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Abstract

This is a report on the evaluation of Oracle9i C++ Call Interface (OCCI) by CMS. We describe the
evaluation of the usability of current version of OCCI by CMS from the software design point of
view and the software quality of OCCI. This evaluation work is part of the evaluation of the Oracle9i
database as an event store. We identify a missing middle-layer between OCCI and CMS Object-
Oriented software. Two prototypes have been developed to demonstrate some of our design ideas of

such a middle-layer.



1 Introduction

In July 2001, CMS decided to evaluate the Oracle9i database [1] as a candidate for its baseline for persistent data
storage. This decision is mainly motivated by the worry of the market performance of the Objectivity/DB which is
the current persistency baseline of CMS.

The Oracle database seems to be a good candidate for the CMS event store since it has a well-established software
company behind and claims peta-byte data storage capability. What particularly interested us are the so-called
object features of the Oracle9i database[2]. Oracle9i supports objects by mapping objects into rows in “object
tables” where attributes of an object correspond to the columns of the table. A unique Object Identifier (OID) is
assigned to each row of the object table. The navigation between objects is achieved by using the OIDs. Other
object features include the support of data-type inheritance and the support of collection data-types as varrays.

These features put Oracle9i into the category of databases referred to as “object-relational”. But one has to be
aware that although the Oracle9i database has some object-oriented features, it still belongs to the relational world.
The “impedance mismatch” [3] becomes a problem when one chooses to traverse and access objects via their
relationships as in the object world and to store data in tables as in the relational world. One of the main problems
for CMS to use the Oracle database as an event store is how to glue seamlessly together the CMS object-oriented
software with a fundamentally relational database. An ideal object-oriented persistence interface for a relational
database should allow users to access and to navigate persistent objects transparently without being aware of the
underlying tables.

Oracle9i provides a C++ Call Interface (OCCI) [4] as the communication layer between the C++ applications and
the back-end database. We expected it to act as the layer between our object oriented software and the back-end
Oracle database which allows transparent object access and navigation.

In the following sections we describe the evaluation of the usability of current version of OCCI by CMS from the
software design point of view and the quality of OCCI as a software. Section 2 and 3 describe our evaluation of the
usability of OCCI and its accompanying tool as the interface between the Oracle database and the CMS software.
In Section 4 our prototypes of a middle-layer between OCCI and the applications are described. Section 5 and 6
are our evaluation of the software quality of OCCI. Section 7 gives the conclusion of this evaluation work.

It should be noted that for our evaluation we have used Oracle 9i version 9.0.1.0, 9.0.1.1 and 9.0.1.2 on Solaris.
We also used a backport of the 9.2 development version to 9.0.1.2 that fixed some (but not all) memory leaks we
experienced.

2 0CCI

Oracle C++ Call Interface (OCCI) is an application program interface (API) that provides C++ applications access
to data in an Oracle database. It is a rather new product, first released in June 2001 with Oracle9i. OCCI supports
both the associative and navigational style of data access. In associative access, data is manipulated by executing
SQL statements and PL/SQL procedures. OCCI supports also the navigational access in which applications use
references (REFs), which are essentially the OIDs of the target objects, to navigate through related objects. Navi-
gational access does not involve executing SQL statements except to fetch the references of an initial set of objects.
In our test, data is accessed using only the navigational approach.

OCCI manages also the client-side object cache which is allocated in the program’s process space. The object cache
maintains the association between the object copy in the object cache and the corresponding database object. Upon
commit, changes made to the object copy in the object cache are automatically propagated back to the database.
The object cache maintains a pin count for each persistent object in the object cache. The pin count functions as a
reference count for the object. The object becomes eligible for garbage collection when the pin count of the object
becomes zero.

When using OCCI to manipulate objects, one should initialise the OCCI programming environment in object mode
and then use the environment handle to establish a connection to the database server. There is one object cache
allocated for each OCCI environment.

3 OTT and the problems of using OTT

When a C++ application retrieves instances of object types from the database, it needs to have a client-side repre-
sentation of the objects. OCCI provides an abstract class PObject to be the base of the concrete representation of
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the objects. The concrete representations of the objects are generated by the utility Object Type Translator(OTT).

To use OTT, one has to define the data model in the form of a SQL script and send the script both to the Oracle
database to define the schema and to OTT. OTT then generates automatically C++ header (.#) and implementation
(.cpp) files where all user defined data types are translated into C++ classes which are inherited from PObject. An
example of the OTT generated header file is shown in Appendix A. An example application using OTT generated
classes can be found in Appendix B.

The problems for us to use OTT are two-fold:

1. Data model drives object model

As described above, OTT requires the data type definition, which is essentially one’s data model design, as
input. OTT assumes that the object model (if there is any object model at all) is based on the data model.
But for our use case, we have an Object-Oriented software framework building upon our object model which
models both data and behaviour. There’s no reason for us to rebuild a data model from scratch and a object
model based on it. Instead, we think that the data model should be somehow deduced or built from the
existing object model. It’s pretty clear that OTT has Data-Oriented application in C++ in mind, thus not
suitable for the Object-Oriented way of software development of CMS.

2. Force changes in the existing software

When one uses OTT, all user defined persistent classes have to inherit from the OTT generated classes which
use PObject as the base class. This approach forces change in the existing software. For example, a tracker
hit object PSimHit, instead of being a stand-alone class, should be changed to inherit from PSimHit_C where
PSimHit_C is the OTT generated class. This change might involve few lines of code, but it would bound
our software to a particular persistence mechanism, in this case Oracle. This is contrary to the current CMS
policy of not binding physics and user code to a particular persistence mechanism.

From software design point of view, OCCI/OTT approach implies change in the modelling of our software and
restricts the flexibility and reusability of the applications. We anticipate major difficulties in integrating such an
approach in an Object-Oriented software framework like COBRA[5].

4 Prototyping a middle-layer between OCCI and applications

As described in the previous section, OTT is not suitable for our use. So two questions arise immediately:

1. How will the client-side representation of the objects be implemented without changing existing classes and
without using OTT?

2. How can one build or deduce the data model from the existing object model?

4.1 First prototype

Immediate and apparent answers to the above questions are:

1. Without OTT, the persistent object classes have to be implemented by the user by hand. A persistent object
class should be a PObject and a CMS object at the same time. Practically this means the persistent object
is multiple inherited from PObject and the CMS transient class. For example, the persistent class of the
PSimHit object is PSimHit_C which has both PObject and PSimHit as base classes. And PSimHit_C is
user-implemented.

By using multiple inheritance, the existing CMS class is not touched while the behaviour of the transient
object is conserved.

2. The straightforward way to extract data information from the existing software is to look into the header(./)
files. For instance, by looking into the header file PSimHit.h one knows that the object PSimHit has eight data
members and two of them are objects of type Local3DPoint. Then the data structure of the Local3DPoint
datatype can be found in header file Local3DPoint.h.



These are the basic ideas behind our first prototype. Furthermore, we also want to see if Oracle related software
is potentially easy to be integrated into existing CMS software. There are mainly two problems. As shown in first
lines of the code listed in Appendix B, when building the application directly on OCCI, all the persistent objects
should be registered to a hash map oracle::occi::Map for one Oracle session. This requires the application to
know and to register explicitly in advance all the possible persistent objects. It’s impossible to integrate such kind
of applications into a generic software framework like COBRA. Besides, OCCI functions and calls with heavy
SQL flavour are not hidden at all from the user.

Our solutions to these problems are the following. To avoid registering all objects in one go and from one place,
each persistent object has an registration agent, e.g. PSimHit_Regist. Like PSimHit_C, it’s completely independent.
A helper class PObjRegister registers a persistent object only when required. To encapsulate common OCCI or
SQL style functions, three other classes have been developed. PManager handles general services as open/close
Oracle connection, commit, etc and it collaborates with PObjRegister for object type registration. PReader is an
iterator-like template class which handles retrieving data from Oracle. Similarly, PWriter handles saving data into
Oracle.

In summary, it is very difficult to integrate applications built directly on OCCI as such into a generic software
framework like COBRA. To make it possible, some kind of middle-layer software has to be developed. On one
hand, persistent object related classes should be independent so that anyone from any level of the CMS software
can use them and/or create new ones; on the other hand, common Oracle services and SQL commands should be
encapsulated into common software.

An independent module ”Oracle/RDBPopulator” has been implemented and called from the main application
inside COBRA. The modified COBRA application populates detector hits into both Objectivity database (as it
does before) and the Oracle database. No other CMS code is modified. From user application level, i.e. from
ORCA (the CMS reconstruction software)[6], users are not aware of the change.

An example of user application building on these middle-layer classes can be found in Appendix C. As we can
see from the example, comparing to the applications building on the OTT generated classes, the chunk of code
handling the object registration disappeared. Instead, the registration task is handed to the independent classes like
PSimHit_Regist, Local3DPoint_Regist etc. So user can register objects from any level of the software framework.
This also makes software packaging easier. Besides, heavy SQL flavoured calls like setSQL is now hidden from
the user. One just passes an instance of a transient object to its corresponding persistent class to make it eligible
for database operations. The application is much simpler to understand and to write.

A more detailed description of the implementation of this prototype can be found in the Reference [7].

4.2 Second prototype

Though the first prototype basically solved our problems, it requires quite a lot of manual work by users. First of
all, one has to go through all the related header files to figure out a data model. This can be frustrating especially
when all the header files are scattered in different directories. Then user has to implement the persistent classes,
like PSimHit_C, by hand even though major part of these code are repeated each time.

Not completely satisfied by the first prototype, we ask ourself again the previous two questions, and we come up
with the following new answers:

1. The concrete persistent object class should be implemented by the compiler at the compilation time. Similar
and/or repeated implementations should be generalised and be put in a class library.

2. By using a C++ parser, one can extract data information from existing header (.5) files.

In this prototype, there are two distinct parts. On one hand, there’s a C++ parser that takes an object header (./)
file, say PSimHit.h, as input then analyses and traverses the resulting Abstract Syntax Tree (AST) to generate all
the related data type definitions. User can send these data type definitions to the Oracle database to define the
schema.

On the other hand, the middle-layer is enriched by three template classes. PObjHandle is a template class that
encapsulates most of the implementations of a persistent object (e.g. PSimHit_C ) user had to write by hand with
the first prototype. By using this template class, we delegate most of the task of implementing a persistent object
to the compiler. But user still has to do something: OCCI wants to know what to stream and of course the template
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class PObjHandle does not know this. To make life easier for users, our middle-layer provides two other template
classes Streamln and StreamOut. They are generic functor objects that behave like functions and accept any number
and any type of arguments. Now, what remains for user to do is very simple: for each persistent object, one has to
implement a class with three member functions: a constructor that copies the transient object, a member function
that tells the generic streamer what to stream in and a similar member function that tells the generic streamer what
to stream out. An example of the user implemented class is listed in Appendix D.

The code in the application appears similar to that with the first prototype except one has to use PObjHandle
<PSimHit_C> instead of PSimHit_C directly.

A more detailed description of this prototype can be found in reference [8].

4.3 Prospects

With respect to the first prototype, much less manual work is needed by user in the second prototype. Although in
the second prototype the code generation is more automatic, we are still not completely satisfied. Once one is able
to extract all the type information of the class hierarchy from the C++ parser, there should be no need for the user
to instruct the generic streamer with these information again. An ideal generic streamer should be able to look for
the required information in a data dictionary and no intervention from user should be required. What stored in the
data dictionary is the data information which can be extracted from a C++ parser, a compiler or even a decompiler.

How to implement this kind of intelligent generic streamer strongly depends on how the data dictionary is construc-
ted and what information it contains. Thus the design and the implementation of an intelligent generic streamer
is beyond the scope of this note. We are aware that, at this very moment, the RTAG1(Persistency Framework) of
the LHC Computing Grid Project (LCG)[9] has been asked to construct a component breakdown for a persistency
framework of which a data dictionary is clearly a part. We plan to follow closely its work and the activity that will
follow that should bring to the production of a common LHC persistency framework. We are definitively interested
in the possibility to reuse its data dictionary, and eventually other components, to build the required middle-layer
above ORACLE OCCI.

5 Software quality of OCCI

During the test of OCCI using our model only, we have encountered several bugs. One is the memory leak in the
object cache. Another problem deals with reading an object from the database when this object has another object
as its member. These bugs are fixed by Oracle developers eventually. But one has to follow the Oracle software
development cycle which might take one month to get back a bug fix.

When using OCCI to write applications, one also has to pay attention to some details like to unpin object by hand to
avoid memory leak, to deliberately add a scope to avoid program crash. We don’t think it should be the application
programmer’s responsibility to do such kind of work.

Therefore, we don’t judge the current version of OCCI (9.0.1.2) as a mature bug-free software.

6 First attempt to benchmark the OCCI performance

A speed performance test of OCCI has been setup and we obtained some preliminary results. But these numbers
are not stable since we don’t have an isolated and controlled test environment. We did the test using the IT/DB
machine where client and server are running on the same machine and there are also other applications running on
that machine.

7 Conclusions

For the time being, we consider that OCCI is not completely bug free and stable enough for us to make any
benchmark tests. Nevertheless, we are ready in benchmarking OCCI using the test programs we have developed.
From the software engineering point of view, OCCI is too thin to be a stand-alone layer between the Oracle
database and CMS object-oriented software framework. Efforts are needed to build a middle-layer between OCCI
and CMS software. Our simple prototype shows some of our design ideas about the middle-layer.

From the evaluation work we gained more experiences in software design and generic programming which are
very useful in any software development. Now we have better understanding of the object-relational database and
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we have a clearer view of what an interface to an object-relation database would/should look like. This is useful
experience in design any persistency framework that glues Object-Oriented applications with an object-relational
database back-end. First of all, we think the object model should drive the data model in designing such an inter-
face. This interface should be as generic as possible. Common services should be centralised and be encapsulated
in generic and reusable classes while concrete object level classes should be decoupled and delocalized to make
packaging of the applications possible.

We are looking forward to the result of the LCG common project on the persistency framework. We hope to be
able to achieve a seamless integration between the product of such a project and OCCI, along the line described in
this note.
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Appendix A: An example OTT generated C++ header file

class Local3DPoint_C : public oracle::occi::PObject {
protected:

oracle: :occi: :Number theX;

oracle::occi: :Number theY;

oracle::occi: :Number theZz;
public:

void *operator new(size_t size, void *ctxOCCI_);

void *operator new(size_t size);

void *operator new(size_t size, const oracle::occi::Connection * sess,
const OCCI_STD_NAMESPACE::stringé& table);

OCCI_STD_NAMESPACE: :string getSQLTypeName () const;

Local3DPoint_C();

Local3DPoint_C(void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };
static void *readSQL (void *ctxOCCI_);

virtual void readSQL(oracle::occi::AnyData& streamOCCI_);

static void writeSQL (void *objOCCI_, void *ctxOCCI_);

virtual void writeSQL (oracle::occi::AnyData& streamOCCI_);

}i



Appendix B: An example of application using OCCI/OTT

void psimhit_map (oracle::occi::Environment* envOCCI_)

{

oracle::occi::Map *mapOCCI_ = envOCCI_->getMap();
mapOCCI_->put ("USER.LOCAL3DPOINT_O", Local3DPoint_C::readSQL,
Local3DPoint_C::writeSQL);

mapOCCI_->put ("USER.PSIMHIT_O", PSimHit_C::readSQL, PSimHit_C:

mapOCCI_->put ("USER.OVPSIMHIT_O", ovPSimHit_C::readSQL,
ovPSimHit_C::writeSQL);

mapOCCI_->put ("USER.OVREFPSIMHIT_ O", ovrefPSimHit_C::readSQL,
ovrefPSimHit_C::writeSQL);

void write (Connection *conn)

{

int nevt=100000;
int nhits=10;

for (int j=0; j<nevt; j++) {
OCCI_STD_NAMESPACE: :vector<PSimHit*> hitcoll;
for (int i=0;i<nhits;i++) {
Local3DPoint* ip=new Local3DPoint(1l,1,1);
Local3DPoint* op=new Local3DPoint (-1,-1,-1);

:writeSQL) ;

PSimHit* hit=new (conn, "PSIMHIT_ TAB") PSimHit (ip,op,1,1,1,1,1,1);

hit->unpin();
hitcoll.push_back (hit);
}
conn—->commit () ;
hitcoll.clear();

void read (Connection *conn)

{

Statement *stmt = conn->createStatement ();

stmt->setSQL ("Select ref(t) from PSIMHIT_TAB t");

ResultSet *resultSet = stmt->executeQuery();

while (resultSet->next () == ResultSet::DATA_AVAILABLE) {
Ref<PSimHit>hit_ref = resultSet->getRef (1);
PSimHit *PSimHit_ptr;
cout << "Hit id=" << int (hit_ref->trackId()) << endl;

stmt->closeResultSet (resultSet) ;
conn->terminateStatement (stmt) ;

int main(int argc, char** argv)

{

if (argc<2) |

cout << "arguments: w:write, r:read" << endl;
exit 1;
}
Environment *env = Environment::createEnvironment (Environment
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psimhit_map (env) ;

Connection *conn = env->createConnection ("user", "passwd","");
try{
switch(argv[1]1[0]) {
case 'w’' :
write (conn); break;
case "r’
read (conn); break;
default

cout << "wrong argument" << endl; Dbreak;
}
} catch (oracle::occi::SQLException &e)
cerr << "SQL exception :" << e.getMessage () << endl;
}
env->terminateConnection (conn) ;
Environment::terminateEnvironment (env) ;

return 0;



Appendix C: An example of application using the first prototype

class hitwrite({
public:
hitwrite (const PManageré& mymanager, int nevt=20)
{
int nhits=10;
for (int j=0; j<nevt; j++) {
vector< Ref< PSimHit_C> > hitcoll;
for (int i=0;i<nhits;i++) {
Local3DPoint ip(1,1,1); Local3DPoint op(-1.5,-1.6,-1.7);
PSimHit myhit (ip,op,1,1,1,1,1,1);
PSimHit_C* hit=save<PSimHit_C,PSimHit> (mymanager, "PSIMHIT_TAB",myhit);
hitcoll.push_back (hit);
}

ovPSimHit_C* hitcoll_c=save<ovPSimHit_C,ovPSimHit> (mymanager,
"OVPSIMHIT_TAB",hitcoll);

hitcoll.clear();

mymanager.commit () ;

}
}i

class hitread{
public:
hitread(const PManager& mymanager) {
Ref< ovPSimHit_C > hitcoll_ref;
vector< Ref < PSimHit_C > >* v;
PReader< ovPSimHit_C > red(mymanager, "OVPSIMHIT_TAB");
while (red.next ()) {
hitcoll_ref=red.getObj();
v=& (hitcoll_ref->getv());
int vsize = v->size();
for (int 1i=0; i<vsize; i++) {
cout << "Hit id=" << (*v) [i]->trackId() << endl;

}

Ref < PSimHit_C > hit;
PReader< PSimHit_C > redhit (mymanager, "PSIMHIT_TAB");
while (redhit.next ()) {

hit=redhit.getObj();

cout << "Hit id=" << hit->trackId()<< endl;

}
}i

int main(int argc, char** argv)

{
if (argc<2) |
cout << "arguments: w:write, r:read" << endl;

exit (1);

PManager mymanager ("user", "passwd") ;
PSimHit_Regist a(mymanager);
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Local3DPoint_Regist b (mymanager) ;
ovPSimHit_Regist c(mymanager) ;
mymanager.open () ;

try{
if (argv[1][0] == "-"){
switch(argv([1][1])

14 14

case w

hitwrite t (mymanager);
break;

hitread t (mymanager);
break;

}
default

{ cout << "wrong argument" << endl;

}else{cout << "wrong argument" << endl;}
} catch (oracle::occi::SQLException &e)
cerr << "SQL exception :" << e.getMessage()

exit (-1);

mymanager.close () ;
return 0;

break; }
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Appendix D: An example of user implemented class using in the second
prototype

#define private public
class Local3DPoint_C{
public:

Local3DPoint_C(Local3DPointé& t) :proxy_ (t) {
}

void writeSQL (occi: :AnyData& stream) {
StreamOut<float, float, float> st;
st (stream, proxy_.xX_,Proxy_.y_,Proxy_.z_);

void readSQL (occi:: AnyData& stream) {
StreamIn<float, float, float> st;
st (stream, proxy_.xX_,Proxy_.y_,Proxy_.z_);

operator const Local3DPoint & () const { return proxy_;}

private:
Local3DPoint & proxy_;

}i
typedef PObjHandle<Local3DPoint_C> Local3DPointHandle;

#endif

The #define private public is required to get access to the data members of Local3DPoint.

The implementation of the proxy (pure reference, reference-counted, etc) will depend on how the user instances
will be actually managed.
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