
 1

Available on CMS information server CMS NOTE 2003/013

May 30, 2003

Resource Monitoring Tool for CMS production

A. Osman1
PINSTECH, Islamabad, Pakistan

T. Wildish1
Princeton University, Princeton, USA

I. Willers1,
CMS, CERN, Geneva, Switzerland.

Abstract
A monitoring tool is described which not only tracks and recognises errors but also
works together with a management system that is responsible for resource allocation.
In cluster/grid computing, the resources of all accessible computers are at the disposal
of end users. With that much power at hand, the responsibility of the software
managing these resources also increases. The better utilization of resources means that
a monitoring system should make the collected data persistent, so that the
management system has up-to-date information but also has a meaningful historical
record. This database can then be consulted for finding the best available resources in
a given scenario, and can also be used for understanding historical trends. The
Resource Monitoring Tool, RMT, is such a tool, which caters for these needs. Its
framework is designed in such a way that its potential can be enhanced easily by
adding more modules.

1Working at CMS-CERN, Geneva, Switzerland

 2

Table of Contents

ABSTRACT ... 1

RESOURCE MONITORING TOOL FOR CMS PRODUCTION 3

1. INTRODUCTION ... 3

2. ARCHITECTURAL OVERVIEW ... 3

3. AGENTRC OPERATIONS .. 6

4. FORMAT OF DATA MESSAGES... 6

5. AVOIDING DEADLOCK... 7

6. HEARTBEAT MONITORING .. 8

7. SECURITY ISSUES.. 8

8. DATA PERSISTENCE.. 9

9. DIFFERENT TECHNIQUES FOR LAUNCHING AGENTS......................... 11

10. CONCLUSION .. 12

REFERENCES .. 13

RELEVANT WEB SITES... 13

ACKNOWLEDGEMENTS... 14

FIGURES TABLE

Figure 1: Resource Monitor Architecture... 4
Figure 2: Modules Spawning and Data Collection ... 5
Figure 3: Heartbeat Status.. 6
Figure 4: Working of AgentRC.. 7
Figure 5: Heartbeat Monitoring.. 8
Figure 6: Schema for RMT database.. 9
Figure 7: Web site for displaying monitoring data.. 10
Figure 8: Plot of historic data for CPU Load .. 11

 3

Resource Monitoring Tool for CMS production

1. Introduction

CERN/CMS is a collaboration of many member states. Scientists and engineers from
many institutes participate in the experiments being performed at CERN. Its structure
naturally fits the model of distributed computing. Data being generated from the
experiment and moved from one centre to another will be in Petabytes per year,
unprecedented in the history of computer science. Different tasks are being performed
in parallel: simulation, reconstruction, scheduled and unscheduled analysis. Every
physicist should have access rights to use this data and transparent access to dynamic
resources. As a result, this data will be migrated to different centers, analyzed and
results thus obtained will be exchanged among different regional centers located in
every corner of the world.

Distributed computing requires a monitoring tool, which keeps a watch on the
resource utilization of the nodes participating in the cluster and keeps track of the
resource utilization of these machines. It should attempt to predict any kind of
problem occurring on any machine and it should be able to track the trend analysis.
The data thus obtained can be utilized for optimal use of the Resources.

This is a short note on the architectural and implementation view of the package.
More details are available in User Guide (which will become available from
https://savannah.cern.ch/projects/octopus).

2. Architectural Overview

The Resource Monitoring Tool (RMT) uses a Manager/Agent strategy. The
Manager/Agent model is similar to the Client/Server model; only in this case Agents
are distributed on every client machine that participates in the Farm and whose
resources require monitoring. The Manager program is executed on a central machine,
which obtains the data sent by these agents, stores them in database and displays the
results on the central control machine. These agents are also residing on the devices
used for network communications. Normally, these devices support SNMP (Simple
Network Management Tool) protocol [1] and their agents are built-in by the
manufacturer. Snmpget and snmpwalk utilities can be used to get information from
these devices. These SNMP agents are also capable of generating traps and
notifications in case of occurrence of predefined events. The definition of these events
can be tailored in the configuration files available with the SNMP installation.

SNMP is a good example of a protocol used for resource monitoring. This protocol is
used as the basis for collecting resource information from nodes participating in a
cluster. Unfortunately, SNMP daemons require root access for their installation, and
some sites prefer not to install it for security reasons. On the other hand there are
several parameters, which a system manager wants to watch on his daily experience
basis. It requires a quick augmentation of package in an easy way. This tool is
developed to cater for these needs. It uses SNMP as well as custom made modules to
achieve such goals. A new term Remote Control Agent is coined to cater for this
aspect of the monitoring needs. Figure 1 depicts the overall architecture showing how

 4

a Manager program launches and controls these agents remotely, as well as the
Errors/Information messages, and the Manager collects data sent by agents. The
people depicted are observing the statistics collected by the monitoring system
running on clusters A and B, via a standard web browser. The DataLogger is
recording the information via DataPersistence for later analysis. The ErrorLogger
records error situations. The repository for modules that are to be downloaded
contains net-stat, read-stat, etc.

ErrorLogger

Persistence

D ata

D ataLogger

net-stat
read-stat

count-am s-descriptor

M anager

>ClusterA gentStart.p l
G ive N am e of first Com p
G ive N o of com puters:
>ClusterA gentConfig .p l

D ataPersistence

Figure 1: Resource Monitor Architecture

AgentRC is a new term introduced to name the kind of agents which can be remotely
controlled and tuned, with the help of commands issued by a Manager. These are the
agents, which can be loaded on standard machines supporting standard platforms.
These Agents will work as the engine to execute a number of commands being issued
by the Manager. For collecting information these Agents will provide the environment
for downloading and executing a set of modules from a central repository. These
modules can be designed differently depending upon the environment of the node on
which it will run.

All the modules developed can be stored on a web site. The AgentRC command
“download module” can be issued by the Manager to download any particular module

in the directory where AgentRC runs, so that it becomes an add-on extension of the

Web-Site

 5

AgentRC package. The “add” command can spawn this module as a child process of

AgentRC. This process is pictorially depicted in Figure 2.

Figure 2: Modules Spawning and Data Collection

These modules can be written in any language, provided it generates data on

STDOUT. The data collected by the modules should be in key/value pair form with

the first two pairs mentioning the Date+Time associated with the data being generated

and the node name. This data is redirected to the AgentRC that spawned the module.

This agent wraps the data in SNMP datagrams and sends it over the network via a

UDP socket. These data can be collected by the DataLogger, which can display it on

the screen or can make it persistent by pipelining it to another script that stores it in a

MySQL database.

A web-based interface is available, which can query the database, retrieve the selected

data from the database and present it on the web in graphical, textual or postscript

form.

This interface also provides the status of all nodes being currently monitored in a

similar manner to Microsoft Network Neighborhood, as shown in Figure 3.

Normally, all the nodes on this screen are displayed in one color, but its color changes

if that node is malfunctioning due to any reason. If one clicks on any of these nodes,

detailed statistics are provided concerning the selected node.

Another feature of this package is to raise an Alarm if some monitoring parameters

are out of range. These alarms can be configured to automatically generate emails to

inform any interested party. The alarms are also stored in a database, from where they

can be queried via a web interface, using restricted SQL commands.

Module A
Module B

Module C

Module D

SNMP

AgentRC

 6

Figure 3: Heartbeat Status

3. AgentRC Operations

The AgentRC executes a loop, waiting to accept a command from the Manager on a
designated port. If it gets a command within a specified cycle-time, it tries to execute
it and again goes into the loop waiting for next command. But if no command is
received within a specified cycle-time, it executes the child modules one by one and
on finishing one cycle for every module execution, it again goes into a loop. The
working of an AgentRC is elaborated in Figure 4.

4. Format of Data Messages

All the messages generated by agents are in the generic Net-Logger form having a
“key=value” format. The DATE, HOST and EVNT fields are prefixed to every

message. Event name depends upon the type of information gathered. There are some

specific events, such as:

• ALARM

• START

• HEARTBEAT

• CONFIG

When these specific events are encountered the DataLogger.pl and DataPersistance.pl

programs take specific actions.

 7

Figure 4: Working of AgentRC

5. Avoiding Deadlock

The RMT package is developed in a hierarchical manner. First some basic commands
are defined, which are interpreted and executed by the AgentRC. Based on these
programs other scripts are written to perform a task. These programs are further
encapsulated within higher-level commands to obtain a higher-level abstraction.
Therefore, if any one code in this hierarchy becomes stuck, the rest of the dependent
programs also likely to be stuck. Checks are made at various stages to avoid such
deadlocks. The following measures are taken to avoid such a situation:

• The UDP protocol is used for communication, so that an agent should not wait

for the arrival of datagrams indefinitely
• Child processes are started by opening a pipeline using the open command
• Agents check their child processes periodically and report any deaths by email
• To deliver the data to a parent process, status bits are set by child processes,

which ensures that an agent will go and read the information only when there
is some data available to read

• Most of the jobs are submitted with a timeout. If a job is not executed and it is
timed out after specified time, it will be killed

• System commands wherever used are qualified by a timeout if one is available
• Stuck processes are killed after the completion of each cycle
• Those Agents which are stuck due to any reason are stopped and restarted

Yes No

Wait for command

Received
?

Execute
Modules

Execute
Command

Timeout
Command
 Received

 8

6. Heartbeat Monitoring

Each node of the cluster is running an AgentRC. A script defines this agent, which,
once started will be executed, in an infinite loop. It is nonetheless possible that things
can go badly enough wrong that the AgentRC gets stuck or dies. To keep watch over
these types of issues, the AgentRC will keep on sending its heartbeat, so that in case
of system failure, an alarm could be generated. DataLogger.pl keeps on accepting data
from each node and it builds a hash table recording the status of each node. If the
heartbeat coming from any node is not received within the specified time interval, the
node is considered to be malfunctioning and it is reflected in the heartbeat status. The
RMT package generates an alarm and takes action to rectify the problem. The scheme
used for monitoring the heartbeat and for generating alarms is shown in Figure 5.

Here every agent is supposed to send a signal to the DataLogger.pl program after the
cycle time has elapsed. A counter corresponding to every node is maintained in
DataLogger.pl. This counter will count-up on receiving the heartbeat cycle. Another,
master clock is maintained, which will decrement all the counters after every cycle-
time. If the value of any counter goes to negative, it implies that there is some
problem with that node or agent, so an alarm is generated.

Figure 5: Heartbeat Monitoring

7. Security Issues

AgentRC and all the modules spawned by it are executed under normal user privilege,
so there is no privilege command that can jeopardize the security of the system in
general. All the data being transmitted will use the SNMP protocol as wrapper, so it is
as secure as the SNMP protocol itself. Currently, we are supporting version 1 & 2c,

 Counter=7
SSyysstteemm
UUpp

AgentRC

 Counter=3
SSyysstteemm
UUpp

AgentRC

 Counter=5
SSyysstteemm
UUpp

AgentRC

 Counter=4
SSyysstteemm
UUpp

AgentRC

++ --

++ --

++ --

++ --

 9

and we plan to incorporate version 3 also.

Another issue, although not directly related to security issues, was that of termination
of jobs after expiration of the AFS token on the Manager machine. This issue was
solved by automatic renewal of the token periodically, by using the klog command.
This command requires a password as its argument. Hard coding this password as
plain text is clearly a security leak. To avoid this problem, a script is written which on
its execution, prompts for the password in no-echo mode and forks a child process.
This fork process pipes the klog command with the help of open command. It also
gets the password from its parent and executes klog in such a way that its password
cannot be detected. More details are available in User Guide.

8. Data Persistence

Any data being captured by the DataLogger.pl script can be displayed directly on the
screen, but it can also be made persistent by pipelining the data to the
DataPersistence.pl script, which will store it in a MySQL database. The schema used
for storing data is illustrated in Figure 6.

EVENTS

CPU

HOSTS

HOST-ID
HOST
MODE
STATUS

CPU

Disk0

Disk1

Eth0

IO_Disk0

IO_Disk1

Load Average

Disk1

Disk0

IO_Disk0

Load Average

CPU-
DAT
HOS
P_US
P_NIC
P_SY
P_IDL

CPU

EVENT-ID

DISK1-
DAT
HOS
P_TP
REA
WRIT

DISK0-
DAT
HOS
P_TP
REA
WRIT

LOAD-
DAT
HOS
P_1MI
P_5MI
P_15MI

IO-DISK0-
DAT
HOS
P_TP
P_KBS_RE
P_KBS_WRI

Figure 6: Schema for RMT database

In this schema, all the information is supposed to be retrieved event by event and

 10

there is a separate table for each event type. Every time a new event type is received, a
new table with that event name is created dynamically. All the fields of that record
correspond to field names that are used to create a schema and a new table is created
with that schema. Similarly, when a new computer is being added to the cluster, it is
automatically registered in the database.

When any user wants to query the database, the following web site can be used:

http://cmsdoc.cern.ch/cms/production/www/monitoring/RMT/Monitor.html

It displays an interface as shown in Figure 7:

Figure 7: Web site for displaying monitoring data

Internally, depending upon the option being selected by the user, a query is
dynamically formed and executed against the database. Results thus obtained are
submitted to GNUplot by pipelining, without creating a temporary file. It avoids the
problem of synchronization that could happen from the creation of temporary files by
many users simultaneously accessing the database. Using this interface one can select
the event, computer and the time range for observing the data. The output can be
displayed in Graphics, Text or Postscript form. A sample output is shown in Figure 8

Another point to be noted in this package is the need to switch “Off” the cache feature

of the HTML, which is set to “On” as default. With this feature “On”, it may display

the output of a previous query.

 11

Figure 8: Plot of historic data for CPU Load

9. Different techniques for launching agents

For remotely launching and control of agents on a farm’s nodes, one can use different

techniques, depending upon the environment available. For example, ssh, lsf, batch

mode etc.

This package can launch and execute the agents remotely by issuing ssh commands.

At CERN (and probably elsewhere) this command requires a valid AFS token

otherwise it does not work. Most of the commands based on ssh are hidden in scripts,

which are running periodically. These commands will fail as the token expires. To

solve this issue, one has to renew the token periodically to save it from expiry as

discussed in section 7. But this is not the only problem with ssh. On the first time a

node is contacted, it wants confirmation from the user in order to add the hostname in

its cache. During the execution of this package most of the ssh commands are issued

by different scripts, and there is no user to prompt. Again, if the key of remote

machines changes, ssh generates a warning message and asks for action. At that

moment, the entry of the remote machine is required to be removed from

~/.ssh/known_hosts file. These problems are tackled in this package and discussed in

the User Guide.

If you have the LSF batch processing system in your environment, you can use its

interactive commands for launching the agents. This has the advantage that all the

problems faced with ssh are solved. This package can use lsf interactive commands. It

can also be tailored to use other batch processing systems, PBS, FBS, and Condor etc.

 12

This package also supports running the agents in the grid environment. In case of the
grid, we decided to collect the data on a job-to-job basis. Rather than monitoring the
entire grid we choose to monitor only what we are doing on the grid, which makes
this very useful for experiment-specific use. This is in contrast to other grid-
monitoring packages that monitor machines with little regard to who is doing what on
them. This package was adopted in such a way that agents could be packaged along
with the job for submission to the grid. For using an agent from a batch job, network
connectivity is not guaranteed. So, data is not transmitted by UDP as in single-site
operation. Instead, the same data is collected in the form of a file, which is recovered
from the grid in the output sandbox and used to update the database afterwards. A
further improvement was made on the construction of modules, so that it can collect
data on choice and it should be possible to change the logic of alarm notifications
through the configuration file. It means you can tailor your collection of data and
notification on a job-to-job basis as per requirement. So, the agent’s configuration file

can be tailored to reflect the actual work performed by the job. For example, depletion

of free disk space can be watched for a job, which is hungrier for disk space, while

one can give more attention to CPU load or ignore network activity if it is a compute

bound job etc.

10. Conclusion

This package has been installed and tested on the local CMS production farm at

CERN. It has run on more than 400 computers for several days and performs well.

The scalability issue is mostly related to udp datagram losses. This can be tuned by

setting the cycle-time of acquiring the data by the modules, but also illustrates why

UDP was chosen. It is better to lose a monitoring packet than to block a TCP socket

trying to deliver the data!

RMT has been tested on the European Data Grid (EDG) [7] with CMKIN Monte

Carlo generation production jobs, and works as required. Now, it is planned to

integrate it with the OCTOPUS package of CMS production [8].

 13

References

1. MySQL and mSQL by R. J. Yarger, G. Reese; T. King, O’Reilly & Associates

Inc.

2. Programming Perl by L. Wall; Christiansen; R. L. Schwartz, O’Reilly &

Associates Inc.

3. Best Unix Tips ever by K. H. Rosen; R. H. Rosinksi; D. A. Host, Osborne.

4. Production Monitoring Tool, User Guide.

Relevant Web Sites

1. http://net-snmp.sourceforge.net

2. http://www-isd.fnal.gov/ngop

3. http://www.grateful.net

4. http://www.wtcs.org/snmp4tpc/mrtg.htm

5. http://www.nagios.org/

6. http://sourceforge.net/projects/nagiosplug/

7. http://marianne.in2p3.fr/datagrid/documentation/EDG-Users-Guide/html_tf.html

8. http://cmsdoc.cern.ch/cms/production/www/html/general/index.html

 14

Acknowledgements

Authors are grateful to Veronique Lefebure, Nick Sinanis, Werner Jank and Julia
Andreeva for their valuable technical help.

Acknowledgement is also due to Saima Iqbal and Farooq Ahmed for their valuable
comments and suggestions given during the preparation of this document.

Thanks to Yunjun Wu of Fermi Lab., who installed and tested an early version of
RMT. We received a lot of valuable suggestions and comments from him.

