
Available on CMS information server CMS CR 1997/018

CMS Conference Report

24 November 1997

Design and Performance of an Object Oriented
Model for CMS Track Reconstruction

Irwin GAINES

Fermilab, Batavia, U.S.A.

Thorsten HUEHN

SCRI, Florida State University, Tallahassee, U.S.A.

Sijin QIANa)

CERN, Geneva, Switzerland

Abstract

An Object Oriented (OO) model for the CMS [1] central tracking reconstruction has been designed
and coded in the C++ programming language. It has been tested with single and multiple track events
and has been compared with non-OO programs. The class design of the model is based on well-known
data concepts for track reconstruction in HEP, so it should be rather easily understood and adopted by
non-expert class users. Extensive use has been made of the C++ Standard Template Library (STL) in
the class design and program coding.

A special feature of this model is that it is closely related to the Kalman filtering track reconstruction
package in the current CMS simulation and reconstruction facility (CMSIM) which is coded in FOR-
TRAN. Many well-optimized FORTRAN subroutines in the package have been successfully re-used
as member functions of various classes in the OO model. Hopefully, this model can demonstrate a
possible means for a smooth transition to future object oriented programs in HEP.

Submitted toComputing in High Energy Physics, Berlin, Germany, April 1997

a) The work has also been supported by I. Physikalisches Institut at Aachen, Germany and IPNL/CNRS-IN2P3 at Lyon, France
during its course.

1 Introduction
As the computer industry moves to the Object Oriented (OO) era to accommodate the increasing complexity of
programming tasks, we explore whether an OO model for tracking and event reconstruction can be designed by us-
ing proven data concepts. In addition to incorporating the main features of OO Programming (e.g. inheritance and
polymorphism, etc.), we re-used Fortran subroutines from the Kalman filtering track reconstruction package [2]
of the current CMSIM (i.e. the CMS simulation and reconstruction facility). As those routines are highly mod-
ularized and without any common block communication with the outside world, they can easily be included as
member functions of various classes.

We use the Standard Template Library (STL) [3], not only in the C++ implementation, but also in the OO model
design. Some list-type classes representing vectors and linked lists (see Fig.1 of [4]) in the early versions of the
OO model have now been absorbed into relevant classes by using STL containers, resulting in a much cleaner and
simplified class diagram (Fig. 1a).

The whole model has been coded in the C++ program language (save for the re-used Fortran routines). C++
was chosen because of its wide use and the wide availability of commercial software products. The code was
tested with single and multiple track events in the CMS central tracker and was found to be consistent with the
conventional CMSIM tracking software.

2 The object oriented model, C++ implementation and testing
The model design process begins by formulating a ”problem statement” which guides the design of the class
diagram (Fig. 1a), drawn here by the commercial product Rational/Rose using the Booch methodology [5]. A
”function statement” serves as a guideline for drawing the object diagram (Fig. 1b). See [4] for details on the
model and class descriptions, which can also be downloaded from [6].

Typical examples of the re-use of CMSIM code are shown in the Appendix of [4]. Care has to be taken to ensure
that the argument communication between Fortran subroutines is contained within the class rather than crossing
to other classes, so that the encapsulation of the classes is not compromised. Most C++ compilers support cross-
linking between C++ and Fortran codes, but arguments need to be passed by reference rather than value in the
C++ part of the code.

The STL helped to simplify the model design: some list objects have been designed as vector attributes in appro-
priate classes and some member functions return STL vectors. In the main program, we extensively used STL for
the implementation of variable length arrays and linked lists.

The input for the track reconstruction are the coordinates of measured hits and the measurement errors, as well as
the detector geometrical information. Ultimately, these inputs should come from an OO database; but for now we
store the CMSIM generated hits in formated ASCII files, which are then read to instantiate hit and layer (as well
asMCtrack) objects in the C++ main program. Each hit has an ID consisting of the layer ID number and the
hit series number on that layer.

After the track reconstruction, a cleaning process removes all ghost tracks. Then a ”comparator” establishes the
correspondence betweenMCtracks andreconstructed track s by comparing the hit IDs on each track.
From that, the track- and point-finding efficiencies can be evaluated from a criterion of a ”good” track (e.g.> 80%

of hits on aMCtrack found on areconstructed track). The output of OO model for a test with a two-
track event is shown in Fig. 1c.

2

a) b)

Tracker
|| vector<*layer>_on_path

Add_layer(*layer)

Layer_selector()

Hit
|| hit_id

|| section

|| xyz[3]

|| sigxyz[3]

Trajectory
| 5 parameters_at_a_ position [6]

| covariance_matrix [15]

| izone

Propagator(....)

Zone_convertor(....)

MC track
|| nh_correct

|| nh_wrong

|| recon_id

Comparator()

Reconstructed track
|| chi2

|| nhits_missing

|| status

Constructor2 (3_hits)

Constructor1(seed)

Add_ms(X0)

Flag_hits()

Flag_track()

Is_ghost(rTrack1,rTrack2)

Path_chooser(next_layer)

Updator(hit)

Window()

Layer
|| layer_id

|| location

|| dimenstion[2]

|| istereo

|| izone

|| vector<*hit>_on_layer

Add_hit(*hit)

Hit_selector()

 Track
|| vector<*hit>_on_track

Add_hit(*hit)

Hit_checker(*hit)

nn

1 n
1n

1

1..3

invoke_destination
1

1

1

n

aTracker
or aPath

aHit_on_a_
Layer

aReconstructed
_Track aMC_Track

aList_of_layer

3Layers

3Hits_on_the_
3_Layers

1: 3 layer selection4: Layer selection

7: Add a hit

8: Comparison

5: Extrapolation
6: Hit selection

2: 3 hit selection

3: Create a track

c) | ----- Reconstructed track id: 3 || | ----- Reconstructed track id: 4
| || |
| Track parameters: || | Track parameters:
| || |
| r phi z theta beta 1/Rtr || | r phi z theta beta 1/Rtr
| (cm) (rad) (cm) (rad) (rad) (1/cm) || | (cm) (rad) (cm) (rad) (rad) (1/cm)
| || |

MC track: 1 | 7.925 1.979 0.802 1.470 -0.018 -0.005 || MC track: 2 | 7.925 1.656 0.246 1.540 0.003 0.001
| || |

hit id:120001 | hit id:120001 dchi2: 0.654544 || hit id:120002 | hit id:120002 dchi2: 0.106214
hit id:110001 | hit id:100001 dchi2: 2.08672 || hit id:110002 | hit id:110002 dchi2: 2.80786
hit id:100001 | hit id:90001 dchi2: 0.654544 || hit id:100002 | hit id:100002 dchi2: 0.961897
hit id:90001 | hit id:80001 dchi2: 0.558137 || hit id:90002 | hit id:90002 dchi2: 0.106214
hit id:80001 | hit id:70001 dchi2: 0.488648 || hit id:80002 | hit id:80002 dchi2: 2.22553
hit id:70001 | hit id:60001 dchi2: 0.654544 || hit id:70002 | hit id:70002 dchi2: 6.18551
hit id:60001 | hit id:50001 dchi2: 0.953577 || hit id:60002 | hit id:60002 dchi2: 0.106214
hit id:50001 | hit id:30001 dchi2: 0.935086 || hit id:50002 | hit id:50002 dchi2: 3.6026
hit id:40001 | hit id:20001 dchi2: 2.21221 || hit id:40002 | hit id:40002 dchi2: 6.45174
hit id:30001 | hit id:10001 dchi2: 2.67882 || hit id:30002 | hit id:30002 dchi2: 1.55332
hit id:20001 | || hit id:20002 | hit id:20002 dchi2: 0.958787
hit id:10001 | || hit id:10002 | hit id:10002 dchi2: 1.43631

Total Chi2 = 11.9 || Total Chi2 = 26.5
||

---------------- MC track id: 1 || ---------------- MC track id: 2
corresponding recon track: 3 || corresponding recon track: 4
tot hits on rec: 12, correct hits: 10, wrong hits: 2 || tot hits on rec: 12, correct hits: 12, wrong hits: 0

Figure 1: a) Class diagram for the OO-model showing the classes implemented in the model. b) Object diagram
showing the interaction between the objects. c) Sample screen output for a two-track event (slightly edited for
clarity).

3

3 Summary and prospects
An object oriented model for the CMS central tracking reconstruction has been designed, coded in the C++ pro-
gramming language and has undergone preliminary tests. The main features of this model are:

1. Class design according to the OO paradigm, based on proven data concepts in HEP track reconstruction.

2. Re-use of Fortran subroutines from the Kalman filtering track reconstruction package in CMSIM as member
function of various classes.

3. The STL, a powerful tool in C++ programming, has been rather extensively used in the model design, the
class coding and the main program coding.

This pilot project served to gain familiarity with OO-analysis, OO-design and C++ implementation as well as to
explore re-use of Fortran legacy code. At this point, we believe that we have basically achieved this primary goal,
but plan to use this model as a basis for a more complete, precise and efficient OO track reconstruction program.
See [6] for further details and new developments on the model.

4 Acknowledgements
We would like to thank Dr. Patrice LEBRUN for the great help in the initial C++ coding and to M.Sc. Lassi TUURA
for the generous assistance on using the STL.

References

[1] The CMS Technical Proposal, CERN/LHCC 94-38 (1994).

[2] S. Qian, ”Simultaneous Pattern Recognition and Track Fitting by Kalman Filtering Method for CMS Inner Tracker”, CMS
TN/96-001 (1/1996).

[3] D. R. Musser and A. Saini, ”STL Tutorial and Reference Guide”, Addison-Wesley (1996).

[4] I. Gaines et al., ”Design and Test of an OO Model for CMS Track Reconstruction”, CMS TN/96-122 version 2.2 (11/1996).

[5] G. Booch, ”Object-Oriented Analysis and Design”, Benjamin-Cummings (1994).

[6] Webpage: http://cmsdoc.cern.ch/˜sijin/oo.html.

4

