
Computing in High-Energy and Nuclear Physics, La Jolla CA, March 24-28, 2003

MOGT008

1

Available on CMS information server CMS CR 2003/007

CMS Conference Report

May 25, 2003

Using XDAQ
in Application Scenarios of the CMS Experiment

V. Brigljevic, G. Bruno, E. Cano, A. Csilling, S. Cittolin, D. Gigi, F. Glege, M. Gulmini1, J. Gutleber*, C. Jacobs,
M. Kozlowski, H. Larsen, I. Magrans, F. Meijers, E. Meschi, L. Mirabito, S. Murray, A. Oh, L. Orsini, L. Pollet, A.

Racz, D. Samyn, P. Scharff-Hansen, P. Sphicas2, C. Schwick
CERN, Geneva, Switzerland

1Also at Laboratori Nazionali di Legnaro‚ INFN, Legnaro, Italy
2Also at University of Athens, Greece

F. Drouhin
Universite de Haute-Alsace, Mulhouse-France - Institut de Recherche Subatomique de Strasbourg, France

L. Berti, G. Maron, N. Toniolo, L. Zangrando
INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy

S. Ventura
INFN - Sezione di Padova, Padova, Italy

S. Erhan
University of California, Los Angeles, California, USA

V. O’ Dell, I. Suzuki
Fermi National Accelerator Laboratory, Batavia, Illinois, USA

*presented by Johannes Gutleber (Johannes.Gutleber@cern.ch)

Abstract

XDAQ is a generic data acquisition software environment that emerged from a rich set of of use-cases encountered in
the CMS experiment. They cover not the deployment for multiple sub-detectors and the operation of different
processing and networking equipment as well as a distributed collaboration of users with different needs. The use of the
software in various application scenarios demonstrated the viability of the approach. We discuss two applications, the
tracker local DAQ system for front-end commissioning and the muon chamber validation system. The description is
completed by a brief overview of XDAQ.
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1. INTRODUCTION
Software for data acquisition (DAQ) systems does not

only comprise the application task, but also requires
functions to integrate diverse hardware devices for
configuration and data interchange. With traditional tools
this can become a cumbersome and time-consuming
task. Application software that relies on direct use of the
device driver interface affects program configurability.
Some devices are accessed through system calls, others
rely on memory mapping or have special requirements
like the existence of memory that can be used for DMA
operations. Support for configuration is dependent on the
operating system platform. Concurrent use of multiple
different networking technologies transparently at
application level is not easily achievable with this
approach. Message passing libraries, such as MPI [1]
provide communication abstraction but do merely
support the integration of diverse technologies.
Moreover, different tasks in high-energy physics data
acquisition show striking similarities although the
underlying networking and processing devices can be
entirely different. Recognition of these limitations
triggered an abstraction from a pure application-oriented
view of data acquisition. Related projects showed that
this direction is promising. CODA [2] for example,
presents an integrated data acquisition environment.
Highly portable and feature rich, it is, however, limited
in terms of integration with other systems because of
proprietary protocols and formats.

We approached the problem by filtering out generic
requirements that are common to various tasks in high-
energy physics [3]. We then established a software
product line [4], specifically designed for distributed data
acquisition systems based on the integration of various
networking devices and commodity computing systems.
This suite, called XDAQ, includes the generic
requirements documents, design templates, a software
process environment, a distributed processing
environment and various generic software components
that can be tailored to a variety of application scenarios
(see figure 1). Applying the product line approach to data
acquisition aims, however, at shifting the focus from
application programming tasks to integration tasks, thus
speeding up application development and obtaining good
performance by using well-established and tested design
patterns. Before we present the use of XDAQ in some of
the application scenarios of the CMS experiment, we
outline basic functionalities of the software environment.

2. XDAQ
XDAQ is a software product line that has been

designed [5] to match the diverse requirements of data
acquisition application scenarios of the CMS experiment.
These include the central DAQ, sub-detector local DAQ
systems for commissioning, debugging, configuration,

monitoring and calibration purposes, test-beam and
detector production installations as well as design
verification and demonstration purposes.

The product line comprises sets of documentation and
software packages that are generic enough to be used for
several application scenarios, but as specific as possible
to cover aspects that are critical to stable and efficient
DAQ operation.

Figure 1: Overview of the XDAQ software product line.
The arrows indicate the work flow of the software
process that leads to the production of DAQ systems and
the extension of the product line asset base.

2.1. Documentation
The documentation includes besides a description of

the project environment, design documents, software
production guidelines, user- and test manuals a generic
requirements specification. It captures requirements that
are common to a large set of data acquisition systems,
which aim to use commodity computing and networking
equipment. At functional level the requirements cover
communication, configuration, monitoring and control
tasks. In addition, various non-functional requirements
like performance flexibility, maintainability and
portability are included. This description must be
completed by the requirements that are specific to a
particular application scenario and will lead to tailoring
of the generic application components that are provided
with the suite. Some upcoming requirements may
eventually be found in multiple environments and can
eventually end up in the product-line requirements
specification.

A second important documentation set is the collection
of companion manuals. It serves as a production guide,
telling a user how to build a specific data acquisition
application by using the generic processing environment
and the included application components. Some manuals
focus on tailoring aspects, i.e. how to augment the
existing components with the additional functionalities

Product line
requirements

Distributed 
processing 
environment

Generic
application

components

Configuration management infrastructure

Production
prescriptions

Customized DAQ System

Newly created 
artifacts

XDAQ asset base



Computing in High-Energy and Nuclear Physics, La Jolla CA, March 24-28, 2003

MOGT008

2

required by the application. Others give insight in using
existing functions for the necessary programming tasks.

2.2. Distributed Processing Environment
XDAQ includes a distributed processing environment

called “the executive” that provides applications with the
necessary functions for communication, configuration
control and monitoring [5, 6]. Written entirely in C++
with an emphasis on platform independence, it
implements well-established techniques to provide
appl icat ions with eff ic ient ,  asynchronous
communication. They include the use of memory pools
for fast and predictable buffer allocation [7], support for
zero-copy operation [8, 9] and an efficient dispatching
mechanism for an event-driven processing scheme [10].
A copy of the executive process runs on every
processing node in the data acquisition network.
Applications are modeled according to a software
component model [11] and follow a pre-scribed
interface. They are compiled and the object code is
loaded dynamically, at run-time into a running executive.
Multiple application components, even of the same
application class may coexist in a single executive
process. All configuration, control and monitoring can be
performed through the SOAP/http [12] protocol, widely
used in Web enabled applications [13]. A rich set of data
structures, including lists, vectors are exportable and can
be inspected by clients through the executive SOAP
services. Histograms are mapped to data structures, too.
They can also be retrieved via SOAP.

2.3. Generic Event Builder
In addition to documentation and the executive,

XDAQ includes a collection of generic applications.
They are ready for use in various application scenarios
with tailoring points that allow the adaptation to specific
environments. One of them is an event builder [14] that
consists of three collaborating components, a readout
unit (RU), a builder unit (BU) and an event manager
(EVM). The logical components and interconnects of the
event builder are shown schematically in figure 2. A
summary of the acronyms is given in table 1. Data that
are recorded by custom readout devices are forwarded to
the readout unit application. How this is accomplished is
described in an associated document that is provided
with a template software module. A RU buffers data
from subsequent single physics events until it receives a
control message to forward a specific event fragment to a
builder unit. A builder unit collects the event fragments
belonging to a single collision event from all RUs and
combines them to a complete event. The BU exposes an
interface to event data processors, called the filter units
(FU). This interface can be used to make event data
persistent or to apply event-filtering algorithms. The
EVM interfaces to the trigger readout electronics and so
controls the event building process by mediating control
messages between RUs and BUs. The interface between
EVM and trigger readout is documented and template
code for adaptation to various custom devices is
provided.

Figure 2: Outline of an event building data acquisition system.
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3. APPLICATION SCENARIOS
We outline two of the various DAQ application

scenarios found in the CMS experiment. The first one is
the silicon microstrip detector commissioning of the
tracker sub-detector. The second use case is the test and
validation of the muon chambers. The system overviews
include descriptions of the software and hardware
subsystems, including the interconnection technologies.
Table 1: List of used acronyms.
Acronym Description
BCN Builder Control Network, a logical

network used to communicate requests
for event data from BU to EVM.

BDN Builder Data Network, logical network
used to send event data from RU to BU

BU Builder Unit, hardware/software sub-
system to collect event data from RUs

DCS Detector Control System, software
system to control/monitor high and low
voltages as well as various
environmental measurement values

DSN DAQ Service Network, logical network
to carry run control and DCS messages

EVM Event Manager, hardware/software
subsystem to mediate trigger
information for readout and event
building purposes as well as to control
the event building process

FEC Front-End Controller, mediates control
information between custom front-end
devices ,  the  DCS or  run-
control/monitor system

FED Front-End Driver, custom devices to
read data from the detector elements

FFN Filter Farm Network, logical network
transports event data from BUs to FUs

FRL Front-End Readout Link, interconnect
to read event data from FED into a RU.

FU Filter Unit, hardware/software sub-
system to process and store event data

LTC Local Trigger Controller, subsystem
for reading trigger information and for
controlling the trigger.

RCMS Run Control/Monitor System, software
subsystem to configure, control and
monitor the DAQ system

RCN Readout Control Network, logical
network to transport  control
information for tagging events in a RU
and for forwarding the data to BUs

RU Readout Unit, hardware/software sub-
system for transient storage of event
data read from one or more FEDs

3.1. TRACKER COMMISSIONING
The CMS tracker [15] comprises silicon microstrip

detectors [16] that are read out via an analog optical link
connected to the analog to digital converters of the FED.
The control commands for the front-end chips, together
with the clock and level 1 trigger, are propagated to the
detectors through a proprietary token-ring network. This
task is carried out by a front-end controller (FEC)
interacting with several communication and control
units. Commissioning of detectors is a dedicated data
acquisition task including the communication channel
described above. For example, timing calibration is
required, because the trigger is propagated sequentially
along the ring to the detectors and the digitization time
depends on the fiber lengths to the FEDs. Additional
calibration tasks include pulse shape adjustment, optical
link gain setting and front-end gain calibration. Test
setups include slow control facilities, such as thermistors
and I2C driven humidity probes, and HV/LV control,
which are driven by XDAQ applications. For this
purpose, a local data acquisition system that supports the
calibration loop process in addition to configuration and
control operations must be available. A high-level
diagram of the system in operation is shown in Figure 3.
Subsystem implementations are listed in Table 2. XDAQ
together with generic event builder components has been
successfully used to implement the system described
above. Additional specialized software components were
developed to interface to detector specific electronics
and various persistent data storage technologies. On-line
visualization facilities were implemented with Java
Analysis Studio [17] and interfaced to the system
through the SOAP messaging system. The
implementation of the system took 4 man months.
Flexibility and scalability of XDAQ was demonstrated
by its use in different configurations. It was possible to
transfer an existing small setup from PSI (Zurich,
Switzerland) to tracker subsystem (rod and petal) tests
without modifications. This system was easily
transferred to a testbeam environment at CERN that
comprised different computer resources. This setup
comprised in total 8 computers: one for the EVM, three
for the FUs, one for the BU, one for the RU (hosting
three RU applications), one for the FEC and one for run
control/detector control. Commissioning of the new
system took 2 hours as opposed to 30 hours with
previous systems. At a rate of 2000 events per spill (500
Hz with an average event size of 20 Kbytes), a maximum
data throughput of 100 Mbit/s was achieved, which
corresponds to the available Fast Ethernet capabilities
between the RU and BU subsystems. Recently, an
upgrade to Gigabit Ethernet has been performed,
yielding a throughput of 71 Mbytes/sec for the data
acquired during one spill. Operation periods spanned five
days of continuous and uninterrupted data taking
resulting in around 600 Gbytes of data produced for
analysis. Novice users were able to operate and re-
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configure the distributed system after a training of
approximately 1 hour by themselves. In particular the
application of configuration changes to re-distribute
processing tasks to multiple computers was achieved
without further assistance.

Figure 3: Overview of the tracker commissioning system

Table 2: Subsystem/interconnect implementation
Subsystem Implementation
BCN Fast Ethernet (I2O binary messages)
BDN Fast Ethernet (I2O binary messages)
BU Intel based PC (Linux)
DCS Custom (XDAQ based applications)
DSN Fast Ethernet (SOAP/http)
EVM Intel based PC (Linux)
FEC Intel based PC (Linux)
FED Custom PCI cards
FFN Fast Ethernet (I2O binary messages)
FRL PCI bus
FU Intel based PC (Linux)
LTC Custom PCI card
RCMS Java based (xdaqWin, JAXM)
RCN Fast Ethernet (I2O binary messages)
RU Intel based PC (Linux)

3.2. MUON Chamber Validation
The 250 chambers that make up the muon barrel

spectrometer [18] need to be tested with cosmic rays
once before they are shipped to CERN and once when
they arrive. Tests with muon beams at high data rates
together with coupling to other subdetectors are also

necessary to validate the detector behavior under realistic
conditions. The observables include occupancy of
detector channels for determining the particle hits, the
drift time and the response to dedicated test pulse events.
A data acquisition system had to be put in place to
perform these tasks. XDAQ was used as the generic
platform to implement this system. As outlined in Figure
4, the software required customization of three parts, the
local trigger controller (LTC), readout of custom
electronics through the VME bus and interfacing to a
data storage/analysis backend. For the acquisition task,
the XDAQ generic event builder components were used.
Run control was implemented by a prototype system that
served as a study environment for the CMS experiment
run control system [19]. As opposed to the tracker
commissioning slow control was performed by a
separate, Windows based system. A similar setup was
used during a test period for the Gamma Irradiation
Facility at CERN. In this case, a muon chamber was
coupled to a resistive plate chamber (RPC) detector and
a beam ionization chamber to verify the simultaneous
response of the RPC and muon chambers. The update of
the existing system went smoothly. As a result of this
project, several new requirements were identified,
mainly covering configuration, control and monitoring.
Hardware platform heterogeneity (different bus systems,
byte ordering and data alignment rules), as well as the
presence of two different operating system platforms
(Linux and VxWorks), posed a challenge to the
interoperability among the system components. The
supported platforms included PowerPC based VME
processors running the VxWorks real-time operating
system, and Intel based personal computers with both
Linux and VxWorks.

Table 2: Subsystem implementation

The provided abstraction fitted the need to switch
between processor and operating system types without
additional work. The required event rate of 10 kHz and
the peak output of 4 Mbytes/sec were well absorbed by
the hardware (PCs, VME CPUs and Fast Ethernet
network) and software installation in place. The high
variance of the event sizes stressed the buffer
management system of XDAQ. Stable operation under

Subsystem Implementation
BCN Fast Ethernet (I2O binary messages)
BDN Fast Ethernet (I2O binary messages)
BU Intel based PC (Linux)
DSN Fast Ethernet (SOAP/http)
EVM Intel based PC (VxWorks)
FED Custom VME cards
FRL VME bus
LTC Custom PCI card
RCMS Java application (CMS prototype)
RCN Fast Ethernet (I2O binary messages)
RU Intel based PC (Linux and VxWorks)
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these conditions confirmed the robustness of the design.
Uptime measured over two weeks was 60%, including
penalties from changing hardware configurations. From
the initial intent to create the system to its completion,
including the learning phase, six man months were
invested. A system developed from scratch in the same
time scale would not have provided the seamless
integration with later appearing components (e.g. silicon
beam telescope) and the ability to efficiently carry out
modifications and configuration changes. Through this
experience, confidence has been gained that the proposed
design of the software infrastructure can fulfill the
diverse functional DAQ requirements of the experiment
under design.

Figure 4: Overview of the Muon validation system.

4. SUMMARY
In this paper we outlined two application scenarios of

XDAQ in the CMS experiment. The creation of DAQ
systems for the tracker commissioning and the muon
chamber validation tasks were vital to ensure that the
online software infrastructure under design and
implementation eventually meets the experiments
requirements. XDAQ supports DAQ systems that aim to
use commodity computing and networking equipment. It
is also evaluated for use in the experiment’s central DAQ
system that favors this design choice. Performance and
scalability studies for the main DAQ system are
currently done [20]. The preliminary results from these
studies show that the performance of the software
matches well the requirements [21, section 2].
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