
Available on CMS information server CMS NOTE 1999/072

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

CMS Note
December 10, 1999

CMS simulation software using Geant4

S. Banerjeea), I. Gonzálezb), V. Leféburec)

Abstract

Geant4has been chosen as the basic toolkit for carrying out detector simulation work in CMS. We
have developed a prototype of what could be a framework to build the CMS geometry and to construct
the correspondingGeant4physical volumes from that. We have used it to simulate all the components
of the CMS detector and to produce transient hits. Here we describe the design and the motivations
for specific choices.

a) Tata Institute of Fundamental Research - EHEP, Mumbai
b) Instituto de F´ısica de Cantabria, Santander, Spain
c) CERN, European Laboratory for Particle Physics, Geneva



1 Introduction
Geant4[1] is a toolkit for detailed as well as for fast Monte Carlo simulation of High Energy Physics experiments.
This package will substitute its predecessorGeant3[2] as the basis for CMS[3] simulation in an Object-Oriented
world. Enhanced capabilities and performance are expected from this new package (Geant4). AlthoughGeant4
is based on the experience acquired forGeant3, it completely remodels the physics processes and improves the
precision in prediction. An adequate implementation of the CMS geometry and the ability to produce hits are the
first steps towards a complete simulation program. We have realised a first iteration in that direction and our work
lead us to the definition of the model described in this note.

During the coding and debugging process, we have gained some experience both withGeant4and with CMS itself.
This was, in fact, the main aim of this first prototype. Therefore, this is by no means a final framework for CMS
detector simulation. It is expected to evolve during the following months and years to become a full simulation
program, with higher functionality, flexibility and extensibility (see [4]).

The prototype model is described in section 2. Sections 3 to 5 deal with the different categories in this model.
More information can be found in [5, 6, 7].

All the class and category diagrams are written in the Unified Modelling Language (UML) [8] and were produced
with Rational Rose [9].

2 The Model
The physical division of CMS into different sub-detector components is well defined. However, software cannot
follow this approach, and different categories should conform to the conceptual responsibilities of the different
classes. Eight main categories have been identified: CMS geometry description,Geant4geometry builders, CMS
andGeant4hits, common utilities, persistency of geometry ,Geant4user actions and graphical user interface.
Within the specific geometry category, the subdetector component structure could be followed and implemented.

From the point of view of the dependencies among the different categories, a special effort has been made to
avoid any knowledge ofGeant4classes from the CMS specific ones, like the one dealing with CMS geometry
description. Therefore, the CMS core categories and the model used for building the simulation geometry could
be easily reused in other fields where CMS geometry is required, i.e. event reconstruction, visualisation, etc. This
constraint implies a complex implementation to avoid code duplication and to simplify class interfaces.

The different categories used in the current model are shown in figure 1:

CMS 
Geometry

CMS 
Utilities

Geant4 
Geometry

Geant4 
Hits

User 
Action

GUI

Persistency

CMS 
Hits

Figure 1:UML category diagram of the current model of CMS detector description

2



• CMS Geometry Description: It includes the transient version of the factory classes that provide a descrip-
tion of the CMS detector components.

• Geant4Geometry: This category contains the factory classes which create a transient instantiation of the
detector setup within theGeant4framework.

• CMS Persistent Geometry: The persistent description of the CMS detector (persistency has been achieved
using ODBMS technology with Objectivity DB [10] and HEPODBMS [11]) has been put into this category.

• CMS Utilities : It groups general classes to specify materials, rotation matrices, magnetic field, interface to
ntuple and histograming facilities and a few other utilities like string or stream manipulation.

• Geant4User Action: Here are the CMS user action classes that allow the user to plug-in actions within the
Geant4framework.

• CMS Hits: This category contains the CMS hit classes and related classes such as the definition of the
numbering scheme of the sensitive detector units.

• Geant4Hits: It includes all classes needed byGeant4to produce hits.

• GUI : This category contains the only classes written in Java: they provide a Graphical User Interface.

3 Geometry Factories
Though the CMS detector will have a unique geometry, the detector geometry will have different views in different
types of applications. For instance, a reconstruction application may need a very accurate description of the
sensitive components and an average description of the inactive components, while the simulation program would
require a detailed description of the distribution of all the materials in the detector. TheCMS Geometry Description
category maps the actual geometry of CMS in a transient model, and at the same time it also provides ways in which
the different views can be plugged in. The classes in theGeant4 Geometrycategory, are, currently, the only ones,
in this prototype, that construct a view of the CMS geometry based on the CMS factory classes. The reconstruction
project, ORCA [12] is currently using a geometry model based on theGeant3description inCMSIM [13]. The
classes in theCMS Persistent Geometrycategory is the persistent representation of the actual CMS geometry.
The relation between the transient and persistent part of the geometry, as well as the connection between the
actual geometry and theGeant4view is shown in figure 2. A polymorphic approach has been taken for the three
categories.

CMS Geometry

Geant4
Geometry

ObjectivityAscii files
Persistent

Transient

Figure 2: Relation between the Persistent and Transient version of the CMS Geometry, and the building of the
Geant4view

3



3.1 CMS Geometry Description

The CMS geometry is built within theCMS Geometry Descriptioncategory by making each sub-detector (down
to a certain level) inherit from the common base classCMSDetector (see figure 3). The inheriting classes will
hold basically two types of information:

• Dimensional parameters, number of components, names and materials needed to fully describe the corre-
sponding sub-detector. No special format has been imposed as yet. Each sub-detector code is separately
documented and appropriately implemented.

• The geometry hierarchy. This means each sub-detector knows exactly to whom it belongs (its mother) and
what it consists of (its daughters). A common way of storing, retrieving and modifying this hierarchy is
provided in the base class.

CMS 
Geometry

BarrelECal

CMSDetector

BarrelHCal

BarrelPixel

BeamPipe CMS

Calorimeter

ElectromagneticCalorimeter

ForwardECal

ForwardHCal

ForwardQuadrupole

HadronCalorimeter

Msgc

MuonChamber

Pixel

Svtx
Tracker

VeryForwardCalorimeter

TSBBlock

TSBLayer

TSBSupport

BarrelSvtx
ForwardMuon

MFCSC MFRPC

MFStation

SFDetector

ShowerForward

TGBLayer

HadronOuter

MBStation2

BarrelMuon

MBSupport

MBDriftCell

MBDTBX

MBRPC

MBStation1

TGBDetModBarrelMsgc

TSFDetector

TSFSupport

ForwardSvtx

TGFDetector

TFWheel

TFRing

TGFSupport

ForwardMsgc

PFSupport

PFCool

PFDetector

PFService

ForwardPixel

GeometryConfiguration

Figure 3:Class Diagram for the CMS geometry description category. The base classCMSDetector is printed in
yellow, while the main sub-detectors classes are in green. The class in blue takes care of the configuration of the
geometry.

3.2 Geant4Geometry

On theGeant4side of the geometry model, all the geometry factories are derived from the base classG4Able .
Nevertheless, a more complex structure arises from the fact that double inheritance is used, so that eachGeant4
geometry factory class inherits also from its counterpart in the CMS specific hierarchy.G4Able maps the features
needed byGeant4to build the geometry. The design of theG4Able class helps a modular approach and easy
interchanging at the level of sub-detectors, allowing an easy transition from the simulation of the entire CMS
detector to that of just a part of it, or to a test beam geometry. The sensitive property of each single detector as
well as its visualisation attributes have been incorporated into the design, so that this can be selected at run time.
Different parts of the sub-detectors can be classified as sensitive, electronics, support, cable, absorber, pseudo-
volumes, or other services, and the visibility or colour of each group may be easily modified. An example of the
detectors coming out fromGeant4visualisation is shown in figure 4.

4



Figure 4:Barrel Pixel (left) and Forward MSGC (right) pictures as described in the simulation application.

3.3 CMS Persistent Geometry

The base class for theCMS Persistent Geometrycategory is calledPCMSDetector . This class abstracts the
detector information such as detector name, associations, and files from which it was created. The knowledge and
handling of the federated data base is the responsibility of a dedicated persistency management class.

4 Hits
In the Geant4 framework, an object of classG4VSensitiveDetector has to be assigned to the
G4LogicalVolume of a sensitiveG4VPhysicalVolume . That class has the responsibility to produce tran-
sient hit objects of classG4VHit .

The different CMS sub-detectors produce hits which need different types of information in order to be compatible
with the ORCA requirements. Since they could be grouped into Tracker-like or Calorimeter-like hit objects, two
classes have been defined in the current framework:CMSTrackerHit andCMSCaloHit . The interface required
by Geant4is implemented intoG4TrackerHit andG4CaloHit classes which doubly inherit fromG4VHit
and the corresponding CMS hit class.

Also two specialisations of theG4VSensitiveDetector class are used:G4TrackerSD for Tracker-like de-
tectors andG4CaloSD for Calorimeters. They require the definition of a concrete class derived from the pure
virtual base classVDetectorOrganization used by the Sensitive Detector to determine a unique identifica-
tion of the sensitive units.

A more detailed description of hit and sensitive detector classes can be found in [6].

5 User Interactions
The software has been designed to be flexible at all levels. At the geometry level, the user can choose which
subsystem of the detector setup should be simulated and can activate or deactivate the sensitive parts subsystem by
subsystem. In addition it inherits the flexibility ofGeant4at the level of the physics to be simulated (different types
or models of simulation of electromagnetic and hadronic processes, ...), and in the management of user-actions.

5.1 Detector construction:

The classCMSDetectorConstruction , inheriting fromG4VUserDetectorConstruction , provides
the method to return the pointer to the physical volume of the top level mother volume. The possibility of selecting
a specific detector at compilation time is provided by the use of CPP switches (as described in appendix D of [5]).

5



5.2 Physics list:

The classCMSPhysicsList publicly inherits fromG4VUserPhysicsList and implements the virtual meth-
ods to construct particles, processes and build tables of cross-sections and energy losses depending on the cut
parameters chosen for the simulation run.

5.3 Primary Generator Action:

The classCMSPrimaryGeneratorAction publicly inherits fromG4VUserPrimaryGeneratorAction .
It allows the user to choose among three alternatives for the generation of primary particles:

• a single particle generated at a given fixed point and moving along a specified direction. All parameters
(particle type, energy, origin, direction) can be defined by the user.

• a single particle with its direction randomly distributed within a user-defined solid angle.

• HEP (e.g. PYTHIA) events as read from an ASCII file.

5.4 Run, Event, Tracking and Stepping Actions:

A complete description of the User Action mechanism can be found in [7].

The classes CMSRunAction , CMSEventAction , CMSTrackingAction , and CMSStep-
pingAction publicly inherit respectively from G4VUserRunAction , G4UserEventAction ,
G4UserTrackingAction andG4UserSteppingAction .

These classes should not be modified by the user. They provide public methods allowing to plug-in user-defined ac-
tions. The user has to create its own action classes by inheriting from the interface classesCMSRunActionUnit ,
CMSEventActionUnit , CMSTrackingActionUnit , or CMSSteppingActionUnit .

A few user actions already exist:

• CaloEndOfEventAction andTrackerEndOfEventAction : it prints the information concerning
energy deposition in all Calorimeter and Tracker/Muon parts respectively, at the end of each event.

• DrawTrajectoriesEventAction : at the end of each event, it prints on the screen the number of
trajectories stored in the current event and draws them.

• DrawSteppingAction : it draws the trajectory segments at each step of the tracking.

5.5 Graphical User Interface

A Java Graphical User Interface (GUI) is provided for the definition of the geometry to be simulated. Sensitivity
and visualisation of each subsystem can be switch on or off using this GUI. These actions are propagated to all
subcomponents of the subsystem. A macro file can be created, edited, or simply selected from the GUI. It provides
also the possibility to redirect the output to a given file. A view of the GUI can be seen in figure 5.

6 CMS Utilities
Several utility methods together with classes to handle materials, rotation matrices, magnetic field have been
provided. One can group them into five different domains:

6.1 Materials:

All materials required to define geometry of the CMS detector are kept in a database and a set of classes are
provided to instantiate the specific materials (asG4Material ) required in the specific application of geometry
definition.

6



Figure 5:An example of the use of the Graphical User Interface

6.2 Rotation Matrices:

It provides facilities to define rotation matrices through the direction cosines. Some standard set of rotation matri-
ces, most commonly used, are saved in a database and the required ones can be instantiated on demand.

6.3 Magnetic Field:

A three dimensional description of the 2-D magnetic field of the CMS detector is specified and can be activated in
the context of tracking inside the CMS detector.

6.4 Histograming and Ntuples:

For the use of the familiar HBOOK histograms and ntuples [14], a C++ interface to the HBOOK facility is provided.

6.5 Other Utilities:

Some interesting string and stream manipulation functions are provided. The description of these utilities can be
found in [5].

7



7 Conclusions
The first iteration of a complete simulation of the CMS detector with the Geant4 toolkit has been an excellent and
fruitful exercise. The objective of building a first software prototype for CMS simulation in an Object-Oriented
world usingGeant4has been achieved easily in most of the areas. The flexibility of C++ andGeant4, and the power
of object-oriented programming lead us to build code which is reusable, flexible and extensible. We managed to
decouple the description of the CMS geometry and hits from the different possible views, and we implemented
that of a simulation toolkit, in this caseGeant4. Many individual programs with different purposes have been built
using the framework described in this paper: full CMS geometry, sub-detector debugging, test-beam simulation,
etc. The knowledge and experience acquired provide a solid basis for the realisation of a functional prototype
which is the next step towards a final CMS simulation program [4].

8 Acknowledgements
We would like to thank P. Arce, J. Klem, M. Kossov and A. Nikitenko for offering their expertise in particular
sub-detectors by contributing substantially to the implementation of their geometry description and allowing us to
complete the job.

We would also like to gratefully acknowledge theGeant4team, and in particular J. Apostolakis, S. Giani, H-P.
Wellisch, for all their quick and accurate answers to our questions and problems and for their advice which helped
us to improve our model.

We should not forget to include in this section the CMS collaborators which somehow contributed with their
suggestions, thoughts and interest in the former CMSGeant4User Club and in the new OSCAR project.

8



References
[1] Seehttp://wwwinfo.cern.ch/asd/geant/geant4.html

[2] CERN Program Library W5013 , Application Software Group, CN Div.,”GEANT Detector Description and
Simulation Tool (Version 3.21)”

[3] CERN/LHCC 94-38, LHCC/P1, ”CMS Technical Proposal”.

[4] CMS Internal Note CMS/IN 99/36, M.Schr̈oder,”CMS Detector Simulation Project OSCAR”

[5] CMS Internal Note CMS/IN 99/26, P. Arce, S. Banerjee, I. Gonz´alez, J. Klem, A. Nikitenko,”Detector
Description of CMS using Geant4”

[6] CMS Internal Note CMS/IN 99/54, V.Lefébure,”CMS simulation software usingGeant4: Hits and Sensitive
Detectors”

[7] CMS Internal Note CMS/IN 99/53, V.Lefébure,”CMS simulation software usingGeant4: User Actions”

[8] Seehttp://www.rational.com/uml/

[9] Seehttp://www.cern.ch/PTTOOLS/Rose/

[10] Seehttp://www.objectivity.com

[11] Seehttp://wwwinfo.cern.ch/asd/lhc++/HepODBMS/user-guide/ho.html

[12] CMS Internal Note CMS/IN 99/35, D.Stickland,”CMS Reconstruction Software: The ORCA project”

[13] Seehttp://cmsdoc.cern.ch/cmsim/cmsim.html, ”CMSIM User’s Manual and Reference Guide”.

[14] CERN Program Library Y250 (1994), ”HBOOK Reference Manual (Version 4.22)”.

9


