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Abstract

Small Gap Chambers of 5 and 9 cm strips were exposed to a 5 kHzfriam beam of 300 MeV in
the tM1 area at the PSI. We present the discharge rates and the strip failures measured at different
voltages. The results are compared to the LHCC requirements. We extrapolate the expected safety
margin and show the improvement that was obtained with two chambers equipped with GEMs.
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1 Introduction

The Small Gap Chamber design was proposed in 1996 following the successful operation of the Micro-Gap Cham-
ber substrates produced for IPNL at the IBM-Corbeil factory. These detectors allowed, for the first time, to reach
a gas gain as large as 6000 with an anode-cathode gap of oply: 1] [2].

While the MGCs were intended to measure two coordinates with a single substrate, involving a complicated fab-
rication process, the SGCs are 1D detectors with the two layers of passivated MSGCs (fig. 1). They preserve the
small gap feature, avoiding the proposed coating of the MSGCs. The passivation of both the cathode and anode
edges was introduced from the conception. It appears to be an interesting feature when it was observed that Highly
lonising Particules induce discharges in the usual MSGCs.

The performances of the SGCs with incident Minimum lonising Particules or X-Rays are reported in reference [1]
and [2]. The results of a first test at the Paul Scherrer Institut cyclotron were presented at the Vienna conference
in 1998 [3]. Since then, new detectors were produced, at IBM, Thomson, IMEC and REOSC factories. The
fabrication process at IBM involves two masks properly aligned, while a single one is used at the other producers.
In this case, the passivation is simply obtained by the development of a photoresist polyimide after exposure
through the glass and the strip pattern.

The present note summarizes the results obtained in 2 months of experimentation at the PSI where as much as 20
SGC substrates were exposed to the high intensity pion beam.

2 PSldata

The detailed characteristics of the tested substrates are given in table 1. The experimental bench is shown in
figure 2. The registered data include the following variables :

- A 2 ms ADC sampling of the detector cathode current (also from time to time of the drift current),

- A measurment of the anode signal using the Premux chips,

- A monitoring of the beam intensity using scintillating counters.

3 Chamber signal to noise ratio

Periodic runs at low intensity were registered to monitor the chamber signal and signal to noise ratio with recon-
structed tracks (fig. 3). At high intensity, 30 of the identified tracks are uncorrelated with the acquisition trigger,
which lowers the observed signal to noise ratio. In this case, the short and long term stability of the current shows
that the gain is not modified by the incident flux (fig. 4). Moreover, the evolution of the current with the cathode
voltage follows the expected exponential law?d22Vx (fig. 5).

3.1 Definition of the nominal voltage for LHC

The nominal voltage for the present SGCs is -3500V on the drift plane and -390V on the cathodes. In these
conditions, the ratio of the highest cluster strip maximum probability signal to the channel noise is 15, with a
Ne/DME 1/2 gas mixture. This definition of the signal to noise ratio was adopted to allow a direct comparison
with the studies of reference [4] and [5], both showing that the pulse processing will reduce this variable by a
factor 2. In reference [4] it is shown that for perpendicular tracks a value of 14 will ensurézaedficiency
independently of the cluster size, with a bunch crossing pile up of 3 to 4, considered as acceptable for an efficient
track reconstruction. With SGCs, the highest strip signal contair{g§ @0 the cluster (for usual thresholds). A

strip signal to noise ratio of 15 is therefore equivalent to a value of 21 in the definition adopted for the CMS tracker
Technical Design Report (TDR) (cluster charge divide by the strip noise).

4 Radiation hardness
4.1 Strip failures and spark identification

The radiation hardness of the chambers was estimated from the number of strip failures and from the rate of
sparks. The failing strips are identified by a loss of efficiency in the beam profile, correlated with a decrease of

noise (fig. 6). The sparks are identified, in the current sampling, as clusters of more than 5 adjacent ADC channels
(10 ms duration) above a suitable threshold and with an integrated charge larger than 5 nC (fig. 7(a)). An example
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of the charge distribution is shown in figure 7(b). Given the grouping of cathodes, the peak value is compatible
with an anode-cathode capacitance of 1 pF/cm.

4.2 Strip failures measured at nominal voltage

The IBM and Thomson chambers, set at the nominal voltage (see section 3.1), were exposed to the high intensity
beam for 6 to 8 days without strip failures (table 2). According to the active area covered and the limited running
time, this measurement is compatible with a strip loss of less tanf@r a chamber with 12.5 cm long strips that

would be operated 500 days in the high luminosity LHC beam.

4.3 Spark rates and strip failures measured in a voltage scan

The efficiency plateau can be estimated by raising progressively the cathode voltage up to a level of significant
sparking. This accelerated procedure provides the spark rates and the corresponding number of strip failures,
necessary to extrapolate the strip loss at lower voltages where a direct measurement would be too long.

In figure 8, the measured spark rate, normalized to the length of strip, is shown for each chamber as a function
of the cathode voltage. All the measurements are compatible with a factor 10 increase every 10 V. According to
this dependence, the rate fluctuations observed for the Thomson chambers are contained SVithiith a mean

value of 4 108 cm~! s~! at the nominal voltage.

The summary of the integrated number of spaiks,§ and of strip cuts §.,.) is presented in table 3. In the
Thomson chambers, 22 strip failures were observed out of the 12000 first sparks and then 4 were observed out of
25000 sparks in chambers 2 and 3. These results indicate that the failure rate decreases from an initial value of 1
per 500 sparks to an asymptotic value of 1 per 6000 sparks. The first 22 cuts have hardened the chambers.

4.4 Extrapolation of the efficiency plateau according to the LHCC milestone

The LHC Committee milestone specifies that less tH&ro8the strips should be cutin 500 HI days at LHC. From
the result of the preceding section a hardening effect ofBi$expected in a chamber of 512 strips 12.5 cm long.
Therefore, the maximum spark rate acceptable to fulfil the LHCC milestone can be expressed as :

dN/dtdl < 4.4% I (Newt/Nsp) ! (Iserip X toae) (571 em™1)

Using the asymptotic value M:/N,, = 1/6000, the corresponding spark rate for 12.5 cm strips and 500 HI days
atLHC is 5107 s~* cm~!. From figure 8 it can be seen that this rate is reached at a voltage of 410 V (strip
SIN~ 23).

A similar analysis with the IBM chambers leads to a maximum voltage of 420 V with a limited statistics of sparks.
The REOSC and IMEC chambers exhibit larger spark rates probably correlated to quality of the substrates, as the
fabrication process still needs improvements.

4.5 SGC+GEM safety margin

Two IBM SGC's were opened, equipped with a Gas Electron Multiplier (fig. 9) and tested according to the protocol
presented above. The transfer gap was 1 mm for 1 of the detectors and 3 mm for the other. To allow a good
transparency, the two chambers were operated with an approximately equal drift and transfer field. Since the drift
voltage was limited to 3.5 kV for the two chambers, the corresponding field was 7kV/cm for the 1 mm transfer
gap and 4.5 kV/cm for the 3 mm transfer gap. The variation of the gain versus the cathode and the GEM voltage
is shown in figure 10. An exemple of the signal and signal to noise ratio is plotted in figure 11. The spark rates are
compatible with an improvement of the maximum achievable signal by more than a factor 2 (figure 12). During
the test, strip signal to noise ratios as large as 60 were reached without cuts.

4.6 Other factors of influence on the spark rates
4.6.1 Beam intensity

The spark rates were measured at different values of the beam intensity. A linear increase was observed, as expected
if the effect is related to the beam interactions (fig. 13).



4.6.2 Drift field and gas proportions

The gas chamber gain can be increased with the drift voltage up to a regime close to parallel plate chamber opera-
tion (fig. 14). Testing this effect, it was found that drift sparks start to occur before any significant improvement of
the gain was reached. A further test was performed changing the gas proportion t&50iB®ut success.

5 Conclusions

The sparking behaviour of 5 and 9 cm long SGCs has been tested at the PSI in conditions close to the LHC situation
[6]. It was found that the spark rates increase exponentially by a factor 10 every 10 V. For Thomson chambers,
the measured rate was 410s~! cm~! at nominal voltage and the strips were observed to survive 6000 sparks
after hardening. The extrapolation of these results to 500 days of operation at high luminosity indicate that these
chambers should fulfil the LHCC milestone at a strip signal to noise ratio of 23.

No improvements were obtained when increasing the drift voltage or changing the gas proportions. However, the
test of two IBM SGCs equipped with a GEM indicates that a double amplification device can substancially improve
the margin. It could be a good solution to compensate, if necessary, a noise increase with longer detectors and full
read-out chain, and/or a long term ageing effect.
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Figure 1: SGC design.




Figure 2: View of the experimental bench at PSI.
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Figure 3: Cluster and highest strip signals and signal to noise ratio for (a) IBM and (b) THOMSON chambers.
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