s23

sin δ. (7)

The expressions (6) and (7) represent simply the change of variables from (3) to (5). Making this change
of variables in the standard parametrization (2) we find the CKM matrix as a function of (λ,A, 	, η)
which satisfies unitarity exactly. Expanding next each element in powers of λ we recover the matrix
in (4) and in addition find explicit corrections of O(λ4) and higher order terms. Including O(λ4) and
O(λ5) terms we find

V̂ =

⎛
⎜⎝

1 − 1
2λ

2 − 1
8λ

4 λ+ O(λ7) Aλ3(	− iη)
−λ+ 1

2A
2λ5[1 − 2(	+ iη)] 1 − 1

2λ
2 − 1

8λ
4(1 + 4A2) Aλ2 + O(λ8)

Aλ3(1 − 	− iη) −Aλ2 + 1
2Aλ

4[1 − 2(	+ iη)] 1 − 1
2A

2λ4

⎞
⎟⎠ (8)

where [10]

	 = 	(1 − λ2

2
), η = η(1 − λ2

2
). (9)

We emphasize that by definition the expression for Vub remains unchanged relative to the original
Wolfenstein parametrization and the corrections to Vus and Vcb appear only at O(λ7) and O(λ8), re-
spectively. The advantage of this generalization of the Wolfenstein parametrization over other gener-
alizations found in the literature is the absence of relevant corrections to Vus, Vcd, Vub and Vcb and an
elegant change in Vtd which allows a simple generalization of the so-called unitarity triangle to higher
orders in λ [10] as discussed below.

2.4. Unitarity Triangle

The unitarity of the CKM-matrix implies various relations between its elements. In particular, we have

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (10)

Phenomenologically this relation is very interesting as it involves simultaneously the elements Vub, Vcb
and Vtd which are under extensive discussion at present. Other relevant unitarity relations will be pre-
sented as we proceed.

The relation (10) can be represented as a unitarity triangle in the complex (	, η) plane. The
invariance of (10) under any phase-transformations implies that the corresponding triangle is rotated in
the (	, η) plane under such transformations. Since the angles and the sides (given by the moduli of the
elements of the mixing matrix) in this triangle remain unchanged, they are phase convention independent
and are physical observables. Consequently they can be measured directly in suitable experiments. One
can construct five additional unitarity triangles [12] corresponding to other orthogonality relations, like
the one in (10). Some of them should be useful when the data on rare and CP violating decays improve.
The areas (AΔ) of all unitarity triangles are equal and related to the measure of CP violation JCP [13]:
| JCP |= 2 · AΔ.

Noting that to an excellent accuracy VcdV
∗
cb in the parametrization (2) is real with |VcdV ∗

cb| = Aλ3+
O(λ7) and rescaling all terms in (10) by Aλ3 we indeed find that the relation (10) can be represented as
the triangle in the complex (	, η) plane as shown in Fig. 1.1.

Let us collect useful formulae related to this triangle:

• We can express sin(2αi), αi = α, β, γ, in terms of (	, η) as follows:

sin(2α) =
2η(η2 + 	2 − 	)

(	2 + η2)((1 − 	)2 + η2)
, (11)

4



ρ+iη 1−ρ−iη

βγ

α

C=(0,0) B=(1,0)

A=(ρ,η)

Fig. 1.1: Unitarity Triangle.

sin(2β) =
2η(1 − 	)

(1 − 	)2 + η2 , (12)

sin(2γ) =
2	η

	2 + η2 =
2	η

	2 + η2
. (13)

• The lengths CA and BA to be denoted by Rb and Rt, respectively, are given by

Rb ≡
|VudV ∗

ub|
|VcdV ∗

cb|
=

√
	2 + η2 = (1 − λ2

2
)
1
λ

∣∣∣∣
Vub
Vcb

∣∣∣∣ , (14)

Rt ≡
|VtdV ∗

tb|
|VcdV ∗

cb|
=

√
(1 − 	)2 + η2 =

1
λ

∣∣∣∣
Vtd
Vcb

∣∣∣∣ . (15)

• The angles β and γ = δ of the unitarity triangle are related directly to the complex phases of the
CKM-elements Vtd and Vub, respectively, through

Vtd = |Vtd|e−iβ , Vub = |Vub|e−iγ . (16)

• The unitarity relation (10) can be rewritten as

Rbe
iγ +Rte

−iβ = 1 . (17)

• The angle α can be obtained through the relation

α+ β + γ = 180◦ (18)

expressing the unitarity of the CKM-matrix.

Formula (17) shows transparently that the knowledge of (Rt, β) allows to determine (Rb, γ) through [14]

Rb =
√

1 +R2
t − 2Rt cos β, cot γ =

1 −Rt cos β
Rt sin β

. (19)

Similarly, (Rt, β) can be expressed through (Rb, γ):

Rt =
√

1 +R2
b − 2Rb cos γ, cot β =

1 −Rb cos γ
Rb sin γ

. (20)

These formulae relate strategies (Rt, β) and (Rb, γ) for the determination of the unitarity triangle that
we will discuss in Chapter 6.

The triangle depicted in Fig. 1.1, together with |Vus| and |Vcb|, gives the full description of the
CKM matrix. Looking at the expressions forRb andRt, we observe that within the SM the measurements
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of four CP conserving decays sensitive to |Vus|, |Vub|, |Vcb| and |Vtd| can tell us whether CP violation
(η �= 0) is predicted in the SM. This fact is often used to determine the angles of the unitarity triangle
without the study of CP violating quantities.

Indeed, Rb and Rt determined in tree-level B decays and through B0
d − B0

d mixing respectively,
satisfy (see Chapters 3 and 4)

1 −Rb < Rt < 1 +Rb, (21)

and η is predicted to be non-zero on the basis of CP conserving transitions in the B-system alone without
any reference to CP violation discovered in KL → π+π− in 1964 [15]. Moreover one finds

η = ±
√
R2
b − 	2 , 	 =

1 +R2
b −R2

t

2
. (22)

Several expressions for 	 and η in terms of Rb, Rt, α, β and γ are collected in Chapter 6.

2.5. The special role of |Vus|, |Vub| and |Vcb| elements

What do we know about the CKM matrix and the unitarity triangle on the basis of tree level decays?
Here the semi-leptonic K and B decays play the decisive role. As discussed in detail in Chapters 2 and 3
the present situation can be summarized by

|Vus| = λ = 0.2240 ± 0.0036 |Vcb| = (41.5 ± 0.8) · 10−3, (23)

|Vub|
|Vcb|

= 0.086 ± 0.008, |Vub| = (35.7 ± 3.1) · 10−4 (24)

implying
A = 0.83 ± 0.02, Rb = 0.37 ± 0.04 . (25)

This tells us only that the apex A of the unitarity triangle lies in the band shown in Fig. 1.2. While this

Rb

0 0.5

-0.5

0

-0.5

0.5

ρ

η

_

_

Fig. 1.2: “Unitarity Clock”

information appears at first sight to be rather limited, it is very important for the following reason. As
|Vus|, |Vcb|, |Vub| and Rb are determined here from tree level decays, their values given above are to an
excellent accuracy independent of any new physics contributions. That is, they are universal fundamental
constants valid in any extension of the SM. Therefore their precise determination is of utmost importance.
To find where the apex A lies on the unitarity clock in Fig. 1.2 we have to look at other decays. Most
promising in this respect are the so-called loop induced decays and transitions and CP violating B decays
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which will be discussed in Chapters 4–6. They should allow us to answer the important question of
whether the Cabibbo-Kobayashi-Maskawa picture of CP violation is correct and more generally whether
the Standard Model offers a correct description of weak decays of hadrons. In the language of the
unitarity triangle the question is whether the various curves in the (	, η) plane extracted from different
decays and transitions using the SM formulae cross each other at a single point, as shown in Fig. 1.3, and
whether the angles (α, β, γ) in the resulting triangle agree with those extracted from CP asymmetries in
B decays and from CP conserving B decays.

0

0.5

1

1.5

-1 -0.5 0 0.5 1 1.5 2

K+ → π+ ν ν
_

B0 - B
−

 0

B → Xd ν ν
_

B → Xd l
+ l-

Bd → l+ l-

K0
L → π0 ν ν

_

K0
L → π0 e+ e-

ε,/ε

εK

|Vub|
|Vcb|

βγ
α

B0
d → J/ψ KS

0

ρ
_

η_

Fig. 1.3: The ideal Unitarity Triangle

Any inconsistencies in the (	, η) plane will then give us some hints about the physics beyond the
SM. One obvious inconsistency would be the violation of the constraint (21). Another signal of new
physics would be the inconsistency between the unitarity triangle constructed with the help of rare K
decays alone and the corresponding one obtained by means of B decays. Also (	, η) extracted from loop
induced processes and CP asymmetries lying outside the unitarity clock in Fig. 1.2 would be a clear
signal of new physics.

In this context the importance of precise measurements of |Vub| and |Vcb| should be again em-
phasised. Assuming that the SM with three generations and a unitary CKM matrix is a part of a bigger
theory, the apex of the unitarity triangle has to lie on the unitarity clock obtained from tree level decays.
That is, even if SM expressions for loop induced processes put (	, η) outside the unitarity clock, the cor-
responding expressions of the grander theory must include appropriate new contributions so that (	, η)
is shifted back to the band in Fig. 1.2. In the case of CP asymmetries, this could be achieved by realizing
that in the presence of new physics contributions the measured angles α, β and γ are not the true angles
of the unitarity triangle but sums of the true angles and new complex phases present in extensions of the
SM. Various possibilities will be discussed in the forthcoming CKM workshops. The better |Vub| and
|Vcb| are known, the thinner the band in Fig. 1.2 becomes, improving the selection of the correct theory.
Because the branching ratios for rare and CP violating decays depend sensitively on the parameter A,
precise knowledge of |Vcb| is very important.

In order for us to draw such thin curves as in Fig. 1.3, we require both experiments and theory to
be under control. Let us then briefly discuss the theoretical framework for weak decays.
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3. Theoretical framework

3.1. Operator Product Expansion

The present framework describing weak decays is based on the operator product expansion (OPE) that
allows short (μSD) and long distance (μLD) contributions to weak amplitudes to be separated, and on
renormalization group (RG) methods that allow us to sum large logarithms log μSD/μLD to all orders in
perturbation theory. A full exposition of these methods can be found in [16,17].

The OPE allows us to write the effective weak Hamiltonian for ΔF = 1 transitions as an expansion
in inverse powers of MW . The leading term is simply

Heff =
GF√

2

∑
i

V i
CKMCi(μ)Qi (26)

with an analogous expression for ΔF = 2 transitions. Here GF is the Fermi constant and Qi are the
relevant local operators, built out of quark, gluon, photon and lepton fields, which govern the decays
in question. The Cabibbo-Kobayashi-Maskawa factors ViCKM [1,2] and the Wilson coefficients Ci(μ)
describe the strength with which a given operator enters the Hamiltonian. The latter coefficients can be
considered as scale dependent couplings related to vertices Qi and as discussed below can be calculated
using perturbative methods, as long as μ is not too small. A well known example of Qi is the (V −A)⊗
(V −A) operator relevant for K0 − K0

mixing

Q(ΔS = 2) = sγμ(1 − γ5)d⊗ sγμ(1 − γ5)d. (27)

We will encounter other examples later on.

An amplitude for a decay of a given meson M = K,B, .. into a final state F = πνν, ππ, DK is
then simply given by

A(M → F ) = 〈F |Heff |M〉 =
GF√

2

∑
i

V i
CKMCi(μ)〈F |Qi(μ)|M〉, (28)

where 〈F |Qi(μ)|M〉 are the matrix elements of Qi between M and F , evaluated at the renormalization
scale μ. An analogous formula exists for particle-antiparticle mixing.

The essential virtue of the OPE is that it allows the problem of calculating the amplitude A(M →
F ) to be separated into two distinct parts: the short distance (perturbative) calculation of the coefficients
Ci(μ) and the long-distance (generally non-perturbative) calculation of the matrix elements 〈Qi(μ)〉.
The scale μ separates, roughly speaking, the physics contributions into short distance contributions con-
tained in Ci(μ) and the long distance contributions contained in 〈Qi(μ)〉. Thus Ci include the top quark
contributions and those from other heavy particles such as W-, Z-bosons and charged Higgs or super-
symmetric particles in the supersymmetric extensions of the SM. Consequently Ci(μ) depend generally
on mt and also on the masses of new particles if extensions of the SM are considered. This dependence
can be found by evaluating so-called box and penguin diagrams with full W-, Z-, top- and new parti-
cles exchanges and properly including short distance QCD effects. The latter govern the μ-dependence
of Ci(μ).

The value of μ can be chosen arbitrarily but the final result must be μ-independent. Therefore the
μ-dependence of Ci(μ) has to cancel the μ-dependence of 〈Qi(μ)〉. In other words it is a matter of choice
what exactly belongs to Ci(μ) and what to 〈Qi(μ)〉. This cancellation of the μ-dependence generally in-
volves several terms in the expansion in (28). The coefficients Ci(μ) depend also on the renormalization
scheme. This scheme dependence must also be cancelled by that of 〈Qi(μ)〉, so that physical amplitudes
are renormalization scheme independent. Again, as in the case of the μ-dependence, cancellation of the
renormalization scheme dependence generally involves several terms in the expansion (28).
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Although μ is in principle arbitrary, it is customary to choose μ to be of the order of the mass of the
decaying hadron. This is O(mb) and O(mc) for B decays and D decays respectively. For K decays the
typical choice is μ = O(1-2 GeV) rather than O(mK) that would be much too low for any perturbative
calculation of the couplings Ci. Now since μ � MW,Z , mt, large logarithms lnMW/μ compensate
in the evaluation of Ci(μ) the smallness of the QCD coupling constant αs, and terms αns (lnMW/μ)n,
αns (lnMW/μ)n−1 etc. have to be resummed to all orders in αs before a reliable result for Ci can be
obtained. This can be done very efficiently by renormalization group methods. The resulting renor-
malization group improved perturbative expansion for Ci(μ) in terms of the effective coupling constant
αs(μ) does not involve large logarithms. The related technical issues are discussed in detail in [16]
and [17].

Clearly, in order to calculate the amplitude A(M → F ) the matrix elements 〈Qi(μ)〉 have to be
evaluated. Since they involve long distance contributions one is forced in this case to use non-perturbative
methods such as lattice calculations, the 1/N expansion (where N is the number of colours), QCD sum
rules, hadronic sum rules, chiral perturbation theory and so on. In the case of certain B-meson decays,
the Heavy Quark Effective Theory (HQET) and Heavy Quark Expansion (HQE) also turn out to be useful
tools. These approaches will be described in Chapter 3. Needless to say, all these non-perturbative meth-
ods have some limitations. Consequently the dominant theoretical uncertainties in the decay amplitudes
reside in the matrix elements 〈Qi(μ)〉 and non-perturbative parameters present in HQET and HQE.

The fact that in many cases the matrix elements 〈Qi(μ)〉 cannot be reliably calculated at present
is very unfortunate. The main goal of the experimental studies of weak decays is the determination of
the CKM factors (VCKM) and the search for the physics beyond the SM. Without a reliable estimate of
〈Qi(μ)〉 these goals cannot be achieved unless these matrix elements can be determined experimentally
or removed from the final measurable quantities by taking suitable ratios and combinations of decay am-
plitudes or branching ratios. Classic examples are the extraction of the angle β from the CP asymmetry
in B → ψKS and the determination of the unitarity triangle by means of K → πνν decays. Flavour
symmetries like SU(2)F and SU(3)F relating various matrix elements can also be useful in this respect,
provided flavour breaking effects can be reliably calculated. However, the elimination of hadronic uncer-
tainties from measured quantities can be achieved rarely and often one has to face directly the calculation
of 〈Qi(μ)〉.

One of the outstanding issues in the calculation of 〈Qi(μ)〉 is the compatibility (matching) of
〈Qi(μ)〉 with Ci(μ). 〈Qi(μ)〉 must have the correct μ and renormalization scheme dependence to ensure
that physical results are μ- and scheme-independent. Non-perturbative methods often struggle with this
problem, but lattice calculations using non-perturbative matching techniques can meet this requirement.

Finally, we would like to emphasize that in addition to the hadronic uncertainties, any analysis of
weak decays, and in particular of rare decays, is sensitive to possible contributions from physics beyond
the SM. Even if the latter are not discussed in this document and will be the subject of future workshops, it
is instructive to describe how new physics would enter into the formula (28). This can be done efficiently
by using the master formula for weak decay amplitudes given in [18]. It follows from the OPE and RG,
in particular from (28), but is more useful for phenomenological applications than the formal expressions
given above. This formula incorporates SM contributions but also applies to any extension of the SM:

A(Decay) =
∑
i

Biη
i
QCDV

i
CKM[F iSM + F iNew] +

∑
k

BNew
k [ηkQCD]NewV k

New[GkNew] . (29)

The non-perturbative parameters Bi represent the matrix elements 〈Qi(μ)〉 of local operators present in

the SM. For instance in the case of K0 − K0
mixing, the matrix element of the operator Q(ΔS = 2) in

(27) is represented by the parameter B̂K . An explicit expression is given in Chapter 4. There are other
non-perturbative parameters in the SM that represent matrix elements of operators Qi with different
colour and Dirac structures. Explicit expressions for these operators and their matrix elements will be
given in later chapters.
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The objects ηiQCD are the QCD factors resulting from RG-analysis of the corresponding operators.
They summarise the contributions from scales mb ≤ μ ≤ mt and 1-2 GeV≤ μ ≤ mt in the case of
B and K decays, respectively. Finally, FiSM stand for the so-called Inami-Lim functions [19] that result
from the calculations of various box and penguin diagrams. They depend on the top-quark mass. ViCKM

are the CKM-factors we want to determine.

New physics can contribute to our master formula in two ways. First, it can modify the impor-
tance of a given operator, already relevant in the SM, through a new short distance function FiNew that
depends on new parameters in extensions of the SM, such as the masses of charginos, squarks, and
charged Higgs particles, or the value of tan β = v2/v1, in the Minimal Supersymmetric Standard Model
(MSSM). These new particles enter the new box and penguin diagrams. Second, in more complicated
extensions of the SM new operators (Dirac structures) that are either absent or very strongly suppressed
in the SM, can become important. Their contributions are described by the second sum in (29) with
BNew
k , [ηkQCD]New, V k

New, G
k
New the analogues of the corresponding objects in the first sum of the master

formula. The V kNew show explicitly that the second sum describes generally new sources of flavour and
CP violation beyond the CKM matrix. This sum may, however, also include contributions governed by
the CKM matrix that are strongly suppressed in the SM but become important in some extensions of the
SM. A typical example is the enhancement of the operators with Dirac structures (V − A) ⊗ (V + A),
(S − P ) ⊗ (S ± P ) and σμν(S − P ) ⊗ σμν(S − P ) contributing to K0-K0

and B0
d,s-B

0
d,s mixings in

the MSSM with large tan β and in supersymmetric extensions with new flavour violation. The latter
may arise from the misalignment of quark and squark mass matrices. The most recent compilation of
references to existing next-to-leading (NLO) calculations of ηiQCD and [ηkQCD]New can be found in [20].

The new functions F iNew and GkNew as well as the factors V kNew may depend on new CP violating
phases, making the phenomenological analysis considerably more complicated. On the other hand, in
the simplest class of the extensions of the SM where the flavour mixing is still entirely given by the CKM
matrix and only the SM low energy operators are relevant [21] the formula (29) simplifies to

A(Decay) =
∑
i

Biη
i
QCDV

i
CKM[F iSM + F iNew] (30)

with F iSM and F iNew real. This scenario is often called Minimal Flavour Violation (MFV) [21], although
one should be mindful that for some authors MFV means a more general framework in which also new
operators can give significant contributions [22].

The simplicity of (30) allows to eliminate the new physics contributions by taking suitable ratios
of various quantities, so that the CKM matrix can be determined in this class of models without any
new physics uncertainties. This implies a universal unitarity triangle [21] and a number of relations
between various quantities that are universal in this class of models [23]. Violation of these relations
would indicate the relevance of new low energy operators and/or the presence of new sources of flavour
violation. In order to see possible violations of these relations and consequently the signals of new
sources of flavour violation it is essential to have a very precise determination of the CKM parameters.
We hope that the material presented in this document is a relevant step towards this goal.

3.2. Importance of lattice QCD

Lattice calculations of the matrix elements 〈Qi(μ)〉 are based on a first-principles evaluation of the path
integral for QCD on a discrete space-time lattice. They have the advantage of being systematically
improvable to approach continuum QCD results with no additional parameters beyond those of QCD
itself. Indeed, lattice QCD can be applied to determine these QCD parameters — the quark masses and
the coupling constant. The most notable application of lattice QCD for CKM-fitting is to the mixing
parameters for neutral kaons (BK ) and neutral B-mesons (FB and BB). Uncertainties in these quantities
are now dominant in CKM fits. Lattice calculations are also important for determining form factors used
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to extract |Vub| from exclusive semileptonic B decays to light pseudoscalars or vectors, and for providing
the endpoint form factor normalization needed to extract |Vcb| from semileptonic B to D(∗) decays. With
the advent of CLEO-c, the current round of lattice calculations for charm physics will be tested at the
few-percent level. The charm calculations share several features with their analogues in the b sector, so
a favourable outcome would bolster confidence in lattice techniques.

In recent years much effort has been devoted to non-perturbative techniques for improvement,
to reduce discretization errors, and for renormalization and matching, to relate lattice results either di-
rectly to physical quantities or to quantities defined in some continuum renormalization scheme. With
non-perturbative matching, the μ- and scheme-dependence of the matrix elements 〈Qi(μ)〉 is correctly
matched with that of the Ci(μ).

The outstanding issue for the lattice is the inclusion of dynamical quark effects or unquenching.
Many phenomenologically important quantities have been or are being calculated with dynamical quarks.
However the dynamical quarks cannot be simulated with light enough masses to describe physical up
and down quarks (the state-of-the-art is a mass of about ms/5). Likewise, the valence quarks, whose
propagators are used to evaluate matrix elements, also cannot be simulated with physical up and down
masses. The combined extrapolations (chiral extrapolations) of both kinds of masses to realistic values
are a major current focus of activity.

For heavy quarks the issue is to avoid discretization errors proportional to positive powers of
mQ a where mQ is the mass of the heavy quark and a the lattice spacing. Since present-day inverse
lattice spacings are in the range 2GeV < a−1 < 4GeV or so, mb a is intolerably large for the b-
quark. One approach is to restrict calculations to masses around that of charm and extrapolate to the
b-quark regime guided by HQET, but the extrapolation can be significant and may amplify the mQ a
errors, unless a continuum limit is taken first. In the last few years much has been learned about how to
disentangle heavy quark mass-dependence and discretization effects using an effective theory approach
where QCD is expanded in powers of μ/mQ, where μ denotes other dimensionful scales in the problem,
and discretization errors are proportional to powers of μa (so that μ should be smaller than mQ and
a−1). This has been pioneered by the Fermilab group and implemented by them and others in numerical
simulations for B-meson decay constants and semileptonic decay form factors. Lattice discretizations of
HQET and NRQCD are also effective theory approaches which are used in simulations. In the effective
theories one has to ensure that corrections in powers of 1/mQ are calculated accurately, which involves
issues of renormalization and the proliferation of terms as the power of 1/mQ increases. By combining
lattice HQET with direct simulations around the charm mass, the b-quark can be reached by interpolation,
but this makes sense only if the continuum limit is taken for both calculations first. Currently, results
obtained with different approaches to treating heavy quarks agree fairly well for b-physics.

An important theoretical advance in 1998 was the realization that full chiral symmetry could be
achieved at finite lattice spacing, allowing the continuum and chiral limits to be separated. Lattice ac-
tions incorporating chiral symmetry are being used notably in calculations for kaon physics, including
BK , the ΔI = 1/2 rule and ε′/ε, where the symmetry can be used to simplify the structure of the
calculation. However, these calculations are currently quenched and have not yet had much impact on
phenomenology.

4. Experimental aspects of B physics and the CKM matrix elements

In this report we will review B decay properties relevant for the measurement of the |Vub| and |Vcb| CKM

matrix elements, and B0 − B0
oscillations which constrain |Vtd| and |Vts|, allowing to test the Standard

Model through the CKM Unitarity Triangle. However, many additional measurements of B mesons
properties (masses, branching fractions, lifetimes etc.) are necessary to constrain Heavy Quark theories
to enable a precise extraction of the CKM parameters. These measurements are also important because
they propagate to the CKM-related measurements as systematic errors.

11



4.1. B physics at colliders

In the last 15 years — before the start of asymmetric B-factories — the main contributors to B hadron
studies have been symmetric e+e− colliders operating at the Υ(4S) and at the Z0 resonance, and also
the Tevatron pp collider (see Table 1.1).

Experiments Number of bb events Environment Characteristics

(× 106)

ALEPH, DELPHI ∼ 1 per expt. Z0 decays back-to-back 45 GeV b-jets

OPAL, L3 (σbb ∼ 6nb) all B hadrons produced

SLD ∼ 0.1 Z0 decays back-to-back 45 GeV b-jets

(σbb ∼ 6nb) all B hadrons produced

beam polarized

ARGUS ∼ 0.2 Υ(4S) decays mesons produced at rest

(σbb ∼ 1.2nb) B0
d and B+

CLEO ∼ 9 Υ(4S) decays mesons produced at rest

(σbb ∼ 1.2nb) B0
d and B+

CDF ∼ several pp collisions events triggered with leptons
√
s = 1.8 TeV all B hadrons produced

Table 1.1: Summary of the recorded statistics for experiments at different facilities and their main characteristics.

At the Υ(4S) peak, B+B− and B0
d B0

d meson pairs are produced on top of a continuum back-
ground, with a cross section of about 1.2 nb. At the energy used, only B± and B0

d mesons are produced,
almost at rest, with no additional hadrons. The constraint that the energy taken by each B meson is equal
to the beam energy is useful for several measurements which rely on kinematic reconstruction.

At the Z0 resonance the production cross section is ∼ 6 nb, about five times larger than at the
Υ(4S), and the fraction of bb in hadronic events, is ∼ 22%, very similar to that obtained at the Υ(4S).
Further, at the Z0 peak B0

s mesons and B baryons are produced in addition to B± and Bd mesons. B
hadrons carry, on average, about 70% of the available beam energy, resulting in a significant boost which
confines their decay products within well-separated jets. The resulting flight distance of a B hadron,
L = γβcτ , is on average about 3 mm at these energies. Since the mean charged multiplicity in B decays
is about five, it is possible to tag B hadrons using a lifetime tag based on the track topology. Additional
hadrons are created in the fragmentation process which can be distinguished from the heavy hadron
decay products using similar procedures.

Finally, at pp colliders b quarks are produced predominantly through gluon-gluon fusion. At the
Tevatron energy of

√
s = 1.8 TeV the b-production cross section is observed to be around 100 μb, which

is huge. As the B decay products are contained in events with a much greater multiplicity than at the Z0

pole and as backgrounds are important, only specific channels, such as fully reconstructed final states,
can be studied with a favourable signal-to-background ratio.

Most of the precision measurements in B physics performed since SLC/LEP startup have been
made possible by the development of high resolution Vertex Detectors, based on Silicon sensors. As
the average flight distance of the b quark is of the order of 3 mm at Z0 energies and as the typical
displacement of secondary charged particles from the event primary vertex is of the order of 200 μm,
secondary particles can be identified and the decay topology of short-lived B hadrons can be measured.
The typical resolution of silicon detectors varies between a few and a few tens of microns depending
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on particle momentum and on detector geometry. A typical LEP bb event is shown in Fig. 1.4. In spite
of a smaller Z0 data set, the SLD experiment has proven to be highly competitive, due to a superior
CCD-based vertex detector, located very close to the interaction point.
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Fig. 1.4: A bb event at LEP recorded by the ALEPH detector. The event consists of two jets containing the decay products of the

two B hadrons and other particles. In one hemisphere a B
0
s decays semileptonically : B

0
s → D+

s e−νeX, D+
s → K+K−π+

(tertiary vertex).

The physics output from the data taken on the Z0 resonance at LEP and SLC has continued to
improve, with a better understanding of the detector response and new analysis techniques. Better-
performing statistical treatments of the information have been developed. As a result, the accuracy of
several measurements and the reach of other analyses have been considerably enhanced.

In 1984, six years after the discovery of the bb bound state Υ, the first experimental evidence for
the existence of Bd and B+ mesons was obtained by ARGUS at DORIS and CLEO at CESR and the B
mesons joined the other known hadrons in the Review of Particle Physics listings. By the time LEP and
SLC produced their first collisions in 1989, the inclusive b lifetime was known with about 20% accuracy
from measurements at PEP and PETRA. The relatively long b lifetime provided a first indication for
the smallness of the |Vcb| matrix element. Branching fractions of Bd and B+ meson decays with values
larger than about few 10−3 had been measured.

In the early 90’s the B sector landscape was enriched by the observation of new states at LEP.
Evidence of the Λb baryon was obtained in the Λb → Λ�νX decay mode [24]. This was followed by
the observations of the B0

s meson, in the decay B0
s → D+

s �
−ν�, in 1992 and of the Ξb baryon in 1994.

These analyses used semileptonic decays with a relatively large branching ratio of the order of a few % in
combination with a clean exclusive final state (Ds , Λ or Ξ). Using right and wrong sign combinations,
the background could be controlled and measured using the data. Selection of those signals is shown
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d

and B0
s hadrons, respectively. The bottom right figure shows the possibility of distinguishing charged from neutral B mesons

based on inclusive techniques.

in Fig. 1.5. The orbitally excited B hadrons (L = 1) (B∗∗) [25] were also found and studied starting
in 1994. These analyses were mostly based on partial reconstruction, profiting from the characteristic
decay topology, and estimated the backgrounds relying to a large extent on the data themselves.

In parallel with studies on B spectroscopy, inclusive and individual B0
d, B+, B0

s and b-baryon ex-
clusive lifetimes were measured at LEP, SLD and CDF with increasing accuracies (as shown in Fig. 1.6)
down to the present final precision, of a few percent.

Rare decays have been traditionally a hunting ground for the CLEO experiment, which benefited
from the large statistics recorded at CESR. With about 9M BB meson pairs registered, B decay modes
with branching fractions down to 10−5 could be observed. The first signal for the loop-mediated B →
K∗γ decay was obtained in 1993. Evidence for charmless decay of B mesons followed [26] (see Fig. 1.7).
At LEP, where the data sets were smaller, topological decay reconstruction methods and the efficient
separation of decay products from the two heavy mesons allowed access to some transitions having
branching fractions of order 10−4–10−5 [27].
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lifetime, while the vertical lines indicate the end of LEP data taking at the Z0 resonance.

A value close to 10% for the semileptonic (s.l.) b branching fraction was not expected by theorists
in the early 90’s. More recent theoretical work suggests measuring both the s.l. branching fraction
and the number of charmed particles in B decays. In fact, a s.l. branching ratio of 10% favours a low
value of the charm mass and a value for the B branching ratio into double charm b → ccs of about
20%. Much experimental effort has been made in recent years by the CLEO and LEP collaborations,
allowing a coherent picture to emerge. The interplay among data analyses and phenomenology has
promoted these studies to the domain of precision physics. The s.l. B branching fraction is presently
known with about 2% accuracy and much data has become available for fully inclusive, semi-inclusive
and exclusive decays. Inclusive and exclusive s.l. decays allow the extraction of |Vcb| and |Vub| with
largely independent sources of uncertainties and underlying assumptions. The inclusive method is based
on the measured inclusive s.l. widths for b → Xc,u�ν� interpreted on the basis of the Operator Product

Expansion predictions. The exclusive method uses processes such as B0
d → D∗+�−ν and B− → ρ�ν and

relies on Heavy Quark Effective Theory and form factor determinations. The requirements of precision
tests of the unitarity triangle are now setting objectives for further improving our understanding of these
decays and their application in the extraction of the CKM parameters.

The second major source of information on the magnitude of the relevant elements in the CKM
matrix comes from oscillations of neutral B mesons. A B0 meson is expected to oscillate into a B0

with a probability given by: P
B0

q→B0
q(B

0
q)

= 1
2e

−t/τq (1 ± cos ΔMqt) where ΔMq is proportional to the
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magnitude of the Vtq element squared. The first signals for Bd mixing were obtained in 1987 by the
ARGUS [28] and CLEO [29] experiments. The UA1 experiment at the CERN SppS collider showed
evidence for mixing due to combined contributions from both B0

d and B0
s mesons [30].

At energies around the Z0 peak, where both B0
d and B0

s mesons are produced with fractions fBd

and fBs , the mixing parameter χ is given by χ = fBd
χd + fBsχs (where χd(s) is the probability to

observe a B0
d(s) meson starting from a B0

d(s) meson and fBd(s)
is the B0

d(s) production fraction). Owing

to the fast B0
s oscillations, the χs value is close to 0.5 and becomes very insensitive to ΔMs. Therefore

even a very precise measurement of χs does not provide a determination of |Vts|.
It became clear that only the observation of time evolution of B0 −B0

oscillations, for Bd and Bs
mesons separately, would allow measurement of ΔMd and ΔMs. Time dependent B0

d − B0
d oscillation

was first observed [31] in 1993. The precision of the measurement of the Bd oscillation frequency has
significantly improved in recent years. Results have been extracted from the combination of more than
thirty-five analyses which use different event samples from the LEP/SLD/CDF experiments. At present,
new results from the B-factories are also being included. The evolution of the combined results for the
ΔMd frequency measurement over the years is shown in Fig. 1.8, reaching, before the contribution from
the B-factories, an accuracy of ∼ 2.5%. New, precise measurements performed at the B-factories further
improved this precision by a factor of 2.

As the B0
s meson is expected to oscillate more than 20 times faster than the B0

d meson (∼ 1/λ2)

and as Bs mesons are less abundantly produced, the search for B0
s − B0

s oscillations is much more
difficult. To observe these fast oscillations, excellent resolution on the proper decay time is mandatory.
Improvements in the ΔMs sensitivity are depicted in Fig. 1.9. As no signal for B0

s − B0
s oscillations has

been observed so far, the present limit implies that B0
s mesons oscillate at least 30 times faster than B0

d

mesons. The impact of such a limit on the determination of the unitarity triangle parameters is already
significant.

5. Heavy flavour averages

5.1. Motivation and history

Averaging activities have played an important role in the LEP community and several different working
groups were formed to address the issue of combining LEP results. The first working group to appear was
the LEP Electroweak WG with members from ALEPH, DELPHI, L3 and OPAL, soon followed in 1994
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by the b-hadron lifetime WG. They both rather quickly felt the need to enlarge their scope, and provide
world averages rather than just LEP averages, so these groups have grown to include also representatives
from the SLD collaboration, as well as from the CDF collaboration in the case of the lifetime WG. The
B oscillations WG was formed in 1996 (once the need for combining B mixing results arose), and was
also joined by SLD and CDF a year later.

In fall 1998, the four LEP collaborations decided to create the Heavy Flavour Steering Group
(HFS), with members from the ALEPH, CDF, DELPHI, L3, OPAL and SLD collaborations. Within the
scope of heavy flavour physics — in particular beauty physics — its mandate was to identify new areas
where combined results are useful, and coordinate the averaging activities.

The HFS quickly spawned three new working groups on ΔΓs, |Vcb| and |Vub|, and also supported
or initiated activities in other areas like charm-counting in b-hadron decays, determination of the b-
fragmentation function, and extraction of the CKM parameters. The coordination of all these activities
resulted in better communication between experimenters and theorists and, as a product, a more coherent
set of averages in b physics updated on a regular basis [32]. In order to provide world averages, con-
tacts have also been established with representatives of other collaborations (CLEO, and more recently
BABAR and BELLE).

The results of the b-lifetime WG were used by the Particle Data Group from 1996 onwards; later
also averages from the B oscillation and b-fractions (1998), the |Vcb| and the |Vub| Working Groups
(2000) were also included. During this Workshop an Open Forum was organised for an orderly hand-
over of the responsibility for heavy flavour physics world averages. This forum was chaired by HFS and
PDG members. As a result, in the future, after the HFS group disbands, these averaging activities will be
continued in the framework of a new Heavy Flavour Averaging Group [33], in which the Particle Data
Group is also taking part.

In 2000 and 2001, the HFS group has produced reports [34] containing combined results on b-
hadron production rates and decay properties from the ALEPH, CDF-1, DELPHI, L3, OPAL and SLD
experiments. A final report is expected soon after all major results from these experiments have been
published. In the remainder of this chapter, we will give some information on the combination procedures
used for extracting averages for the b-hadron lifetimes, oscillations parameters and b-hadron fractions,
|Vcb| and |Vub|. More details as well as technical aspects can be found in [34].

5.2. Averages of b-hadron lifetimes

Methods for combining b-hadron lifetime results were established in 1994, following a study [35] trig-
gered by a rather puzzling fact: the world averages for the B0

s lifetime quoted by independent reviewers
at the 1994 Winter Conferences differed significantly, although they were based essentially on the same
data. Different combination methods have been developed [36] in the b-hadron lifetime WG to take into
account the underlying exponential behaviour of the proper time distribution, as well as handling the
resulting asymmetric uncertainties and biases in low statistics measurements.

The b-hadron lifetime WG provides the following averages: the B+ lifetime, the mean B0 life-
time, the B+/B0 lifetime ratio, the mean B0

s lifetime, the b-baryon lifetime (averaged over all b-baryon
species), the Λ0

b lifetime, the Ξb lifetime (averaged over the two isospin states), and various average b-
hadron lifetimes (e.g. for an unbiased mixture of weakly decaying b-hadrons). These averages take into
account all known systematic correlations, which are most important for the inclusive and semi-inclusive
analyses: physics backgrounds (e.g. B → D∗∗�ν branching ratios), bias in momentum estimates (from
b fragmentation, decay models and multiplicities, branching ratios of b- and c-hadrons, b-baryon polar-
ization, etc.), and the detector resolution. For the B+ and B0 lifetimes, the fractions of weakly-decaying
b-hadrons determined by the B oscillation WG (see Sec. 5.4. below) are used as an input to the averaging
procedure. The b-lifetime averages are used as input by the other working groups for the determination
of other b-physics averages.
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5.3. Averages of B oscillation frequencies

The main motivation for the creation of the B oscillation WG was to combine the different lower limits
obtained on ΔMs. In 1995, the ALEPH collaboration proposed the so-called amplitude method [37],
as a way to present the ΔMs results in a form which allowed them to be combined in a straightforward
manner. Each analysis provides the measured value of the Bs oscillation amplitude as a function of the
oscillation frequency, normalized in such a way that a value of 1 is expected for a frequency equal to
ΔMs, and 0 for a frequency much below ΔMs. A limit on ΔMs can be set by excluding a value of
1 in a certain frequency range, and the results can be combined by averaging the measurements of this
amplitude at each test frequency, using standard techniques.

The B oscillation working group played a major role in promoting this method, which was even-
tually adopted by each experiment studying Bs oscillations. As a result, all published papers on ΔMs

since 1997 give the amplitude spectrum, i.e. the Bs oscillation amplitude as a function of the oscillation
frequency. As the individual ΔMs results are limited by the available statistics (rather than by system-
atics), the overall sensitivity to ΔMs is greatly increased by performing a combination of the results of
the ALEPH, CDF, DELPHI, OPAL and SLD experiments.

It should be noted that the sensitivity of the inclusive analyses depends on the assumed value for
the fraction of Bs mesons in a sample of weakly decaying b-hadrons. This is taken into account in
the combination procedure, which is performed assuming the latest average value for this fraction (see
Sec. 5.4. below).

The B oscillation working group also combines the many measurements of ΔMd: in February
2002, 34 measurements were available from 8 different experiments. Several correlated systematic (and
statistical) uncertainties are taken into account. Systematic uncertainties come from two main sources:
experimental effects (which may be correlated amongst analyses from the same experiment), and im-
perfect knowledge of physics parameters like the b-hadron lifetimes and b-hadron production fractions
which are common to all analyses. Since different individual results are assuming different values for
the physics parameters, all measurements are re-adjusted to a common (and recent) set of average values
for these parameters before being combined.

The average ΔMd value is also combined with the B0 lifetime to get a value for xd, and with the
time-integrated measurements of χd performed at ARGUS and CLEO, to get world averages of ΔMd

and χd.

5.4. Averages of b-hadron fractions in b-jets

Knowledge of the fractions of the different hadron species in an unbiased sample of weakly-decaying
b hadrons produced in high-energy b jets is important for many b physics measurements. These frac-
tions are rather poorly known from direct branching ratio measurements: for example the fraction of Bs
mesons is only known with a ∼ 25% uncertainty. However, mixing measurements allow this uncertainty
to be reduced significantly, roughly by a factor 2.

Because these fractions play an important role in time-dependent mixing analyses, the B oscilla-
tion WG was also committed to provide b-hadron fractions (as well as a complete covariance matrix)
that incorporate all the available information. A procedure was developed by this group, in which the
determinations from direct measurements are combined with the world average of χd and the value of χ
(the mixing probability averaged over all b-hadron species) provided by the LEP electroweak WG, under
the assumption that χs = 1/2 (as is known from the limit on ΔMs).

The b-hadron fractions are used as input for the ΔMd combination procedure. Because the final
fractions can only be known once the average ΔMd is computed (and vice versa), the calculation of the
b-hadron fractions and the ΔMd averaging are part of the same fitting procedure, in such a way that the
final results form a consistent set. The fractions are also used as input for the ΔMs combination, for the
lifetime averages, and for the |Vcb| average.
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5.5. Averages of |Vcb| and |Vub| elements

The |Vcb| working group started to combine LEP results and has by now evolved in a worldwide effort
including results from the collaborations BABAR, BELLE, CDF, and CLEO. Only the case of exclusive
b → c transitions presents specific problems. To combine the different results, central values and un-
certainties on F(1)|Vcb| and ρ2 have been rescaled to a common set of input parameters and ranges of
values. The F(1)|Vcb| central value has then been extracted using the parametrization of Ref. [38], which
is based on the experimental determination of the R1 and R2 vector and axial form factors. LEP results
have been rescaled accordingly. In the averaging, the correlations between the different measurements
and that between F(1)|Vcb| and ρ2 have been taken into account. The working group also provides the
combination of inclusive and exclusive determinations.

In order to average the inclusive charmless semileptonic branching fraction results from the LEP
experiments, uncorrelated and correlated systematic errors are carefully examined. The correlated sys-
tematical errors come from the description of background b → c and from the theoretical modelling of
signal b → u transitions. They are assumed to be fully correlated between the different measurements.
The four measurements of BR(b→ Xu�ν) have been averaged using the Best Linear Unbiased Estimate
technique [39].

From this average branching fraction, using as an input the average b lifetime value, the probability
density function for |Vub| has been derived. To obtain this function all the errors have been convoluted
assuming that they are Gaussian in BR(b → Xu�ν) with the exception of the HQE theory error which
is assumed to be Gaussian in |Vub|. The negligible part of this function in the negative unphysical |Vub|
region is discarded and the probability density function renormalised accordingly. The median of this
function has been chosen as the best estimate of the |Vub| value and the corresponding errors are obtained
from the probability density function.

6. Outline

This document is organized as follows:

Chapters 2 and 3 are dedicated to the determination of the elements Vud, Vus, Vcb and Vub by
means of tree level decays. In Chapter 2 we summarize the present status of the elements Vud and Vus.
In Chapter 3 we discuss in detail the experimental and theoretical issues related to the determination of
Vcb and Vub from semileptonic inclusive and exclusive B decays and we discuss status and perspectives
for B0-B0

lifetime differences and for the ratios of the lifetime of B hadrons.

In Chapter 4 we consider the determination of the elements |Vts| and |Vtd|, or equivalently of 	, η
by means of K0 − K0

and B0
d,s − B0

d,s mixings. The first part of this chapter recalls the formalism for
εK and the mass differences ΔMd and ΔMs. Subsequently, the present status of the non-perturbative

calculations of B̂K ,
√
B̂Bd

FBd
,
√
B̂BsFBs , and ξ is reviewed. The final part of this chapter deals with

the measurements of B0
d,s − B0

d,s oscillations, parameterized by the mass differences ΔMd,s.

In Chapter 5 we describe two different statistical methods for the analysis of the unitarity triangle:
the Bayesian approach and the frequentist method. Subsequently, we compare the results obtained in the
two approaches, using in both cases the same inputs from Chapters 2-4. We also investigate the impact
of theoretical uncertainties on the CKM fits.

Chapter 6 deals with topics that will be the focus of future CKM workshops. In this respect it
differs significantly from the previous chapters and consists of self-contained separate contributions by
different authors. After a general discussion of future strategies for the determination of the Unitarity
Triangle, a few possibilities for the determination of its angles α, β and γ in B decays are reviewed. The
potential of radiative and rare leptonic B decays and of K → πνν for the CKM determination is also
considered.

Finally, Chapter 7 has a summary of the main results of this workshop and the conclusion.
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[21] A.J. Buras, P. Gambino, M. Gorbahn, S. Jäger and L. Silvestrini, Phys. Lett. B 500 (2001) 161.
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