
Available on CMS information server CMS CR 1998/008

CMS Conference Report

27 March 1998

Automatic Reclustering of Objects
in Very Large Databases for High Energy Physics

K. Holtman, I. Willers

CERN, Geneva, Switzerland

P. van der Stok

Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract

In the very large object database systems planned for some future particle physics experiments, typical
physics analysis jobs will traverse millions of read-only objects, many more objects than fit in the
database cache. Thus, a good clustering of objects on disk is highly critical to database performance.
We present the implementation and performance measurements of a prototype reclustering mechanism
which was developed to optimise I/O performance under the changing access patterns in a high energy
physics database. Reclustering is done automatically and on-line. The methods used by our prototype
differ greatly from those commonly found in proposed general-purpose reclustering systems. By
exploiting some special characteristics of the access patterns of physics analysis jobs, the prototype
manages to keep database I/O throughput close to the optimum throughput of raw sequential disk
access.

To be presented at IDEAS ’98, Cardiff, July 8th. – 10th. 1998

1 Introduction
Several next generation high energy physics experiments at CERN will involve the storage of physics measure-
ments in huge object databases. For example, the CMS experiment will store 1 Petabyte (10

3 Terabytes or1015

bytes) of physics measurements per year starting in 2005 [1], and the COMPASS experiment plans to store 200
TB of data per year starting in 1999 [2]. These data volumes push beyond the limits of current database systems
[3]. The bulk of the data, which is of a read-only nature, will be stored on tape robots, with a large disk farm (tens
to hundreds of Terabytes) acting as a cache, supporting jobs running on a large CPU farm. On the software side,
the system will be based on object technology, in particular on an object database.

Physics analysis is the analysis of stored measurements by teams of physicists. Because of the large data volumes
involved, the I/O performance of physics analysis jobs is an important area of concern. In this paper, we discuss
a prototype reclustering mechanism which aims to optimise throughput from the disk farm. By exploiting the fact
that, in a physics analysis job, the order of traversal for the objects of a single typeT is invariant under the selection
of subsets of these objects, the prototype manages to keep the database throughput close to the optimum throughput
of raw sequential disk I/O. The reclustering is automatic in the sense that it does not need any direct hints from the
analysis jobs, and that it can be invoked automatically and transparently based on a few tuning parameters. The
prototype is built as a layer on top of the Objectivity/DB database [4].

Many proposed general-purpose object database reclustering mechanisms, for example [5] and [6], optimise the
clustering of objects under a workload consisting of small unrelated transactions, where each transaction typically
accesses tens of objects. These mechanisms make reclustering decisions based on statistics like object access
frequency and link traversal frequency, which are aggregated over many small jobs. Our prototype makes reclus-
tering decisions based on either logs of, or real-time observations of, the exact access patterns of individual jobs.
General-purpose reclustering algorithms usually optimise the mapping of objects to database pages or chunks of
database pages in order to increase the database cache hit rate. Our prototype aims to optimise both cache hit rate
and the pattern of disk reading produced by cache misses. To optimise both, it does not map objects to pages, but
to collections, which are ordered sequences of objects, each sequence being mapped to pages which are placed
sequentially on disk.

2 Data access patterns in physics analysis
A physics analysis job typically performs some calculations over a large set ofevents. An event is an abstraction
which corresponds to the occurrence of collisions between particles inside a physics detector. The object database
stores a number of read-only objects for each event, as shown in figure 1. Among themselves, these objects form
a hierarchy. At the lowest level of the hierarchy is araw dataobject, which stores all the detector measurements
made at the occurrence of the event. For the CMS detector, the raw data object has a size of 1 MB. The objects
above that store interpretations of the raw data in terms of physics processes. At each consecutive level in the
hierarchy, objects can be thought of as holding summary descriptions of the data in the objects at the level below.
At the top of the hierarchy is anevent tagobject of 100 bytes which stores only the most important properties of
the event.

100 KB

1 MB

100 byte

Event 2

.........

100 KB

1 MB

Event 1

100 byte

10 KB 10 KB

Figure 1: Hierarchy of objects for each event

Given an event (which is generally represented by an event ID), the physics analysis jobs locates one of the
corresponding objects through a mechanism provided by the reclustering prototype. This mechanism accepts
requests like ‘locate the object of typeT which belongs to event 2’, and returns a handle to (a replica of) the data in
this object. In the high-level object model, the processing of this request is equivalent to the traversal of thehasa

2

association between an ‘event 2’ object and a ‘T of event 2’ object. However, it should be stressed that thishasa
relation is not present as a single physical object association in the underlying commercial object database.

Each single event corresponds to isolated collisions between particles. In a physics analysis job, events are treated
completely independent from each other. There is no special correlation between the time an event collision took
place and any other property of the event: events with similar properties will be evenly distributed over the set
of all events. A job typically computes some functionf(e) for each evente in an event setS. To computef(e),
some of the objects which belong to evente are accessed. Different types of functionsf , the results of which are
processed in different ways, can be used. In some jobs,f will compute a complex new object which is stored with
the event for later analysis. In other jobs,f returns one or more floating point values, and the output of the job is a
set of histograms of these values. Finally,f can be a boolean function called a ‘cut predicate’, with the output of
the job being a subsetS0 � S containing all events inS for which the cut predicate returns true.

We assume that, whenever a job traverses an event setS, the individual events are always visited in the same order,
which we will call the ‘order of reading’. We also assume that the order of reading is unchanged, for the events
which are left, if a subsetS0 � S is taken and traversed. In this paper we only consider automatic reclustering
services for physics analysis frameworks which satisfy this constraint.

An important part, spanning many jobs, of typical physics analysis effort is concerned with reducing a large initial
event setS1, containing say109 events which correspond to all measurements made by the detector so far, to a
smaller setSn of say104 events whose corresponding particle collisions all displayed some particular interesting
property. This reduction of the event set is done in a number of phases. In each phase, a cut predicatepi is
developed, which is then applied to the events in the setSi of the current phase to compute the event setSi+1 of
the next phase. In each phase, the development of the cut predicatepi is an iterative process, in which one keeps
refining the predicate until its effect on the event setSi under consideration are both desirable and well-understood.
During this refinement process, a number of jobs will be run over the event setSi.

The object database access patterns for the subsequent jobs in a physics analysis effort can be approximated as in
figure 2, where the bars represent the number of objects of a certain type read by each subsequent job. Each ‘step’
in the staircase pattern corresponds to a single phase. Figure 2 shows the access patterns on three different types
of objects. We see that in the first few phases, when the event set is still large, the jobs only reference the small
(100 byte) tag objects for each event: the physicist will put off accessing the larger objects until all possibilities of
eliminating events using the smaller objects have been exhausted.

Phase n

Phase n

10

10

10
3

7

5

10
9

10

10

8

6

4

10

10

10
3

7

5
10

6

10

10
3

5

4

Access to type 1 objects (100 bytes)

N
um

be
r

of
 o

bj
ec

ts
 a

cc
es

se
d

--
>

Subsequent jobs -->

10

10

10

4

Phase 2
Phase 1

Phase n

Access to type 3 objects (100 KB)

Acces to type 2 objects (10KB)

Figure 2: Numbers and types of objects accessed by subsequent jobs in a simple physics
analysis effort

3

It should be noted that figure 2 is in many ways an idealised picture. The widths and heights of the subsequent
steps in the staircase pattern will vary wildly for different analysis efforts. Some analysis efforts will split and
merge event sets between phases. Some cut predicates will read a variable number of objects for each event: after
having read an object of typeX , a cut predicate could determine that it does not need to read the typeY object to
compute its results. Also, many analysis efforts, all working on different event sets, will be in progress at the same
time, so that each type of object will have many independent, but maybe overlapping, access patterns.

We therefore developed the reclustering operations in our prototype to be robust under much more complicated
progressions of access patterns than shown in figure 2. In fact, our prototype will optimise any sequence of jobs
accessing objects of certain types in a fixed reading order, as long as the access patterns change only occasionally
and abruptly.

3 Performance measurements
The effectiveness of reclustering is demonstrated by comparing the performance of prototypes without and with
reclustering. We also show some additional performance measurements which guided or backed up our design.

3.1 Performance of prototype without reclustering

We measured the performance of a prototype without reclustering against a simple analysis effort and found the
I/O throughput to become very low after a few phases. In our tests, we used events which all had a single object
of 8 KB associated with them. The size of 8 KB was chosen because it matched the default page size of the object
database we used, and because the handling of objects with sizes around 10 KB was considered most to be the
most illuminating case: access to the 100 byte objects in figure 1 could conceivably be optimised by putting all
objects in a RAM cache, and for the 100 KB and 1 MB objects the impact of disk seeks on performance would not
be as critical.

We put the 8 KB objects sequentially on disk, in the order of reading. The database page size was also 8 KB,
so that we had a single object per page. The database was on a disk array containing disks (2.1-GB 7200-rpm
fast-wide SCSI-2, Seagate ST-32550W) which can be considered typical for the high end of the 1994 commodity
disk market. There was no striping of data across disks, and for every job, none of the data to be read was present
in the operating system or database cache.

Figure 3 shows the results of the test run. Each pair of bars represents a single job. The height of the black bar in
front represents the size of the event set over which the job was run. The height of the grey bar behind it represents
the (wall clock) running time of the job. All jobs were I/O-bound. The jobs were run on a machine which was
nearly empty, but not completely empty: this explains the slight variation in runtimes between subsequent jobs in
the same phase.

Subsequent jobs −−−>

Jo
b

si
ze

 a
nd

 r
un

 ti
m

e
−

−
−

>

Figure 3: Performance of prototype without reclustering (black bars are number of objects
accessed, grey bars are job run time)

4

In the first phase of the analysis effort, we ran 12 subsequent jobs over an event set containing all events, so that all
stored objects were accessed. These jobs produced a nearly sequential database page reading pattern on disk, the
only perturbation being an occasional excursion due to the reading of a database-internal indexing page. The jobs
in this phase achieved an I/O throughput of about 5 MB/s, not noticeably lower than the maximum throughput of
raw sequential I/O for these disks.

In the second phase, we ran 12 jobs over a set containing only 50% of the events, which were randomly chosen.
We see that the runtime of these jobs does not drop at all, even though the jobs read only half of the objects (and
therefore only half of the database pages). For the next phase, in which the jobs read 30% of the objects, we see
the same effect. Only the jobs in the last phase, where 10% is read, are somewhat faster.

3.2 Discussion

The, initially surprising, lack of any speedup in the second and third phases of figure 3 can be understood by
considering the time it takes for the disk to seek to the database page holding the next requested object if a few
objects are skipped. When only a few objects are skipped, only a few pages are skipped (we have one object per
page), and there is a large probability that the requested page is on the same disk track as the previous page that
was read, so that the disk head does not need to move to get in the right position. The fastest possible seek time
then equals the time needed to wait until the rotation of the disk platter brings the requested page under the disk
head, and this time is equal to the time it takes to read all intermediate pages.

020406080100
Percentage of objects in subset

Ti
m

e
ne

ed
ed

 to
 re

ad
 −

−>

c

Figure 4: Time needed to read a random subset of objects in a collection of 8 KB objects,
traversing the subset in the order in which the objects in the collection are clustered

We found this performance effect to be largely independent of the database page size, the striping of disks, and the
brand and type of disk. Figure 4 shows the effect in more detail for 8 KB objects: for all but very small subsets, the
time to read the objects in the collection is a constant, determined by the size of the collection only. The position of
the cutoff pointc, at which reading becomes faster for smaller subsets, varies mainly as a function of the average
size of the objects in the collection. For average object sizes of 64, 8, and 1 KB, our disks hadc values of 50, 20,
and 2%. Ifc is lower, the potential benefits of using a reclustering optimisation are higher. Thoughc does not vary
much depending on the brand of disk used, the trend is thatc values are going down for more modern disks. This is
because newer disks tend to have more data on a single track, leading to a higher probability that the page holding
the next requested object is still on the same track.

3.3 Performance of prototype with reclustering

Figure 5 shows the performance of the prototype which implements our automatic reclustering service, running
the same sequence of jobs as in figure 3. The wide grey bars in figure 5 represent the running of the ‘batch’
reclustering algorithm (see section 4.2), which, in this scenario, is run between jobs. The runtime of the batch
reclustering algorithm is represented by the surface, not the height, of the wide bars: they are twice as wide as the
other bars.

At the start of the test run, the objects in the database were clustered in the same way as for the prototype without
reclustering, and the first 12 jobs again achieve a throughput not noticeably lower than the maximum throughput

5

Subsequent jobs −−−>

Jo
b

si
ze

 a
nd

 r
un

 ti
m

e
−

−
−

>

operations
Batch reclustering

Figure 5: Performance of prototype with automatic reclustering (black bars are number of
objects accessed, grey bars are job run time, wide grey bars represent running of ‘batch’
reclustering algorithm)

of sequential I/O. For the next 4 jobs, the running time is again similar to that in figure 3. Then, the first ‘batch’
reclustering operation is run. The operation examines the logs of the access patterns of the preceding jobs and
reclusters the database to optimise for these patterns, as shown schematically in figure 6. The mechanisms behind
batch reclustering is covered in more detail in section 4.2. Here we just note that the effect of batch reclustering is
that the running time of the next 8 jobs, which access exactly the same data as the preceding 4 jobs, has improved:
it is nearly proportional to the amount of data accessed, yielding a throughput close to that of sequential I/O.
The spikes in job runtime immediately after the running of the last two reclustering operations are caused by the
emptying of the operating system write cache (which was filled by the preceding reclustering operation) during the
run, we did not pause between jobs.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Access patterns:

Initial clustering: one single collection

After first batch reclustering: two collections

andObjects read by jobs in first phase:

Objects read by jobs in second phase:

Figure 6: State of the database before and after the first batch reclustering operation in figure 5

3.4 Read-ahead optimisation

After the first batch reclustering operation in figure 5, the jobs of the second phase will traverse only one of the
two collections shown at the bottom of figure 6. Another job in a new, independent analysis effort may however
need to read all data from both collections. As both collections are individually clustered in the reading order, such
a job would have a logical object reading pattern as shown on the left in figure 7. If such a logical reading pattern
were performed directly on a disk array, the throughput would be very low due to the many long seeks between
collections.

Figure 7: A logical access pattern to two collections (left) and the physical pattern after
read-ahead optimisation (right)

6

To achieve near-sequential throughput, the logical pattern needs to be transformed into the physical pattern at the
right of figure 7. To make this transformation without changing the iteration logic of the job itself, object data needs
to be read ahead into some form of buffer memory. In tests, we found that such a read-ahead optimisation was
not performed by the commercial object database [4] on which we built or prototype, nor by the operating system
(we tested both Solaris and HP-UX), nor by the disk hardware (for various commodity brands). We therefore
implemented the optimisation ourselves: the collection accessor class was extended to read ahead objects into the
database cache, thus producing the physical pattern in figure 7.

It should be noted that the above case, in which we had to optimise the physical access pattern ourselves, is
different from the case in which two independent processes are each traversing a single collection. In that case,
both operating systems we tested will automatically keep the number of long seeks due to context switches at an
acceptable level by allocating relatively long timeslices to each process. We therefore only needed to optimise
access patterns by hand at the level of a single process.

Measurements (see figure 8) showed that, on our disks, when 800 KB worth of objects were read ahead for each
collection, the I/O throughput approached that of sequential reading.

1 2 5 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of collections

R
ea

d
pe

rf
or

m
an

ce
 (

M
B

/s
)

800 KB read−ahead
160 KB read−ahead
no read−ahead

Figure 8: Read performance when simultaneously traversing multiple collections located
on the same disk, with different read-ahead strategies

By sacrificing a modest amount (given current RAM prices) of memory, the read-ahead optimisation prevents a
performance degradation if two or more collections produced by batch reclustering are accessed simultaneously.
This gives us significant freedom in batch reclustering. In addition, the read-ahead optimisation allows us to
manage the clustering of different types of objects in an independent way: we can maintain different sets of
collections on a type by type basis, and optimise the reading of objects of one type without taking into account
a possible interference due to the reading of objects of any other type. Of course, there is a scalability limit on
the number of collections which can be traversed at the same time. For our current prototype, overheads grow too
large above 20 collections. This has some consequences for batch reclustering, which are discussed at the end of
section 4.2.

7

4 Types of reclustering
Our prototype performs two different types of reclustering, called ‘on-the-fly’ and ‘batch’. Each type is invoked
at a different time, and reorganises objects in a different way. Both have in common that they consider collections
of objects of a single type only. If a physics analysis effort accesses many types of object per event, each of
these types is reclustered independently. Thus, during a job which accesses three types of objects, three different
reclustering operations may be going on independently.

4.1 On-the-fly reclustering

The basic operation of on-the-fly reclustering is shown in figure 9: the objects in a larger collection which are
requested by a job are copied to a new collection. Note that in both individual collections, the objects are clustered
in the order of reading. On-the-fly reclustering is invoked automatically, transparently to the job itself, whenever
it can be done with a price/performance factor better than a certain threshold set by the user. In this factor, the
price is the time needed for the copying of the selected objects, and the performance is the gain in runtime for a
single subsequent job which selects exactly the same objects. Typically, on-the-fly reclustering is only invoked
when there is an immediate large benefit, say if the performance outweighs the price by at least a factor 4.

Figure 9: On-the-fly reclustering of selected objects to a new collection

After on-the-fly reclustering, there are two copies of each selected object. This is not a problem as far as our
application is concerned: inconsistencies cannot emerge because the objects hold read-only data. In our prototype,
the existence of two copies is invisible to the analysis jobs: if a job requests some object which belongs to an
event, it will simply get the object identifier of one of the copies. However, the existence of two copies does pose
an optimisation problem: if the job requests a copied object, which of the copies should be read to get the highest
I/O performance? This optimisation problem is solved, again transparently to the job, by the object access and
indexing mechanism discussed in section 5.

An on-the-fly reclustering operation will allocate extra disk space in order to increase efficiency. This space can
be recovered, however, without losing the efficiency, by running a batch reclustering operation later. An example
of this is shown in figure 10.

Subsequent jobs −−−>

Jo
b

si
ze

 a
nd

 r
un

 ti
m

e
−

−
>

Figure 10: On-the-fly reclustering operation, triggered by the occurrence of a new access
pattern, followed later by a batch reclustering operation

8

4.2 Batch reclustering

A batch reclustering operation will re-arrange all objects of a particular typeT to create an optimal clustering for
the access patterns of recent jobs. Also, any duplication of objects caused by on-the-fly reclustering operations will
be eliminated. A batch reclustering operation is typically executed whenever there are some free system resources
to spare. In our implementation, the database is not locked during batch reclustering: physics analysis jobs can
still access objects of typeT while reclustering is in progress.

Whenever a physics analysis job accesses some objects of a typeT , a log is produced which records the exact
set of objects of typeT accessed by the job. To recluster the objects of typeT , a batch reclustering operation
will first process the recent logs to generate a view of all recent access patterns to objects of typeT in terms of
possibly overlapping sets. Such a view is shown on the left in figure 11. The view in this figure corresponds to
a situation in which the access logs show exactly two different access patterns for objects of typeT , produced by
jobs in two independent analysis efforts. In the set view, four different regions are present. After computing the
set view, the batch reclustering operation will create a new collection for each region in the view, each collection
containing all objects in its region. This is shown on the right in figure 11. To create the new collections, the
currently existing collections with objects of typeT are accessed. After creation, the collection index is updated
to point to the new collections, allowing new jobs to use them. Finally, after any existing jobs which are still using
the old collections have run to completion, the old collections are deleted, thus producing a database without any
duplication of objects. Our batch reclustering engine contains an optimiser which will suppress the reclustering of
data from old collections, and the subsequent deletion of these collections in cases where this reclustering action
would produce little or no performance gain for the access patterns under consideration.

type T
objects of
Set of all

Old collections
Set accessed by effort 1

Set accessed by effort 2 b

New collections

a

c
d

a b
c

d

engine
reclustering

Batch

Figure 11: Batch reclustering

After batch reclustering, the collections can be used by subsequent jobs as shown in figure 12. A job in a com-
pletely new analysis effort will usually have to read objects from all four collections, and could invoke on-the-fly
reclustering on any four of the collections while doing so.

b
a

c
d

Job in effort 1
Job in effort 2

Job in new effort

Figure 12: Use of batch reclustered collections by jobs in different analysis efforts

One important limitation of the batch reclustering scheme is that it will not scale well in the number of different
access patterns for which reclustering is done. In the worst case,n different patterns will produce2n independent
collections after batch reclustering. For our current prototype, we found that going beyond switched access to
20 collections per type produced overheads which were too large. Thus, the batch reclustering scheme in our
prototype is limited to optimising a maximum of 4 independent access patterns.

The question of how reclustering can best be done for more than 4 independent patterns is a subject for future
research. With more than 4 patterns, a reclustering scheme will have to make a tradeoff between I/O throughput
and database size, a tradeoff which we avoided having to make for batch reclustering.

9

5 Access to reclustered data
When an analysis job is accessing reclustered data of a certain typeT , two distinct mechanisms are involved: the
access engineand theoptimiser(figure 13).

Requests

Object handles

Access
engineAnalysis job

Schedule

Statistics

Optimiser

Figure 13: Communication between different parties involved in access to reclustered data

The access engine works on the level of individual objects: it receives the subsequent requests, of the form ‘locate
(a copy of) the object of typeT belonging to event 2’ made by the analysis job, locates these objects, takes care of
reading them efficiently into cache memory, and returns their object handles to the job.

The optimiser works at the job level, creating a schedule for the access engine. Whenever the access engine
receives a request for an object of which multiple copies exist in different collections, it will consult the schedule
to determine which copy should be read in order to maximise I/O throughput. The schedule also controls possible
on-the-fly reclustering actions.

5.1 The access engine

The interface between the physics analysis job and the access engine (and through it, the optimiser, see figure 13)
is a very narrow one. Access engines are instantiated on a per-job and per-type basis: the access engine is bound
to a typeT on instantiation and receives notification of the start and end of its corresponding job. Each request
from the job only includes anevent index numberidentifying the event for which an object of typeT is requested,
and the job will not issue its next request before an object handle for the current request is returned. This narrow
interface makes it necessary for the optimiser to use statistical methods for predicting future requests from the job,
so that they can be optimised, even though some information about future requests is usually available inside the
job. We chose for a narrow interface, rather than a wide one in which the job would give some advance information
to the scheduler, to make our prototyping efforts more meaningful as an exercise in exploring the possible limits
of reclustering schemes which are fully transparent to the user.

To cope with the lack of advance information about access patterns, the access engine works in two phases. Statis-
tics gathered in the first, short, phase are sent to the optimiser, which returns a schedule to optimise I/O throughput
in the second, longer phase. The complete sequence of events is as follows:

– Initialisation: Locate all collections of objects of typeT .
– Phase 1: (First few hundred requests from the analysis job) Locate the subsequently requested objects in the

collections. If a requested object has copies in multiple collections, choose a copy with a simple tie-breaking
algorithm. Meanwhile, gather statistics for the optimiser.

– Transition: Send statistics to the optimiser. Receive schedule. Perform on-the-fly reclustering for the data
requested in phase 1, if necessary, according to instructions from the optimiser.

– Phase 2: Handle all subsequent requests, performing on-the-fly reclustering, if necessary, according to in-
structions from the optimiser. If a requested object has copies in multiple collections, choose one according
to the schedule.

This two-phase approach works well because events with similar properties are distributed evenly over the database.
This makes it possible to make a good schedule based on the statistics for the few hundred initial requests.

The event index numbers, which identify objects in requests to the access engine, are to be assigned by the job
which creates the objects initially. An obvious choice for these numbers are theevent numberswhich are assigned
to events when they are measured by the particle physics detector, but this is not strictly necessary. In our prototype,
an important constraint is that the sequence of event index numbers must be increasing in the order of reading. This
constraint allows for very fast collection indexing calculations in the access engine, and also simplifies the merging
of collections when reclustering. An index into a collection is simply a sequence of pairs, one for each object in
the collection, with each pair containing the object ID of its corresponding object and the number of the event to
which the object belongs. The pairs in the sequence are themselves clustered together sequentially, in the order of

10

reading. The access engine maintains a single pointer into the sequence, which is advanced to keep pace with the
progress of requests from the job.

5.2 The optimiser

The optimiser computes a schedule based on statistics gathered during phase 1 of the running of the access engine.
These statistics consist of

1. the number of collections of objects of typeT located by the access engine

2. a view of the ways in which the sets of objects in these collections overlap, and the sizes of the overlapping
and non-overlapping parts,

3. for each overlapping or non-overlapping part, the percentage of the objects in this part which were requested
by the analysis job.

Figure 14 shows an example of such statistics, in a graphical representation. The figure shows 4 collections, with
6 distinct (non)overlapping areas, each area labelled with the percentage of objects requested by the analysis job.

Coll 2Coll 1

Coll 4

99%

98%
Coll 3 80%

0%

0%

81%

Figure 14: Example of statistics used by the optimiser

Using these statistics, the optimiser will compute a setC of collections, such that the collections inC together cover
all areas in which some objects were requested by the job, and such that the sum of the sizes of the collections in
C is minimal. For the statistics in figure 14, this computation yieldsC = fColl 2;Coll 4g.

If, during running phase 2 of the access engine, a requested object has copies in multiple collections, two tie-
breaking rules are used to optimise I/O throughput. In order of priority, these are:

1. reading from a collection inC is preferred,

2. reading from a smaller collection is preferred.

In the normal case, that is if the ‘0%’ statistics about usage of parts not inC are correct predictions for the whole
job, the second rule above will not be used by the access engine: following the first rule only it will just traverse
all collections inC. Because of the read-ahead optimisation used, the time needed for this traversal is proportional
to the sum of the sizes of these collections, which is the quantity minimised by the optimiser when calculatingC.

In calculatingC, the optimiser is solving an instance of theset covering problem, which is NP-complete, but for
which good approximation algorithms exist [7],[8]. In our prototype, the instances of the problem were so small
that we could always afford to compute the optimal solution using a straightforward branch-and-bound algorithm.

The optimiser also uses the statistics to compute whether it is possible to perform an on-the-fly reclustering oper-
ation which satisfies the price/performance criteria (see section 4.1) set by the user. In the schedule for the access
engine, the instructions about on-the-fly reclustering take the form of a possibly empty setR of areas in the statis-
tics. Whenever the job requests an object which is contained in an area inR, the access engine will recluster it by
copying it into a new collection. In our prototype, we implemented a straightforward calculation which determines
if any non-emptyR will produce a reclustering operation which satisfies the price/performance criteria set by the
user. If there are many setsR which do, then the one which reclusters the largest number of objects is chosen
for the schedule. If none do, then theR in the schedule will be the empty set. Unfortunately, this straightforward
calculation takes too long (more than a few seconds) in some cases. These cases can be easily identified before the
start of the calculation, and we plan to run an approximation algorithm for these cases in our followup prototype.

11

6 Conclusions
We have described the prototype of a specialised automatic reclustering system, which exploits some specific
properties of disk-bound physics analysis jobs to maintain an I/O performance near the optimal performance of
sequential disk I/O. The properties which were exploited are the high number of objects requested in each job, the
read-only nature of the objects, the fact that events with similar properties are distributed evenly over the database,
the fixed reading order, and the existence of sequences of jobs with the same access pattern.

Our prototype is based on a mechanism for clustering objects into collections, and accessing these collections
with a read-ahead optimisation. The read-ahead optimisation allows us to manage the clustering of different types
of objects in an independent way, and also makes it possible for the batch reclustering operation to conserve the
database size while preserving optimal throughput. The objects are retrieved through a fast access engine, which
uses a schedule to optimise throughput. The schedule only needs to be computed once for every job, and this
allows the use of fairly complex computations in constructing the schedule.

We have shown performance measurements for the prototype and contrasted them with the performance of a
prototype without reclustering. We discussed a scalability limit in the number of different access patterns for the
batch reclustering scheme used by our prototype, and identified the tradeoff between I/O speed and database size
which will have to be made to scale beyond this limit. Subjects for future research are to increase the scalability
in the number of access patterns, and an extension of the optimiser to cover the migration and replication of
collections between different storage levels.

Acknowledgements
The research reported on in this paper was done in the CMS computing group, in the context of the RD45 collab-
oration. It was supported by grants from the Stan Ackermans Institute at Eindhoven and by the CERN technical
and doctoral student programme.

References
[1] CMS Computing Technical Proposal. CERN/LHCC 96-45, CMS collaboration, 19 December 1996.

[2] The COMPASS proposal, Addendum 1. CERN/SPSLC 96-30 SPSLC/P297 Add. 1, the COMPASS
collaboration, 20 May 1996.

[3] Using an object database and mass storage system for physics analysis. CERN/LHCC 97-9, The RD45
collaboration, 15 April 1997.

[4] Objectivity/DB version 4.0.2. Vendor homepage:http://www.objy.com/

[5] William J. McIver Jr., Roger King: Self-Adaptive, On-Line Reclustering of Complex Object Data.
SIGMOD Conference 1994: 407-418

[6] Jia-bing R. Cheng, A. R. Hurson: Effective Clustering of Complex Objects in Object-Oriented Databases.
SIGMOD Conference 1991: 22-31

[7] V. Chvatal. A greedy heuristic for the set-covering problem. Math. of Oper. Res., 4:233–235, 1979.

[8] T. Grossman and A. Wool. Computational experience with approximation algorithms for the set covering
problem. Euro. J. Operational Research, 101(1):81-92, August 1997.

12

