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Abstract

TheCMS datagrid systemwill storemany typesof datamaintainedby the CMS collaboration.An
importanttypeof datais theeventdata,which is definedin thisnoteasall datathatdirectly represents
simulated,raw, or reconstructedCMS physicsevents. Many views on this datawill exist simulta-
neously. To a CMS physicscodeimplementerthis datawill appearasC++ objects,to a taperobot
operatorthedatawill appearasfiles. Thisnoteidentifiesdifferentviewsthatcanexist, describeseach
of them,andinterrelatesthemby placingtheminto a verticalstack. This particularstackintegrates
severalexisting architecturalstructures,andis thereforea plausiblebasisfor furtherprototypingand
architecturalwork.
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1 Some terminology: objects, events, data products

TheCMSexperimenthasanobject-orientedsoftwareeffort andasaresulttheword’object’ is heavily overloaded.
In somecases,the word ‘object’ is understoodto mean‘a persistentobject as definedby the Objectivity/DB
databasemodel’. In othercases,onetakestheworld-view that ‘everythingis anobject’. In theselattercases,the
descriptionof somethingasbeing‘an object’ not saytoo muchaboutthestatusof thatthing in thedatamodel.

To preventambiguities,this noteavoidsusingtheword ’object’. Insteadtheterms‘event’ and‘dataproduct’are
used,aswasdonein [1]. Thesetermsaredefinedasfollows.


 Event. In thecontext of thestorageandanalysisof CMS detectordata,anevent is definedasthecollision
phenomenathat occur during a singlebunch crossing. An event is not any particularpieceof datain a
database,ratherit is adistinctrealworld phenomenonthatcanbemeasuredby theCMSdetector, andabout
whichdatacanbekeptin database.In othercontexts, in particularin detectorsimulations,aneventcanalso
bea singleindividualcollision duringabunchcrossing.


 Data Product. In this note,thetermdataproductis usedfor a smallself-containedpieceof data.In CMS
terminology, asinfluencedby theObjectivity/DB terminology, dataproductsareoftencalled‘objects’. The
typical sizeof a dataproductis 1 KB - 1 MB. A dataproductis by definitionatomic: it is thesmallestpiece
of datathatthesystemcanindividually handle,or needsto handle.

In this note,a dataproductusuallyis a pieceof datathatholdssomeparticularinformationabouta singleCMS
event.Oneexceptionis the‘parameterdataproduct’in section4.1,whichholdsparametersfor aphysicsalgorithm
instead.Eacheventthatis representedon storageusuallyhasmany dataproductsassociatedwith it, dataproducts
which all hold information aboutthat event. However, in this note a dataproductholding event datais only
associatedwith onesingleevent for which it holds information. Figure1 illustratesthis relationbetweendata
productsandevents.
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The labels like ‘ESDv2_2’ in this picture are only a simplified
approximation of the expected product naming scheme.

Figure1: Differentraw andreconstructeddataproductsthatexist at somepoint in timefor two events.
Each event has a fixed numberof raw data products,but a variable numberof reconstructeddata
products.(Thisfigurewasreproducedfrom[1].)
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2 The view stack

The view stack,asintroducedin the abstractof this note,is a vertical stackof differentviewpointsof the CMS
eventdatain theCMS datagrid system.A descriptionof theCMSdatagrid systemcanbefoundin [1].

Fromtop to bottomthestackcontainsthefollowing views.

1. High-level data views in the minds of physicists

2. High-level data views in physics analysis tools

3. Virtual data product collections

4. Materialized data product collections

5. File sets

6. Logical files

7. Physical files on sites

8. Physical files on storage devices

9. Device-specific file views

Figure 2: Theview stack, containing9 different views of the CMSeventdata in the CMSdata grid
system.Thehighest-levelview is on top.

2.1 Description of views 1–4

The high-level data views in the minds of physicistsareat the top of the stack. In the end,thesearethe sole
purposeof having a CMSdatagrid systemat all. However, this notedoesnot elaborateon thesehigh-level views,
asCMS doesnot currentlyexpect the Grid projectsto get involved in the short term in directly supportingthe
managementof suchviews throughresearchor software[1].

Next arethehigh-level data viewsin physicsanalysistools, the toolsusedby thephysiciststo interactwith the
CMSdatagrid system.Many suchtoolsmightexist,offeringmany differentviews. See[1] for a longerdescription
of thesetools,againtheGrid projectsarenot expectedto getinvolvedin theshorttermin building thesetools.

Thisnotedefinestheview of virtual data product collectionsasthehighest-level view thatis auniform,common
view acrossthe whole CMS collaboration. Section4 containsan exhaustive descriptionof this view. A short
descriptionis asfollows. A data product is a small self-containedpieceof data,a pieceof datathatholdssome
particularinformationabouta singleCMS event. The typical sizeof a dataproductis 1 KB - 1 MB. A virtual
data product is onethatdoesn’t necessarilyhave a physicallyexisting representationof its valueuntil this value
is requested.A virtual productexistspurelybecausea specificationof how to computeits valuehasbeenstored
in thegrid. Theactof computingthevalueof a virtual dataproductis calledthematerialization of thatproduct.
A virtual dataproductbothhasa virtual existenceandavirtual location. Thesetwo typesof virtuality werefirst
definedin [6]. Virtual existencemeansthe physicalproductvaluemight not exist at all. Virtual locationmeans
that, if a physicalvaluedoesexist, thenit canbe referencedirrespective of whereit is stored.Eachvirtual data
producthasa UID (uniqueidentifier)thatcanbeusedto obtaintheproductvaluefrom thegrid system.A virtual
data product collection is a setof virtual dataproducts,usuallya setof productsthat arerelatedin someway
thatis significantin higher-level views. Sucha collectioncanbedefinedin full by specifyinga setof virtual data
productUIDs.

The supportof a virtual dataproductcollectionview in its computingsystemis a long term goal of the CMS
experiment,a goal that hasremainedsurprisinglyconstantsince its initial formulation around1996 [3]. The
exhaustivedescriptionof thisview thatisprovidedin section4 is relativelynew though,thisdescriptionwascreated
aroundFebruary2001andis gearedtowardstheGrid projects.CMSdoesnot currentlyhaveanimplementedAPI
thatsupportsthecompletevirtual dataproductcollectionsview in a Grid context. Ratherthe implementedAPIs
in thecurrentCMS physicsanalysisframework [5] shouldbeseenasbeingoneconcretestepin anevolutionary
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developmentprocesstowardsfull supportof this view. In the short term (from now till 2003,see[1]), the Grid
projectsare not expectedto be involved directly in enhancingthe implementationof this virtual dataproduct
based,or objectbased,view. However, long-termGrid researchstill hasto takethisview into account,asit is more
fundamentalto CMScomputingthanany file basedview.

Thematerialized data product collectionsview is relatedto thepreviousview of virtual dataproductcollections.
Thedifferencebetweenthetwo is thatthedataproductsin amaterializedcollectiondonothaveavirtual existence
anymore. By definition, if a collectionof materializeddataproductsis saidto exist in the grid, this implies that
all the valuesof the dataproductsin that collectionexist somewhereon storagein the grid. The productsstill
retaintheir virtual location: thelocationswheretheproductvaluesexist arenot presentin this view, alsoit is not
guaranteedthatall thesevaluesexist onstorageat thesamelocation,andin factsomevaluesmightexist onstorage
in multiple locations.Again, eachof the productsin a materializeddataproductcollectioncanbe identifiedby
a UID. The CMS physicsanalysisframework [5] currently implementsa basicservicefor creating,accessing,
andmanipulatingmaterializeddataproductcollections. In the currentframework, collectionsarereferencedby
name. The framework supportsseveral typesof many-to-many mappingsfrom thesecollectionsto the actual
(Objectivity/DB database)files containingtheproductvalues.Theexactmany-to-many mappingmechanismthat
is supportedwasnot specificallydesignedfor thegrid. Insteadseveralelementsandcapabilitiesof it have arisen
almostaccidentallyasby-productsof featuresof theObjectivity/DB databaseproduct.Thequestionof how well
the currentmechanismis adaptedto the grid usecaseis still very mucha researchquestion.At this point it is
uncertainhow muchof thesolutionwehavealready.

2.2 Description of views 9–5

Theremainingviewsarebestintroducedby startingat thebottomof theview stack.

Device-specificfile viewswill play a limited role in the grid monitoringandhardwaremaintenancedomain. As
anexample,in thedevice-specificview of afile ona tapesystem,theidentityof thetapecartridgewhichholdsthe
file is visible. In general,grid componentswill notmanipulatefilesusingAPIs basedon this view.

Theview of physicalfileson storagedevicesis thelowest-level genericview of files. Thisview is correspondsto
thecommondevice-independentfile accessandmanipulationinterfacethatis implementedby thegrid components
wrappingtheactualdevicesin theCMSdatagrid system.In thisview, many devicesexist,andeachdevicecontains
asetof files. For eachdeviceit is knownatwhichgrid sitethisdeviceis located.Foreachfile onadevice,estimates
of performancecharacteristicslikethefile accesstimecanbeobtained.Theexactdefinitionof thisview is coupled
to theexactdefinitionof thecommonstoragedevice interfacein theCMSdatagrid, andthis interfacedoesnotyet
have a fixed,stabledefinition. TheGrid projects,in particularPPDGin collaborationwith theEU DataGrid,are
still actively designinganddevelopingsucha commoninterface,alsotheGlobalGrid Forum(GGF)will likely be
involvedhere.Thebasicfile operationsarewell understoodof course,but otheroperationsexpectedat this level,
likefile pinningandobtainingperformanceestimates,arestill in a moreconceptualphase.

Theview of physical fileson sitesis similar to thepreviousoneexceptthatit abstractsaway from file locationon
specificdevicesinsideasite.In thisview, thereis asetof grid siteseachcontainingasetof files. If asite � contains
a file � , this implies that, in thestoragedevice view, at leastonedevice at site � containsfile � . Thedistinction
betweenthis view andthepreviousonewasintroducedin [7]. Thedistinctionis motivatedby datamanagement
issuesat largesiteswhich have many distinctstoragedevices. Sucha sitemight want to move or replicatea file
betweenits storagedevices,while at the sametime maintaininga fixed site-specificbut device-independentfile
namewhich it canexposeto the outsideworld. This way the site canmove the file internally, without fear of
causingglobalinconsistency, evenif thenetwork link to theoutsideworld is down.

Theview of logical files is a file view whereall locationinformationis absent.Logical files simply ‘exist’ in the
grid. Logical files will oftenhave someapplication-specificmetadataassociatedwith them. A peculiarproperty
of logical files is that thereis no grid API by which onecanopenandreadthecontentsof a logical file. Instead
themodelis that thegrid maycontainseveralphysicalfiles which areknown to berepresentationsof the logical
file. To operateon the ‘contents’of a logical file, anAPI hasto be invokedwhich mapsthe logical file to oneof
thephysicalfiles thatrepresentsit, andthenthis physicalfile canthenbeopened.In thecaseof read-onlylogical
files, this indirectway of doingthingshasno big implications,evenif thelogical file hasmany physicalfiles that
representit. However, in thecaseof read/writelogicalfiles,write operationswill causethephysicalfiles to goout
of syncat leasttemporarily, andthis leadsto theneedto defineconsistencymodelsand policieswhich specify
the exact allowed write operations,and the semanticrelationshipbetweenthe logical file, its metadata,and its
associatedphysicalfile contents.
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Theconceptsof logicalandphysicalfilesarestronglyrelatedto theGlobusreplicacatalog[8], whichimplementsa
serviceto maintaina mappingfrom logical to physicalfiles. By design,theGlobusreplicacatalogavoidsdefining
a specificconsistency model,insteadthis modelis definedasapplication-providedandapplication-specific.This
makestheGlobusreplicacatalogimplementationmoreusefulto a wider rangeof applications.However, it also
leavesa largesemanticgapthathasto befilled. Severalconsistency modelswith relevanceto physicsapplications
weredevelopedin [1] and[10]. Somefurtherpointsaboutconsistency managementaremadein section5 of this
note.

At the level of abstractionabove logical files, thereis the view of the grid containingseveral file sets. The file
setconceptwasintroducedin [1] asa generalizationof somedatahandlingpatternsthatarepresentin thecurrent
CMS productioneffort [4] [5]. A file set is a setof logical files, usuallya setof logical files that arerelatedin
someway that is significantin higher-level views. This setof logical files is representedasa setof logical file
names.A file setcanalsohavesomeapplication-specificmetadataassociatedwith it. A file setexistsby virtue of
beingregisteredin agrid-widefile setcatalogservice.Thecontentsof file setscanoverlap:onelogicalfile maybe
presentin many file sets.As with logicalfiles, thereis noAPI to directlyopenandreadthe‘real’ contentsor afile
set,sothereis againa needfor consistency models.In fact,thedefinitionof file setsin [1] requiresthateachfile
sethasa particularconsistencymanagementpolicy registeredwith it in thefile setcatalogservice.This policy
specifieswhich accessandreplicationoperationsareallowableon theunderlyingphysicalfiles, if theconsistency
modelof thefile setis to bemaintained.
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3 Relation of existing and planned software to the view stack

Thissectionrelatesexisting andplannedsoftwareto theview stackabove.

3.1 Replica catalogs

Replicacatalogs(figure 3) provide mappingsbetweenview levels 6,7, and8. Both GDMP [4] andthe Globus
ReplicaCatalog[8] do not make a distinctionbetweena singlesiteanda singlestoragedevice,somappingthese
to a view level is abit arbitrary.

GDMP canbeintegratedwith a massstoragesystem(MSS)backend,which takescareof stagingfiles from tape
to disk. At bothCERNandFermilabthereareGDMPserversdeployedin thisway: in thatcasethefiles in asingle
GDMPservercanbeinterpretedasfileson asite,ratherthansiteson aparticularstoragedevice.

TheGlobusReplicaCatalogwith HTTP redirectionasproposedin [7] implementsa mappingfrom a logical file
to a physicalfile on a site,andthen,usinga site-specificcatalog,down to a physicalfile ona storagedevice.

MSS backend
GDMP with

Globus RC HTTP redirection

Globus RC with
7. Physical files on sites

6. Logical files

8. Physical files on storage devices

GDMP

Site-specific catalog

Figure3: Relationwith existingfile catalog implementations

3.2 Current CMS production

Figure4 shows how variouscomponentsusedin the currentCMS productioneffort provide mappingsbetween
view levels.A brief overview andintroductionto CMS productioncanbefoundin section6 of [1].

GDMP and
GDMP with MSS backend

1. High-level data views in the minds of physicists

2. High-level data views in physics analysis tools

3. Virtual data product collections

4. Materialized data product collections

5. File sets

6. Logical files

7. Physical files on sites

8. Physical files on storage devices

9. Device-specific file views

web site
CMS production

tool when reading data
ORCA/CARF+Objectivity

CMSIM simulation tool or

when creating new simulated data

using extended AMS server,
when reading data

ORCA/CARF+Objectivity tool,

ORCA/CARF+Objectivity simulation tool

Extended AMS server 

Figure4: Relationwith thecomponentsusedin currentCMSproduction

In termsof views, productionproceedsroughly asfollows. First, somephysicistin CMS decidethat they need
a new datasetof simulatedCMS physicsevents,a setwith certainproperties.They communicatethis requestto
theCMS productionteam. This requestwill thenbe registeredin the ‘CMS productionweb site’ [9]. This web
site is not just a setof HTML pages,it is really a specializeddatabasewith a webfront-end,andwe call it ‘web
site’ for lack of a betterterm. After registrationin the CMS productionweb site,andthe requesteddatasetwill
have a new uniquedatasetnameassociatedwith it (for exampleeg ele pt30 eta17). The productionweb
site will alsohave (referencesto) all informationneededto createthis dataset.This informationtakesthe form
of input parametersto theCMS simulationcodes,alsosometimesincludingreferencesto specializedversionsof
somecodeswhichareneeded.Thewebsitethereforemaintainsamappingfrom thedatasetname(anidentifierfor
aview at level 1) to a view at level 2, a view in termsof theCMSsimulationtoolswhich producethedata.

7



Thena simulationtool canbe run to createthe data. First the site hasto be chosenwherethe tool will actually
be run: this choiceis currentlydone‘by hand’. Thenthe tool input parameterstaken from the productionweb
site areextendedwith the necessarysite specificparameterslike the filesystemlocationon which the output is
to be written. This preparationof the full site-specificsetof input parametersfor a run of a tool is still partially
doneby hand,but it is in the processof beingfully automated.Thereare two simulationtools, taking careof
differentpartsof a full simulationchain: the first is CMSIM which is Fortranbasedandthe secondis the C++
basedORCA/CARFtool whichis integratedwith theObjectivity/DB databasesystem.CMSIM will bereplacedin
futurewith amoremoderntool similar to ORCA/CARF[1]. In termsof view manipulation,it canbesaidthatboth
currentsimulationtoolsmapa view at level 2, their input parameters,to views at both level 4 andat level 8. At
view level 8, thesetoolscreate(or appendto) files on particularstoragedevices.Thefile namesandlocationsare
encodedaspartof thetool input parameters.At view level 4 however, thetoolsoutputcollectionsof materialized
dataproducts,andthesecollectionscanbenavigatedlateron whenreadingthesimulationoutput.

For CMSIM output, the mappingbetweenthe materializeddataproductcollection view and file view is very
direct:onefile containsexactlyonecollection,andfile nameis alsousedasthecollectionname.For theoutputof
ORCA/CARF+Objectivity, themappingis muchmorecomplex. Thenameof the ‘output collection’ is specified
asan input parameterwhenrunningthe tool, andthe outputfile namesaregeneratedaccordingto somelogical
schemethatembedsthis collectionnameinto eachgeneratedfile name.Multiple instancesof the ORCA/CARF
tool, runningconcurrentlyat thesamesite,canbewriting at thesametime to thesameoutputcollectionandthe
sameoutputfiles. Thecurrentwriting schemetriesto ‘fill up’ outputfiles to sizesjustbelow 2 GB beforecreating
additionalfiles. This strategy of filling up files is usedmainly to copewith a constraintof thecurrentlydeployed
versionof theunderlyingObjectivity/DB databasesystem.This versionmakesit very painful to have morethan
64K differentdatabasefiles in theproductioneffort, so thegoal is keepthis numberbelow 64K. Newer versions
of Objectivity/DB have facilities to easesomeof the pain of having morethan64K differentdatabasefiles, but
thereis no time-frameyet on a switchto usingthesenewer facilities in theCMS productioneffort. In the longer
term however we canexpecta lowering of the pressureto fill up files to near2 GB, which shouldbe goodfor
scalabilityandmanageabilityof theproductioneffort, asit allows for a greaterdecouplingbetweenthedifferent
runninginstancesof theORCA/CARFtool.

In ORCA/CARF, an exampleof collection nameat level 4 is /System/SimHits/h115gg/h115gg. The
actualmappingfrom suchacollectionnameto asetof physicalfilesis maintainedby creatingor updatingmetadata
structuresin two places. First thereis metadatain an Objectivity/DB ‘federationcatalog’ file, secondthereis
metadatain an ORCA/CARF ’.META.’ databasefiles. When a collection is moved or copiedelsewhere, it is
not sufficient to just move thedatabasefiles holdingthematerializeddataproductvalues:to make thecollection
accessibleonealsohasto replicatethemappingmetadata,replicatepartsof theonehasto replicatedatafrom the
federationcatalogfile, andsomeof the’.META.’ files. Many ORCA/CARFrunswill needtwo input collections,
a ‘signal’ anda ‘pileup’ collection,which bothhave to bepresentat thesamesite.

At somepoint after new datahasbeencreatedfor a particularproductionrequest,the productionweb site will
beupdatedto recordrelevant informationlike thenew requeststatus,outputfile names,andthecurrentlocation
of thesefiles. In the end,whenthe whole requesteddatasethasbeencreated,the productionweb site contains
mappingsfrom thedatasetnameto multipleviewsof thecreateddata,viewsat(roughly)levels4 to 7. In addition,
theGDMPsystemrecordsthemappingfrom view level 6 (logical file name)on thedatato views7 and8.

Readingof productiondataproceedsas follows. First, the productionsite is usedto discover the nameof the
productiondatasetthat is needed.Thenthe this nameis mappedto the setof files that areneeded.Thesefiles
will alreadybeat a suitablesite,or elsethefile setcanbesuppliedto a GDMP commandwhich copiesthefiles
to aselectedsuitablesite.TheGDMPsystemwill alsotakecareof updatinganObjectivity/DB federationcatalog
file at thatsitein sucha way thatanORCA/CARFinstancerunningat thatsitecanmaptheappropriatecollection
nameat level 4 to theappropriatephysicalfiles at level 8. After that,ORCA/CARFcanberunat thesite,with the
collectionnameasaninput parameter.

Somelarge siteswill not run a plain versionof ORCA/CARF+Objectivity, but a versionthat usesan ‘extended
AMS server’. This extendedserver implementsa mappingbetweenfiles on thesiteandfiles on specificdevices,
andalsooftenprovidesintegrationwith a massstoragesystem,allowing thesitegreaterflexibility in moving files
betweendevices.
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3.2.1 Multiple mapping routes

Figure5 showsthatin CMSproductiontherecanbealternativerouteswhenmappingfrom level 1 down to 8. One
routeis to govia theproductionwebfrom 1 to 6, thenvia GDMPto level 8. Anotherrouteis to govia thewebsite
from 1 to 4, thenwith ORCA/CARF+Objectivity to level 8. Theformerrouteis usedwhenmoving dataaroundin
thegrid, the latter is usedwheninvoking actualphysicscodesonceall dataneededby thesecodesis on a single
site.

The existenceof multiple routesto mapbetweenviews hasmany consequences.To keepthe productioneffort
manageable,it is of courseessentialthat the alternative routesyield the sameresult. This meansthat the differ-
ent storedrepresentationsof the differentmappingsneedto synchronizedwith eachotherwhendatais added,
copied,or moved. Strategiesfor this re-synchronizationhave beengrown astheproductionefforts becamemore
distributed,but asthetimeof writing this re-synchronizationis still a taskthatreliesto a largeextentontheknowl-
edgeandcommonsenseof the productionmanagersensurethat everythinggoesright. This relianceon human
supervisionis of courseanimpedimentto thescalabilityof theproductioneffort, scalabilitybothin theplain size
of thehardwareusedandin thenumberof mappingupdateoperationsthatcanbesupported.An effort is currently
underwayaddmoreautomationin this area,by formalizingthemanualpracticesthathavebeendeveloped.In the
longertermit is expectedthat toolsandexpertisefrom theGrid projectswill play a role in increasingthelevel of
automation,robustness,andscalability.

3.2.2 No use of the virtual data view

ThecurrentCMSproductionsetupdoesnot usethevirtual dataproductview at level 3. Insteadonemapsdirectly
from adescriptionof how to materializedata,at level 2, to a materializeddataproductcollectionat level 4.

3.3 CMS data grid system of 2003

Figure5 showstherelationbetweentheview levelsandseveralsoftwarecomponentsin theCMSdatagrid system
of 2003asdescribedin [1]. See[1] for a moredetaileddescriptionof therolesof thesecomponents.

Comparingthe left handsideof figure 5 with the left handsideof figure4, the productionweb site andGDMP
havenow beenreplacedwith 4 components.Ontheright handsideof thesefigures,theORCA/CARF+Objectivity
componentshave beengeneralizedinto the‘CMS framework andobjectpersistency layer’. TheCMS file catalog
componenton theright in figure5 generalizesthemanagementissuessurroundingtheObjectivity/DB federation
catalogfileson thedifferentsites.

1. High-level data views in the minds of physicists

2. High-level data views in physics analysis tools

3. Virtual data product collections

4. Materialized data product collections

5. File sets

6. Logical files

7. Physical files on sites

8. Physical files on storage devices

9. Device-specific file views

CMS grid job 
decomposition

Logical file ->
physical file
catalog

File set catalog

CMS file catalog

Physics analysis tools CMS framework and

CMS framework and

object persistency layer, writing

object persistency layer, reading

Figure5: Relationwith thesoftware componentsin theCMSdatagrid systemof 2003[1]

3.3.1 Mapping from view 2 down to 5 in 2003

Accordingto [1], in the CMS datagrid systemof 2003,asa baselinethe mappingsfrom level 2 down to 5 are
all implementedby CMS-providedsoftwarecomponents.Nevertheless,in the context of the Grid projectsit is
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usefulto considerhow thesemappingsareexpectedto work. For example,themappingmechanismsabovethefile
level have an impacton thepropertiesof thefile basedgrid systemworkloadasseenat lower levels. Also, these
mappingsarerelevantto thelonger-termresearchefforts in thegrid projects.

Themappingfr om level 2 to 3 is expectedto betool-dependent,andwill beperformedby variousphysicsanalysis
tools.

Themappingfr om level 3 to 4 will bedoneby job planningcomponentsin thegrid system,componentswhich
translatejobsexpressedat level 3,asjobsonvirtual dataproductcollections,to jobsat level 4, onmaterializeddata
productcollections.Section4.2describesthevirtual dataproduct‘requestsets’of jobsat level 3 in moredetail.

Theexecutionof a job with a requestset  of virtual dataproductswill alwaysinvolveobtainingthematerialized
valuesof all thesedataproducts.However this is not necessarilydoneby creatinga set � of materializeddata
productswith ��� materialized����� . Insteadthejob planningcomponentscansufficewith obtainingmaterialized
dataproductcollections� ��� . . . � ��� sothatmaterialized��������� ��� ��� � � �!� . For obtainingeach��" thereare
threeoptions:

1. find set ��" amongthesetsof materializeddataproductsthatarealreadystoredin thegrid,

2. compute(materialize)��" from scratch,by insertingthenecessarysubjobsinto theconcretejob description
thatis beingcreated,

3. create��" from otheralready-storedcollectionsof materializeddataproductsby insertingasubjobthatruns
a dataextractiontool.

As a baselinefor the 2003CMS datagrid system,a CMS-written componentwill do the above job planning,
thoughnot necessarilyin a very optimalway. In the longerterm,theGrid projectscanmake R&D contributions
here.

Themappingfr om level 4 to 5 is expectedto bea one-to-onemapping:onesetof materializeddataproductsis
expectedto mapto onefile set. However, onesingleproductin a materializeddataproductcollectionmight not
have a mappingto a singlefile in the file set. It is possiblethat the representationof a singleproductmight be
scatteredovermultiple files in theset.Whetherthis scatteringwill actuallyoccurdependson theimplementation
of theCMS ‘objectpersistency layer’.

With respectto the mappingfrom level 4 to 5, it is also importantto note that the contents of file setsmay
overlap. It is possiblethattwo file setsbothcontainthesamelogicalfile. In termsof view level 4, thismeansthat
the contentsof two differentcollectionsof materializeddataproductsmight sharesomephysicalstoragespace.
This will in factbea commonoccurrence:it is expectedthata hugejob, in which saya 50 TB collectionof data
productsis to bematerialized,will beparallelizedby the job plannerinto smallersubjobs,say50 subjobswhich
eachmaterializea 1 TB collection,followedby a subjobwhich merges,by reference,these50 collectionsinto a
singlecollectionof 50TB. It is expectedthatevenafterthismergingoperation,the50smallercollectionsandtheir
underlyingfile setswill continueto be registeredin the catalogs,asthis informationwill likely be usefulwhen
optimizingtheparallelizationof futurejobswhich use(partsof) thesecollectionsasinput data.

3.3.2 Other types of data

Materializeddataproductcollections,with eachdataproductrepresentingpartof a CMS event,arenot theonly
typeof datathatis storedandtransportedin theCMSvirtual datagrid system.Othertypesof data,like ‘calibration
data’ and ‘slow control data’, will alsobe storedin file sets. Thesetypeswill have their own high-level view
models,andtheirown mappingsinto thefile setlevel.
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4 Detailed definition of view 3: virtual data product collections

This sectiongivesanexhaustive descriptionof theview 3 of virtual dataproductcollections.This is thehighest
view level that representsa uniform, commonview acrossthe whole CMS collaboration. The view was first
formulatedaround1996[3], but its descriptionhere,gearedtowardsthegrid projects,is relatively new. Besides
virtual dataproducts,theview alsocontainsentitieslike ‘uploadeddataproducts’and‘algorithms’, thesearealso
introducedbelow.

4.1 The CMS data grid system in view 3

Figure6 showsthestructureof theCMSdatagrid systemwhenseenfrom thevirtual dataproductcollectionsview.
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Figure6: CMSdatagrid structure in thevirtual dataproductscollectionsview

Thedatamodelof this view containsfour typesof entities: uploadeddataproducts,virtual dataproducts,algo-
rithms,andanalysisjobs.A data product is a self-containedpieceof datawith typically a sizeof 1 KB to 1 MB.
A dataproductis by definitionatomic: it is thesmallestpieceof datathat thesystemcanindividually handle,or
needsto handle.See[1] for a longerintroductionto dataproductsandtheir usein CMS. In view 3 therearetwo
typesof dataproducts:uploadedandvirtual. An uploadeddata product is onethatwasgeneratedexternallyand
thenuploadedinto the grid. In an uploadingoperation,the valueof the dataproductis transferredinto the grid,
anda uniqueidentifier(UID) is assignedto theproduct.

The UID (Unique IDentifier) is a label that uniquely identifiesan uploadeddataproduct,virtual dataproduct,
or algorithm. For uploadeddataproductsandalgorithms,theseUIDs aregeneratedon the fly, whenever a new
productis uploadedor new algorithmis addedto thegrid. TheUID is generatedeitherby thedatagrid itself or by
softwareoutsideit. It is not requiredthattheseUIDs areshortor meaningfulto humans:usersof physicsanalysis
softwareshouldneverhave to handletheseUIDs directly, softwarecomponentsoutsidethedatagrid, operatingat
higherview levels,usemetadatato connecttheseUIDs to higher-level human-understandableconcepts.Examples
of UIDs in Figure6 are �# $ , # , % and &�#'$ .
The grid is responsiblefor safelyandperpetuallystoringthe valuesof all uploadeddataproducts.To keepthe
versioningissuesin thisdatamodelsimple,uploadeddataproductvaluesareread-onlyandcanneverbechanged.
New or updatedvaluescanenterthegrid asnew uploadeddataproducts,andthesealwaysgetnew UIDs. Some
typesof uploadedproducts,thosethatrepresenttheoutputof simulationprograms,couldbedeletedfrom thegrid
aftersometime, in orderto recycle tertiarystoragespace.

Overtime,asshown ontheleft of figure6, theCMSdetectormeasurestheraw datafor differentsubsequentevents.
For eacheventa setof raw data products is uploadedinto the grid. The figure shows two products	# ( and
	% ( for eachevent ( . This ( is theevent ID , a compactidentifier thatuniquelyidentifiestheevent. In practice
theraw datafor oneeventwill probablybepartitionedinto some5–20products.Partitioningis doneaccordingto
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somepredefinedschemethatfollowsthephysicallayoutof thedetector. Severalsubdetectorsliceswill bedefined
andmappedto products,with eachproductcontainingthe measurementsof all sensitive detectionelementsin a
singlesubdetectorslice.

An algorithm is a pieceof executablecodethatcomputesthevalueof a virtual data product. Algorithmsalso
get UIDs. Versioningof algorithmsduring developmenthappensoutsidethe grid system,andthe sameUID is
never usedfor two differentversionsof algorithms. An algorithmcantake dataproductsasinput. In this data
model,every algorithm also takesat leastoneparameter as input, theseparametersinfluencethe functioning
of the algorithm. The parametersare all modeleduploadeddataproducts. This is modelingasuploadeddata
productsis mainly donefor simplicity: a richerdatamodelcouldalsocontainparameterswhich arevirtual data
productsthemselves,but sucha richer structureis not modeledhere,to avoid having to go into detail aboutthe
mechanismsthat generatethe parametervalues. Thereare two typesof parameter. Normal parameters are
uploadeddataproductsof a sizeof a few KB, examplesin figure 6 are &�#)$ and &�#�* . Lar ge parameters are
uploadeddataproductsin the MB–TB sizerange. An examplein figure 6 is +�&,$ . Theselarge parameterdata
productsencapsulateall largedatavolumeswhichdonotfit easilyin theevent-by-eventdataflow schemeof figure
6. Examplesof suchlargeparameterdataproductsin CMS area versionof thedetectorgeometry, a versionof a
calibrationdataset,anda setof simulatedpileupevents

���
. If analgorithminsidea CMS executableneedsa large

parametervalue,the algorithmwill on average,per event,only reada small part of the parametervalue. Which
part is readis generallynot visible beforehandto the grid components.An algorithmthathasa largeparameter
valueasinput will thereforehave to run in a locationthathasthewhole largeparametervalueavailableon local
storage,sothatfast‘random’ accessto thevalueis possible.

In this datamodel,theoutputof analgorithmis uniquely(anddeterministically)determinedby: 1) theUID of the
algorithm,and2) the valuesof the dataproducts(including parameters)that serve asinput and3) the platform
on which the algorithmis run. The platform is the combinationof hardware,OS,compiler, libraries,etc.used
to executethe algorithm. Platformdifferencesmay result in small, but for the physicistsometimessignificant,
deviations in the output. The CMS datagrid will thereforehave to include somefacilities to handleplatform
differences.

For the identification of virtual data products, this datamodelcombinesalgorithm,parameter, andotherup-
loadeddataproductUIDs in a function notation. Someexamplesin figure 6 arethe virtual dataproductUIDs
#-�.&�#'$ � +/&,$ � 	# $ � 	% $0� and %1��&�#2* � #)��&�#'$ � 	# $ � 	% $0�3� . In the CMS dataflow modelinsidethe grid
boundariesof figure6, therearenever two ‘alternative routes’to a singleproduct,routesin which differentalgo-
rithms or parametersareusedto computewhat is conceptuallythe sameproductvalue. Therefore,the function
notationin theproductUIDs ensuresthateverysingleCMSvirtual dataproducthasa singleUID only.

The UID of a materializedvirtual dataproductencodesexactly which algorithmsandparameterswereusedto
materializeit, but doesnot encodeany information on the platforms used. We thereforeintroducethe con-
ceptof a platform-annotated UID , which is a virtual dataproductUID in which eachalgorithmis annotated
with the identifier 45( of the platform on which the algorithm was run, or needsto be run. An example is
%76 89�.&�#�* � #:6 ;<��&�#'$ � +�&,$ � 	# $ � 	% $0�3� . If two virtual dataproductvalueshave thesameplatform-annotated
UID, they areguaranteedto bebyte-wiseequal.

In figure 6, the virtual dataproductsobtaineddirectly from raw dataaregenerallycalledESD (event summary
data)productsby CMS physicists,thoseobtainedfrom ESDproductsaregenerallycalledAOD (analysisobject
data)products. Arrangementsof algorithmsmorecomplicatedthan this 2-stagechainarealsopossible,tough
thereareno standardacronymsfor theintermediateproductsin suchmorecomplicatedarrangements.No matter
how complicatedthearrangement,thereis alwaysa strongseparationbetweenevents: virtual dataproductscan
alwaysbetracedbackto theraw dataproductsof a singleeventonly. Datafor differenteventsis only combined
insideanalysisjobs.
���

A setof simulatedpileupeventscouldalsobemodeledasa setof virtual dataproductvalues.In fact this would bemore
naturalthantheapproachtakenhere,which is to modelit asasinglelargeparameterdataproduct.Theapproachtakenhere
hasthebenefitof keepingthedataflow insidethegrid simple,but on theotherhandit fails to exposesomeschedulingand
optimizationopportunities.In thedataflow modelof figure6, a setof simulatedpileupeventscouldbegeneratedby first
definingsomevirtual dataproductsin termsof CMS simulationalgorithms,thenrunninga job which requeststheir values
andmergestheminto asetwhich is thejob output,andfinally uploadingthissetinto thegrid againasasingledataproduct.
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4.2 Analysis jobs and request sets

At this view level, physicistsmake useof collectionsof virtual and/oruploadeddataproductsby submitting
analysis jobs to the CMS datagrid system. An analysisjob consistsof a user-suppliedpieceof analysiscode
anda specificationof a setof dataproducts.The job instructsthegrid systemto deliver thevaluesof thesedata
productsto the job code. In the caseof virtual dataproducts,the productvaluesmight needto be materialized
beforethey canbe delivered. The job codeis run insidethe grid, underthe control of the grid schedulers.The
analysisjob codeis highly parallel: thejob decompositioncomponentin thegrid systemcanbreakup thejob into
many subjobswhich differentsubjobsreceiving differentpartsof the requestedsetof dataproducts.See[1] for
moreinformationaboutthejob modelandaboutcommunicationbetweensubjobs.

Therequestsetof a job is thesetof dataproductsof which thevaluesarerequestedby thejob. An exampleof a
requestset(for job 1 in Figure6) is

��=?>A@ �CB DFE %1��&�#2* � #)��&�#'$ � +�&,$ � 	# G � 	% GH�I� .

Jobrequestsetsalwayshave theform
� =?>9JLK &'� � ��G�� � ��� � � &'�M�M��GH�CN ,

where O is anevent ID set. This O generallycorrespondsto a sparsesubsetof theeventstakenovera very long
time interval. Insidethetime interval, eventselectionis essentiallyrandom,uncorrelatedwith time. Thougheach
set O in isolationhasthe propertiesof a randomsubsample,the event ID setsof subsequentjobs submittedby
oneuser, or by agroupof users,haveimportantcross-correlationsthatcanbeexploitedby cachingandreplication
strategies. Theterms &'� � �.GH�P��� �?&'� � �.GH� in theabove requestsetareproduct selectors, functionswhich take an
eventnumberG andmapit to a dataproductUID, with theconstraintthatall raw dataproductsmentionedin that
UID belongto theevent G . To reflectplatformconstraints,a job requestsetmight includeplatform-annotationsin
theproductUIDs. Theshapeandencodingof platformconstraintsis anissuethatneedsfurtherwork.

Somejobswill userandom event navigation techniquesin accessingthedataproductsrequestedfor eachevent.
For example,a job might list in its requestsettwo dataproducts&'� � �.GH� and &'� D �.GH� for eachevent G in its event
set,but for a particularevent G�Q a worker subjobmight first read &'� � �.G�Q�� andthendecideon thefly that it does
notneedto readthemuchbigger &'� D �.G Q � anymoreto produceits output.Thejob requestsetof a job with random
eventnavigationwill alwaysbea supersetof theactualsetof dataproductsread. In extremecases,this superset
canbe ordersof magnitudelarger. This over-specificationis not necessarilyvery inefficient: in generalrandom
eventnavigationwill only beusedby aphysicistif it is known thatall virtual dataproductvaluesin therequestset
areavailablealreadyin materializedform. Also, to helpthegrid scheduler, in generallythejob will besubmitted
with hintsthatestimatethedegreeof randomeventnavigationused.

4.3 Quantitative aspects

Extensive quantitative informationrelatedto productsizesandworkloadsin the virtual dataproductcollections
view is availablein [1] and[2]. Theremainderof thissectionprovidessomeadditionalestimatesof thecomplexity
of this view, for the year2007. For every parameter, the first valuegiven is the expectedvaluethat needsto be
minimally supportedfor thedatagrid systemto beusefulto CMS.Thesecondvalue,betweenparenthesis,is the
expectedvalueneededto supportevenveryhigh levelsof chaoticuseby individualphysicists.


 Events(EventIDs) addedto thegrid: *7R2$0S9T /year( $0S �?� /year)(Both realandsimulatedevents)
 Dataproductsuploaded:$�S �VU /year( $�S �3� /year)
 Algorithmsaddedto thegrid: 500/year(500/day)
 Parameterdataproductsuploadedto thegrid: 1000/year(500/day)
 Numberof algorithmsin thechainfrom a raw dataproductto a job: 0-5 (0-30)
 Numberof dataproductsthatserveasinput to analgorithm:0-10(0-50)
 Numberof virtual dataproductsdefinedby uploadedproductsandalgorithms: W�W�$0S � 8 /year
 Virtual dataproductsmaterialized:X2R2$�S �VU /year( $0S �ID /year)
 Virtual dataproductsvaluescachedby thegrid: $�S �VU ( $�S �?� ) at any point in time

13



5 Consistency management from an application viewpoint

In adistributedsystemliketheCMSdatagrid, it is necessaryto relaxconsistency in orderto preserveperformance
andscalability. However, thisdoesnotmeanthatveryweakconsistency is desirableor evenacceptablein all cases.
Therelaxedconsistency thatwill exist at somelower view levelsneedsto becarefullycontrolled,andcannotbe
allowedto ‘trickle up’ into higherview levels.At higherlevel views,no answeris oftenbetterthanananswerthat
mightbeincorrect.

In the CMS datagrid system,the file setview level playsa particularrole in consistency management.The file
setoperationsshouldberobust:any operationshouldeithersucceedundertheconsistency modelof thefile set,or
fail. Considerthecaseof a largefile setreplicationoperation.Saythatthenetwork goesdown whentheoperation
is 99%complete,that the only actionthat remainedto be donewasto verify that the local replicaswereindeed
still up-to-dateaccordingto the file setconsistency model. However, even thougha lot of work hasbeendone,
therobustnessrequirementimpliesthattheoperationcanonly reportfailureto thecaller. Thefailurereportmight
of courseincludedetailsthat canhelp optimizeany future retry decisionsto be madeby the scheduler. As an
alternativeto reportingfailure,onecouldchooseinsteadto extendtheoperationsemanticsto allow for completion
with a ‘partial success’statuscode.A sufficiently intelligentcallermight beableto make someprogressusinga
partially completedreplica.However this assumestoo muchintelligenceandflexibility on behalfof thecaller. In
practicethecallerwill bea grid job, with nocodeinsideto dealwith imperfectinputdata.

Our ability to imaginecomplex mechanisms,which userelaxedconsistency asa way makingprogressin spiteof
resourceoutages,outstripsour ability to implementand test suchmechanisms.The physicsapplication-level
programmers,who write the codewhich calls on grid-level servicesto maintaindata,are always under time
pressure.To make the bestuseof their time, they will take the following baselineapproachin designingtheir
code.For any particulartypeof data,onesingleconsistency modelwill beselected,andtheapplication-level code
will be written to work reliably underthis model. If resourceoutagesresult in the grid-level componentsbeing
unablefor the momentto offer datamanagementoperationswhich guaranteeconsistency underthis model, the
strategy will be to simply have theapplication-level codewait with furtheroperationsuntil operationswith these
guaranteesbecomeavailableagain. Only in casesin which the systemobviously spendstoo muchtime waiting
will therebeinterestin implementingadvancedstrategiesfor makingprogresswith operationsunderlower levels
of consistency. Comparethis to useof theNFSfilesystem:it is annoying that your applicationsfreezeup when
theNFSserver is down, but this is betterthananalternative thatcontinuesto run theapplicationswith therisk of
datacorruption.Rewriting all theapplicationsto usemoreelaboratefilesysteminterfaceswith relaxedconsistency
modelsis not consideredasanoption.

For the designof grid componentsthat maintaindata,this implies the following. It will not be very useful to
createa grid servicethatsupportsanelaboratesliding scaleof consistency modelsfor thedatait contains,by way
of gracefuldegradationduring outages.Therewill not be enoughsoftwaremanpower to exploit all the various
optionswhich areoffered.Rather, agrid componentwhich maintainsdatashouldhavea simple,well-definedand
well-documentedconsistency modelfor its data,with operationsthatarerobustin spiteof outages.A tradeoff has
to be made,for eachsuchservice,betweenoffering a very strongtypeof dataconsistency, which makescoding
againsttheserviceeasier, andsupportingamorerelaxedtype,whichwill allow for agreaterserviceavailability in
thefaceof theexpectedprobabilitiesfor resourceoutage.Clearlyit will benon-trivial to make thesetradeoffs, as
they rely on quantifyingtheprobabilities.
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