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Abstract

We study the possibility of observing the lightest SUSY scalar Higgsh0 in squark/gluino cascade
decays exploiting its dominant decay modeh0 ! b�b with the CMS detector at the LHC. The study is
done within the minimal Supergravity model. We find that there is a significant part of the mSUGRA
parameter space where theh0 ! b�b peak can be observed with a signal to background ratio of� 1,
and observation starts already at the low luminosityLint = 103 pb�1.
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1 Introduction
The main task of the LHC is to answer one of the fundamental questions of physics, namely: what is the origin of
the particle masses? In the Standard Model (SM) particles acquire mass through their interaction with the Higgs
field. The SM assumes oneSU(2) doublet of Higgs fields and has one physical Higgs boson (h0SM ). Since there
is a complete absence to date of any signals for new physics, the SM with a single neutral Higgs boson remains
a viable model. However, there are simple extensions of the SM Higgs sector that are equally consistent with
all known theoretical and phenomenological constraints. The Minimal Supersymmetric Standard Model (MSSM)
contains two doublets of Higgs fields and five physical Higgs bosons (h0; H0; A0; H�).

In the supersymmetric scenario there is an upper bound on the mass of the lightest neutral Higgs boson (h0). At
tree-level this bound is (see e.g. Ref.[1])mh0 � MZ j cos 2� j, wheretan� = vu=vd is the ratio of vacuum
expectation values atMZ . Radiative corrections can substantially raise the tree-level bound tomh0 <� 130 GeV
[2]. The value ofmh0 mainly depends onmA, tan�, the stop and sbottom masses, and stop and sbottom mixings.

The theory does not predict the mass ofh0SM , but it predicts its production rate and decay modes for a given
mass, see [3]. CMS has been optimised for discovering the SM Higgs in the full expected mass range 0.08 TeV
<� mh0

SM

<� 1 TeV [4]. Formh0
SM

<� 130 GeV, the dominant decay channelh0SM ! b�b [3] has very large Standard
Model two-jet backgrounds. Thus, in this mass range, it is necessary to consider rarer production and decay modes
with more pronounced characteristics.h0SM ! 

 was found to be the most promising channel for the low Higgs
mass range, but high integrated luminosity is needed. The branching ratio Br(h0SM ! 

) is � 10�3 and the
signal is expected on top of a large irreducible

 background with a small S/B ratio of� 1=20 [5]. Moreover,
instrumental requirements on ECAL are very demanding (a

 effective mass resolution better than 1%, that is
� 1 GeV for a Higgs mass of 100 GeV). In the MSSM scenario�h0 � BR(h0 ! 

) is even lower. A more
advantageous way to look forh0 can be found if one tries to use its abundant production in the decay chains of
gluinos and squarks exploiting the dominant decay intob�b. In the MSSM, if gluinos and squarks are heavy enough
they can decay into charginos and neutralinos. If, in turn, the mass difference between charginos and/or neutralinos
is large enough, they can decay into a Higgs particle, see fig.1. The background can be suppressed by means of
b-jet tagging and by requiring largeEmiss

T characterising SUSY.

Here we discuss the possibility of observing a signal from the lightest neutral Higgs boson with the CMS detector
at the LHC within the framework of the minimal Supergravity Model (mSUGRA) [6] with unification of the gauge
couplings. The goal is to show the potential importance of b-flavour tagging for observing a signal from the lightest
neutral Higgs boson at the LHC, which allows one to exploit its dominant decay mode,h0 ! b�b. A more detailed
analysis is presented in [7].

2 b-tagging performance
In this study we made use of the expected b-jet tagging performance of the CMS detector from impact parameter
measurements in the tracker [8]. The CMS pixel detector consists of two cylindrically shaped barrel layers and
three disk-like endcap layers (for more details, see [9]). The point resolution in barrel pixels is 15�m. In the
”high luminosity” configuration, optimised for b-tagging in hard collision physics up to the highest expected
luminosities, the barrel layers are located at distances of 7.7 cm and 11.7 cm from the beam line and have a length
of 36 cm, covering the rapidity range for tracks withj � j� 1:75. The three forward disks should provide at least
two measurement points for tracks withj � j< 2:4. The ”low luminosity” pixel detector option contains layers at r
� 4:0 and 7.7 cm and is optimised for b-tagging and B-physics measurements at the initial lower luminosities.

The expected precision of the impact parameter measurement in the CMS tracker has been studied by detailed
GEANT simulations [10]. Fig.2 shows the impact parameter resolutions used in our simulations. The asymptotic
value of the resolution is determined by the pixel point resolution and by the distance of the first measurement
layer to the beam line.

To approximate the non-Gaussian tails in the impact parameter measurement distributions of the CMS detector the
following procedure was applied. 2-jet events were generated with PYTHIA [11] at CDF energy

p
s = 1:8 TeV [8].

The distance of the first measurement layer from the beam line was taken at 3 cm, the same as the CDF tracker.
Jets are reconstructed from the simulated data using the fast simulation package with the UA1 type jet finding
algorithm. As for CDF data, the events are required to have at least one jet withE

jet
T > 50 GeV within j � j< 2.

Only jets containing at least two tracks withpT > 2 GeV are considered. The impact parameter is calculated for
all tracks inside a jet (cos�(jet � hadron) > 0:8) with pT > 2 GeV and smeared with its expected Gaussian
error. The acceptance for hadron tracks is then limited toj � j< 1:5 corresponding to the fiducial volume of the
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Figure 1: Gluino decay branching ratios in MSSM.

η = 2.25
η = 1.3
η = 0

In transverse plane
103

102

10
101 102

pT  GeV

Im
pa

ct
 p

ar
am

et
er

 re
so

lu
tio

n 
 (µ

m
)

Impact parameter resolution of CMS 

D.D 657n

Figure 2: Impact parameter resolution as a function ofpt at various rapidities.

2



104

103

102

101

1

 0         -0.5 -0.3 -0.1 0.1 0.3 0.5

Ev
en

ts 
/ 2

 µm

Impact parameter (cm)

CDF data

pjet > 50 GeVt

a)

s= 1.8 TeV
r= 3.0 cm

104

103

102

101

1

 0         -0.5 -0.3 -0.1 0.1 0.3 0.5

Ev
en

ts 
/ 2

 µm

Impact parameter (cm)

pjet > 50 GeVt

b)

CMS s= 1.8 TeV
r= 3.0 cm

detector

Monte Carlo

D_
D_

10
60

n

Figure 3: a) Impact parameter distribution measured by CDF collaboration, b) impact parameter distribution with
CMS detector at

p
s = 1:8 TeV.

CDF microvertex detector. Fig.3b shows the impact parameter distribution calculated for the CMS detector with
r=3 cm. The non-Gaussian tail present in this distribution is entirely due to heavy flavour and K0

s and�0 decays.
The relative level of the non-Gaussian tail in CDF data is about a factor 2 higher (fig.3a) than in the generated
distribution (fig.3b). To simulate the impact parameter distribution for the CMS tracker at the LHC energies, we
assume that the contribution to the tail due to ”mismeasurements” (pattern recognition problems, noise, etc.) is
the same measurement as at 1.8 TeV. Thus, the non-Gaussian tail in the CMS detector measurement simulation
has been enhanced to match the relative fraction in the Gaussian part and in the tail as in the CDF data. Then the
Gaussian part has been recalculated for the actual CMS pixel layers in terms of precision and radial distance, and
for the kinematics corresponding to collisions at

p
s = 14 TeV. Fig.4 shows the expected b-tagging efficiency and

mistagging rate in the CMS detector, which we have taken in our study as the ’nominal’ b-tagging performance.
The full pattern recognition studies of the CMS tracker response [12] done in the meantime match closely the
results of the approximation used in the present study.

3 Signal observability in mSUGRA parameter space. Instrumental limit-
ing factors

In mSUGRA the Higgs boson mass spectrum mainly depends on the following parameters: the universal scalar
massm0, the gaugino massm1=2 at the GUT scale, andtan� [6]. It depends weakly on the other model pa-
rameters:A0, the common trilinear coupling atMGUT , andsign(�), the sign of the Higgsino mixing param-
eter. Hence, we first discuss results in the (m0;m1=2) parameter plane fixing the other parameters,tan�=2,
A0 = 0 andsign(�) < 0. Fig.5 shows the domain in the (m0;m1=2) parameter plane where the Higgs can
be explored. This area is determined by the opening of the neutralino~�02 ! ~�01h

0 decays. The neutralinos
~�02 can be produced in the gluino and squark decay chains. Thus, SUSY Higgs production is characterised
by the presence of largeEmiss

T , due to the weakly interacting lightest supersymmetric particle (~�01), high jet
multiplicity from decays of gluinos/squarks and two b-jets from theh0 ! b�b decays. Additional b-jets can
come from stop decays. Fig.6 shows the invariant mass distribution of two b-jets closest in� � � space in the
ideal case of 100% b � tagging efficiency and with 0% mistagging probability. The events are selected
requiring at least 4 jets withEjet

T > 40 GeV in j �jet j< 4:5, at least 2 tagged jets inj �jet j< 1:75,Emiss
T > 400
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Figure 6: a) The invariant mass distribution of two b-jets atm0 = m1=2 = 500 GeV, tan� = 2, � < 0, A0 = 0
mSUGRA point, assuming100% tagging efficiency and0% mistagging probability; b) b-jet energy distribution at
the same parameter point, c)j � j-distribution of b-jets, d)pT of bb-pair system.

GeV andcircularity > 0:1. TheEmiss
T cut is the most important background suppression cut. As a result the

Higgs peak is clearly seen on top of the SM background (t�t, Wtb and QCD2 ! 2, includingb�b). The main
remaining background is internal SUSY background due to wrong b-jet pair combinations. Fig.6 also shows some
kinematical distributions of b-jets. They are hard and central.

If we now include the nominal b-tagging efficiency and mistagging probability the Higgs peak is still well pro-
nounced and the expected signal significance isS=

p
B = 18:3 for 105 pb�1, see fig.7a. Figs.7b,c show the effect

of increasing and decreasing the b-tagging efficiency by15% in absolute value, keeping the mistagging probability
on the ’nominal’ level. The signal observability is very sensitive to the b-tagging efficiency, and degradation of that
by more then 15% can result in a significant loss of the signal visibility, see fig.7c. Figs.8a,b show the dependence
of signal visibility on the b-tagging acceptance. As shown above, b-jets are central. Thus an increase of b-tagging
acceptance up toj �tag j< 2:4 does not improve the signal significance, but keeping acceptance up to at least 1 is
essential. Increasing the mistagging probability by a factor of 3 whilst keeping the ’nominal’ b-tagging efficiency,
decreasesS=

p
B down to 15.1. Another important criterion of the Higgs mass measurement is the width of the

measured peak. The width of the measured di-jet invariant mass depends on the calorimetric jet measurement res-
olution. Fig.9 illustrates the degradation of the Higgs mass resolution due to degradation of the energy resolution
in the hadron calorimeter from�E=E = 82%

p
E � 6:5% to �E=E = 120%

p
E � 10% (at � = 0). The signal

width (� Gaussian) changes from 7.6 GeV to 11 GeV.

By optimising the signal selection criteria in the various parts of the parameter space, we find large domains
where the Higgs could be detected already at low luminosity, figs.10 and 11. The possibility of observing the
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lightest SUSY Higgs is provided by the opening of~�02 ! ~�01h
0 decays and by the large production cross-section

of strongly interacting gluinos and squarks. Its observation is therefore limited by the masses of the squarks and
gluinos. In fig.12 we show the dependence of the signal visibility on the model parameterstan� andsign(�)
with fixedm0 andm1=2. The casetan� = 10, sign(�) < 0 is the most unfavourable one due to less favourable
values of Br(~�02 ! ~�01h

0). The Higgs search strategy developed here shows that the large production cross-
section of gluinos and squarks can allow one to exploit the dominant Higgs decay modeh0 ! b�b with background
successfully suppressed by requiring largeEmiss

T . Further, only efficient b-tagging allows one to reconstruct a
real Higgs signal by suppressing the jet-jet SUSY background due to abundantly producedW 0s. Fig.13a shows
the di-jet invariant mass for the closest jet pairs without b-tagging and where theW�peak overwhelms the Higgs
signal. Fig.13b clearly exhibits that b-jet tagging is required to select the Higgs boson.

4 Conclusions
Adequate b-tagging performance is of crucial importance for the LHC experiments: it may allow one to discover
h0(! b�b) with S=B � 1 in the wholeh0 mass range as shown here in the case of the mSUGRA model. Such a
search can already start withLint = 103 pb�1.
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T. Sjöstrand, CERN-TH.7112/93.

[12] A. Khanov, N. Stepanov, Presentation to the CMS Collaboration, November 1997.

11


