
Full O(αS) Evaluation of b→ sγ Transverse

Momentum Distribution

Ugo Aglietti
Dipartimento di Fisica, Universitá di Roma ”La Sapienza”,
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1 Introduction

Perturbation theory, i.e. the expansion in powers of αS , has been applied to describe decays of the
beauty quark since its discovery. While the expansion parameter αS(mB) ∼ 0.21, being reasonably
small, allows one to have confidence in the computations, it is difficult to directly compare the per-
turbative approach with the experimental data. As is well known, decay rates do not make good
quantities to be compared with the data, because they are proportional to the fifth power of the
beauty quark mass, a poorly known parameter,

Γ ∝ m5
b (1)

and because they involve in principle unknown CKM matrix elements such as Vcb, Vub, Vts, etc.. By
taking ratios of different widths, one can cancel the m5

b dependence in the observables, and, eventually,
also the dependence on the CKM matrix elements. A rather good theoretical quantity is represented,
for instance, by the semileptonic branching ratio:

BSL =
ΓSL

ΓTOT
, (2)

which turns out to be marginally in agreement with present data [1]. Inclusive quantities, Binclusive,
such as (2), have a perturbative series that involves numerical coefficients cn of the form:

Binclusive =
∞∑

n=0

cn αn
S(mB). (3)

In less inclusive quantities, additional dynamical effects appear, due to the kinematical restrictions on
the final particles, and the use of perturbation theory is, in general, less justified. In semi-inclusive
quantities, Bsemi−inclusive , such as threshold and transverse momentum pt distributions, the pertur-
bative series contains large infrared logarithms in addition to the coefficients cn; they may be expanded
as a perturbative series of the form:

Bsemi−inclusive =
∞∑

n=0

2n∑
k=0

cn,k αn
S logk x, (4)

where x represents the characteristic scale of the process as the energy or the transverse momentum.
Resummation of such enhanced terms to any order in αS can be performed in various approximations.
The simplest one, the leading logarithmic approximation, involves picking up only the terms having
two powers of the logarithm for each power of the coupling, i.e. k = 2n. In the double-logarithmic
approximation each parton is dressed with a cloud of soft and collinear gluons. Further, more refined
approximations involve smaller numbers of logarithms for each power of αS , i.e. k = 2n−1, 2n−2, . . ..
In the last years, considerable effort has been devoted to the study of various spectra in B decays in
the endpoint region, in the framework of resummed perturbation theory.
In order to verify the ability of the resummed perturbation theory to describe B decays in a different
dynamical situation, we considered, in a previous note [2], pt-distributions describing that of the s
quark with respect to the photon direction, in the b rest frame.
In this work, [2], the following issues have been considered: the resummed pt-distribution in the b → sγ
decay is evaluated and both perturbative and non-perturbative sources of transverse momentum con-
tributions discussed. The general theoretical framework for the evaluation of the corresponding matrix
element defined and the strategy to evaluate leading and next-to-leading perturbative contributions
is outlined, by introducing a method to treat the radiative corrections and their summation in a im-
proved perturbative formula. The comparison of the transverse momentum distribution singularity
structure with the more widely-known threshold case is also presented.
The chosen quantity manifests a clear advantage from a phenomenological point of view since, as dis-
cussed in [2], it depends only on the photon momentum in the process. Thanks to the straightforward
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and direct kinematics, the transverse momentum turns out to be a particularly simple variable to use
to discuss the singularity structure of the perturbative expansion. The case of a possible effective
theory within which to factorize these singularities can, for the transverse momentum, be considered
as well.
The general formula representing the complete perturbative expression for a the resummed distribu-
tion is given by the formula

D(x) = K(αS)Σ(x; αS) + R(x; αS). (5)

The results, already presented in [2], did concern the universal process-independent function Σ(x; αS),
resumming the infrared logarithms in exponentiated form.
Here the general perturbative expression for the whole distribution will be concisely recalled and the
new entries represented by the coefficient function K(αS) and by the remainder function R(x) will be
evaluated. Both K(αS) and R(x) are process-dependent and require an explicit evaluation of Feynman
diagrams.
Resummation of large infrared logarithms in b decays have been studied in great detail in recent years.
This scheme is justified by the fact that the double logarithm appearing to order αS can become rather
large (with respect to 1 coming from the tree level):

−αSCF

4π
log2 p2

t

m2
b

∼ −0.7 (6)

if we push the transverse momentum to such small values as pt ∼ ΛQCD = 300 MeV. The single
logarithm can also become rather large, having a large numerical coefficient:

−5αSCF

4π
log

p2
t

m2
b

∼ 0.6. (7)

The purpose of resumming classes of such terms therefore seems quite justified. If we consider running
coupling effects, i.e. if the (frozen) coupling evaluated at the hard scale Q = mB = 5.2 GeV is
replaced by the coupling evaluated at the gluon transverse momentum,

αS(mb) → αS(pt) = 0.45 for pt = 1 GeV, (8)

the logarithmic terms have sizes of order:

−αS(pt)CF

4π
log2 p2

t

m2
b

∼ −0.5 (9)

and

−5αSCF

4π
log

p2
t

m2
b

∼ 0.8. (10)

The main difference with respect to resummation in Z0 decays is a hard scale smaller by over an order
of magnitude, i.e. a coupling larger by a factor 2 and infrared logarithms smaller by a factor 3.

2 The effective hamiltonian for the decay b → sγ

The decay b → sγ is loop-mediated in the Standard Model and offers stringent tests of the latter as
well as a way to extract CKM matrix elements. The relevant diagrams involve a loop with a virtual
W and an up-type quark (u, c or t); the external photon can be emitted from the internal lines and
from the external lines of the b or s quark (see fig. 1). QCD radiative corrections are affected by large
logarithms of the form

αn
S logk mW

mb
with 0 ≤ k ≤ n (11)
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Figure 1: Vertex for b → sγ in the Standard Model

as well as logarithms of mt/mW . Since the energies involved in the process are much smaller than the
W or t mass, it is possible to integrate out these fields by means of an operator product expansion
and write an effective low-energy hamiltonian of the form:

Heff (x) =
GF√

2
V ∗

tsVtb

8∑
j=1

Cj(µb) Ôj(x; µb). (12)

With a factorization scale µb = O(mb), the long-distance effects — both perturbative and non-
perturbative — are factorized in the matrix elements of the operators Ôj , while the short-distance
effects are contained in the coefficient functions Cj(µb), calculable in perturbation theory. In particu-
lar, the large logarithms in (11) are included into the coefficient functions and can be resummed with
standard renormalization group techniques.
A suitable basis for the operators Ôj is given by six four-quark operators, Ô1-Ô6 and by the penguin
operators Ô7, Ô8 [4, 5]:

Ô1 = (cL,βγµbL,α)(sL,αγµcL,β)

Ô2 = (cL,αγµbL,α)(sL,βγµcL,β)

Ô3 = (sL,αγµbL,α)(
∑

q

qL,βγµqL,β)

Ô4 = (sL,αγµbL,β)(
∑

q

qL,βγµqL,α)

Ô5 = (sL,αγµbL,α)(
∑

q

qR,βγµqR,β)

Ô6 = (sL,αγµbL,β)(
∑

q

qR,βγµqR,α)

Ô7 =
e

16π2
mb,MS(µb)sL,ασµνbR,αFµν

Ô8 =
g

16π2
mb,MS(µb)sL,ασµνT a

αβbR,αGa
µν ,

(13)

where mb,MS(µb) is the b mass in the MS scheme, evaluated at µb and q = u, d, s, c or b.
The dimension of these operators is six: higher-dimension operators have coefficients suppressed by
inverse powers of the masses of the integrated particles (t and W ) and do not contribute in first
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approximation.
The calculation of the QCD corrections to the coefficients functions has been carried out in [6] with
leading logarithmic accuracy and in [7] at next-to-leading level in the MS scheme.
Let us now consider the evaluation of the matrix elements of the effective hamiltonian between quark
states. Only the magnetic penguin operator Ô7 contributes in lowest order with a rate:1

Γ0 ' αem

π

G2
F m3

bm
2
b,MS

(mb) |VtbV
∗
ts|2

32π3
C2

7 (µb) , (14)

where mb is the pole mass of the b quark.
Radiative QCD corrections involve gluon brehmsstrahlung. The operator Ô7 is affected by infrared
singularities for the emission of a soft or a collinear gluon; the remaining operators Ô1-Ô6 have infrared-
finite matrix elements. This implies that QCD corrections to the operator Ô7 only are logarithmically
enhanced for pt � mb

2. We will then consider at first only the operator Ô7.

3 Transverse momentum distribution in b → sγ

The process we are dealing with has a very simple kinematics: in lowest order it is the two-body decay
b → sγ. Let us define

x =
p2

t

m2
b

, (15)

where pt is the transverse momentum of the strange quark with respect to the photon direction, fixed
as z-axis, and mb is the mass of the heavy quark, to be identified with the hard scale of the process3.
In lowest order the transverse momentum distribution then is

dΓ
dx

= Γ0 δ(x), (16)

that is the strange quark and the photon are emitted in opposite directions, because of momentum
conservation. Acollinearity is generated by gluon emission; in b → sγg, i.e. at O(αS), pt = −kt while
in b → sγg1 . . . gn, i.e. in higher orders, pt = −kt1 . . .− ktn.
Beside the differential distribution the partially integrated distribution4 is also of interest

D(x) =
∫ x

0

dx′
1
Γ0

dΓ
dx′

. (17)

Even though αS(mB) is small enough to justify a perturbative approach, the combination αn
S(mB) logk x,

with 0 ≤ k ≤ 2n can be large. A resummation, to any order in αS , of logarithms of the same magni-
tude is required to obtain sensible physical results.
A partial resummation of large logarithms with next-to-leading accuracy has been performed in [2]:
here we complete the calculation.
It is well known, [12], that the resummation of large logarithms is accomplished by an expression of
the form:

D(x) = K(αS)Σ(x; αS) + R(x; αS), (18)

where
1Γ0 contains in principle m2

b,MS
(µb) since µb is the renormalization point of Ô7. As is well known, the renormal-

ization point is arbitrary: we decided to fix it to mb in the running mass, as usually done in the literature.
2The operator Ô8 is affected by QED infrared divergences which are not relevant to our problem.
3Let us note that 0 ≤ x ≤ 1/4.
4Since we divide the spectrum by the lowest-order rate Γ0, we have that D(x = 1/4) = ΓT OT

Γ0
= 1 + O(αS).
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• Σ(x; αS) is a universal, process-independent, function resumming the infrared logarithms in
exponentiated form. It can be expanded in a series of functions as:

log Σ(x; αS) = Lg1(αSL) + g2(αSL) + αSg3(αSL) + . . . , (19)

where L = log x (in general L is a large infrared logarithm). The functions gi have a power
expansion of the form

gi(z) =
∞∑

k=0

gi,k zk (20)

and resum logarithms of the same size: in particular g1 resums leading logarithms of the form
αn

S Ln+1 and g2 the next-to-leading ones αn
S Ln. The explicit form of Σ(x; αS) can be found in

Ref.[2];

• K(αS) is a short-distance coefficient function, a process-dependent function, which can be cal-
culated in perturbation theory:

K(αS) = 1 +
αSCF

π
k1 + O

(
α2

S

)
. (21)

• R(x; αS) is the remainder function and satisfies the condition

R(x; αS) → 0 for x → 0. (22)

It is process dependent, takes into account hard contributions and is calculable as an ordinary
αS expansion:

R(x; αS) =
αSCF

π
r1(x) + O

(
α2

S

)
. (23)

The result is an improved perturbative distribution, reliable in the semi-inclusive region [12], that is
for small values of x, which can be matched with a fixed-order spectrum, describing the distribution
for large values of x [13]. The description of the tools used to perform the resummation of infrared
logarithms is far from the purpose of this note, and we refer the reader to the references [8] – [12].

In the next sections the full order αS corrections for the coefficient function K(αS) and for the
remainder function R(x; αS) will be explicitely calculated.

4 O(αS) corrections to pt distribution

In this section radiative corrections to the transverse momentum distribution will be calculated eva-
luating the Feynman diagrams depicted in fig. 2 for real gluon emissions and in fig. 3 for virtual
emissions. We use the Feynman gauge where the gluon propagator is

Dµν(k) = −gµν
i

k2 + iε
. (24)

The calculation is performed in dimensional regularization (DR) with the dimension of the space-time

n = 4 + ε.

The operator Ô7 from the basis (13) is inserted in the hard vertex, as discussed in section 2. Let us now
define the kinematical variables: Pµ is the heavy quark momentum, pµ the light quark momentum, kµ

the gluon momentum and qµ the photon momentum: for real diagrams it holds that k2 = p2 = q2 = 0
and P 2 = m2

b , while, for virtual diagrams, k2 6= 0. The calculation is performed in the b rest frame,
where

Pµ = (mb,~0)
qµ = (Eγ , 0, 0, Eγ). (25)

5



p

k

q

P

Figure 2: Real diagrams

4.1 Real diagrams

A straightforward evaluation of the diagrams in fig. 2 gives a contribution to the rate:

dΓ
Γ0

=
M(ω, t; ε)
ω1−εt1−ε/2

dt dω =
[

A1(ω, t; ε)
ω1−εt1−ε/2

+
S1(t; ε)
ω1−ε

+
C1(ω; ε)
t1−ε/2

+ F1(ω, t; ε)
]

dt dω (26)

where

A1 ≡ M(0, 0; ε)

S1 (t) ≡ M(0, t; ε)−M(0, 0; ε)
t1−ε/2

C1 (ω) ≡ M(ω, 0; ε)−M(0, 0; ε)
ω1−ε

F1 (ω, t; ε) ≡ M(ω, t; ε)−M(0, t; ε)−M(ω, 0; ε) + M(0, 0; ε)
ω1−ε t1−ε/2

(27)

and
ω =

2P · k
m2

b

=
2Eg

mb
, t =

1− cos θ

2
,

with θ the angle between the gluon and the direction −ẑ 5.
It follows from their definition that the functions A1(ω, t; ε), S1(ω; ε), C1(t; ε) and F1(ω, t; ε) are finite
in the soft and the collinear limit, defined respectively as

ω → 0 and t → 0. (28)

The rate in eq. (27) has to be integrated over the whole phase space with the kinematical constraint

δ[x− ω2t(1 − t)], (29)
5Let us remember that the direction +ẑ is fixed by the photon space momentum.
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which selects gluons with transverse momentum p2
t = xm2

b
6. The cumulative distribution takes a

contribution of the form:

DR(x) =
∫ x

0

dx′
∫ 1

0

dω

∫ 1

0

dt
1
Γ0

dΓ
dx′

(ω, t; ε) δ[x′ − ω2t(1− t)]. (30)

After the integration we expect four kinds of terms:

• Poles in the regulator ε: they parametrize the infrared singularities and cancel in the sum with
virtual diagrams because the distribution we are dealing with is infrared-safe7;

• Logarithmic terms diverging for x → 0;

• Constant terms: they enter the coefficient function K(αS);

• Remainder functions: terms that vanish in the limit x → 0.

Integrating over x′ we have:

DR(x) =
∫ 1

0

dω

∫ 1

0

dt
1
Γ0

dΓ
dx′

(ω, t; ε) θ[x− ω2t(1− t)]. (31)

The remaining integrations are non-trivial because of the simultaneous presence of the kinematical
constraint and by the dimensional regularization parameter ε. By using the identity

θ[x− ω2t(1− t)] = 1− θ[ω2t(1− t)− x], (32)

we separate these two effects and rewrite the distribution DR(x) as a difference between an integral
over the whole phase space and a integral over the complementary region:

DR(x) =
∫ 1

0

dω

∫ 1

0

dt
1
Γ0

dΓ
dx

(ω, t; ε) −
∫ 1

0

dω

∫ 1

0

dt
1
Γ0

dΓ
dx

(ω, t; 0) θ[ω2t(1− t)− x] + O(ε). (33)

The first integral must be evaluated for ε 6= 0 because it contains poles in ε, but is done over a very
simple domain, independent of x. The second integral does not contain any pole in ε and therefore
one can take the limit ε → 0 in the integrand. It depends on the kinematics of the process and can be
integrated by introducing a suitable basis of harmonic polylogarithms as in [14]. The most convenient
basis we found consists of the basic functions

g[0; y] ≡ 1
y

g[−1; y] ≡ 1
y + 1

g[−2; y] ≡ 1√
y(1 + y)

g[−3; y] ≡ −
√

x

2(1−√x
√

y)
√

y
. (34)

The harmonic polylogarithms (HPL) of weight 1 are defined as:

J [a; y] ≡
∫ y

0

dy′ g(a; y′) for a 6= 0

J [0; y] ≡ log y. (35)
6Let us recall that for the single gluon emission x ≡ p2

t /m2
b = k2

t /m2
b .

7A distribution is infrared-safe if it is insensitive to the emission of a soft and a collinear gluon [13].
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In terms of usual functions, they read:

J [−1; y] ≡ log(1 + y)
J [−2; y] ≡ 2 arctan

√
y

J [−3; y] ≡ log(1−√x
√

y) (36)

The HPL’s of weight 2 are defined for (u, v) 6= (0, 0) as

J [u, v; y] ≡
∫ y

0

dy′ g[u; y′]
∫ y′

0

dy′′g[v; y′′] (37)

and J [0, 0; y] = 1/2 log2 y. HPL s of higher weight may be defined in an analogous way. They will not
be used here.
The final result for real diagrams turns out to be

DR(x) = CF
αS

π

(
m2

b

4πµ2

)ε/2 1
Γ(1 + ε/2)

[
2
ε2

− 5
2ε

− 1
4

log2 x− 5
4

log x +
1
4

+ d(x)
]

, (38)

where d(x) is a function vanishing for x → 0.
The matrix elements of the remaining operators Ôi (i 6= 7) do not contain infrared divergences.
Therefore their contributions to DR do not involve (infrared) poles in ε, logarithms of x and constants,
but only new functions, which vanish in the limit x → 0.

4.2 Virtual diagrams

Virtual corrections to b → sγ have been calculated in [15, 17] for a massive strange quark; we present
here the computation in the massless case. The diagrams consist of self-energy corrections to the
heavy and light lines and of vertex corrections to the operator Ô7 (see fig. 3); we compute them in
the MS scheme so as to be consistent with the (known) coefficient functions Ci. The computation
can be done with standard Feynman parameter technique or by a reduction using the integration by
part identities [18]. Let us briefly describe the evaluation of the vertex correction within the latter

c)

b)

p

k

q

P
a)

Figure 3: Virtual diagrams
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method. One has to compute the scalar integral:

V =
∫

dnk

(2π)n

N(k2, P · k, p · k; ε)
k2[(k − P )2 −m2](k − p)2

, (39)

where

N(k2, P · k, p · k; ε) = 32P · k − 32p · k − 16m2
b +O(ε2)k2 +O(ε2)P · kp · k +O(ε2)(p · k)2. (40)

V has at most a double pole in ε coming from the product of the soft and the collinear singularities.
The terms in the numerator N , which vanish in the soft limit kµ → 0, do not give rise to soft
singularities and therefore produce at most a simple pole coming from the collinear or the ultraviolet
region. Therefore the O(ε2) terms in N do not contribute in the limit ε → 0.
By expressing the scalar products in the numerator as linear combinations of the denominators as

k · p =
1
2

(
k2 − (k − p)2

)
,

k · P =
1
2

(
k2 − (k − P )2 + m2

b

)
, (41)

we can reduce V to a superposition of scalar integrals of the form:

T[a, b, c] =
∫

dnk

(2π)n

1
[k2]a [(k − P )2 −m2

b ]b [(k − p)2]c
(42)

with a, b, c ≤ 1. The above amplitudes can be related to each other by identities of the form [18]:
∫

dnk
∂

∂kµ

vµ

[k2]a[(k − P )2 −m2]b[(k − p)2]c
= 0 (43)

with vµ = kµ, pµ, Pµ. By explicitly evaluating the derivatives and re-expressing the scalar products
using eqs. (41), one obtains relations among amplitudes with shifted indices.
By solving the above identities, one can reduce all the amplitudes to the tadpole, and one obtains for
our integral8:

V =
(
−16

ε
+ 8− 8ε

)
1

m2
b

T[0, 1, 0], (44)

where

T[0, 1, 0] = CF
αS

4π

(
m2

4πµ2

)ε/2 Γ(−ε/2)
1 + ε/2

m2
b . (45)

Summing self-energies and vertex corrections, and subtracting the 1/ε poles according to the MS
scheme, one obtains for their contribution to the rate DV

9:

DV = CF
αS

π

(
m2

b

4πµ2

)ε/2

Γ
(
1− ε

2

) [
− 2

ε2
+

5
2ε

+ 4 log
mb

µb
− 3

]
. (46)

We have kept the factor in front of the square bracket unexpanded to simplify the computation of the
total rate.
The virtual corrections to the remaining operators Ôi6=7 contain only (simple) ultraviolet poles in ε,
which are removed by renormalization; their contributions to DV amount only to finite constants and
log mb/µb.

8Such a strong reduction of 3-point function to a vacuum amplitude is possible because the only scale in the process
is the heavy quark mass mb. Virtual corrections have indeed the lowest-order kinematics P 2 = m2

b , P · p = m2
b/2, p2 =

q2 = 0.
9To factorize Γ0 one has to replace m

b,MS
(µb) by m

b,MS
(mb) using the formula m

b,MS
(µb) = m

b,MS
(mb)(1 +

3
2

CF αS
π

).
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4.3 Final result

Summing real and virtual contributions, the transverse momentum distribution for the decay b → sγ
reads, to O(αS):

D(x) = 1 + CF
αS

π

[
−1

4
log2 x− 5

4
log x + f + d(x)

]
. (47)

As expected, the result contains a double logarithm and a single logarithm of x, a finite term f and
a function d(x) vanishing in the limit x → 0.
By expanding the resummed formula to order αS one obtains:

D(x) =
(

1 +
CF αS

π
k1

) (
1− A1

4
αS log2 x + B1αS log x

)
+

CF αS

π
r(x)

= 1− A1

4
αS log2 x + B1αS log x +

CF αS

π
k1 +

CF αS

π
r(x) + O(α2

S). (48)

By identifying the resummed result expanded to O(αS) with the fixed-order one — matching procedure
— we check the values for A1 and B1 evaluated in our previous paper using general properties of QCD
radiation [2] and we extract the value of the coefficient function:

k1 = f = − 11
4
− π2

12
+ 4 log

mb

µ
, (49)

as well as the remainder function r1(x) = d(x). As explained in previous sections, the remaining
operators Ôi6=7 contribute to D(x) only by finite terms r̃i and remainder functions. Since the constants
r̃i come from virtual diagrams alone, we can quote their result from [15] and present an improved
formula for the coefficient function, in analogy with [16]:

K(αS) = 1 +
αS

2π

8∑
i=1

C
(0)
i (µb)

C
(0)
7 (µb)

(
< r̃i + γ

(0)
i7 log

mb

µb

)
+

αS

2π

C
(1)
7 (µb)

C
(0)
7 (µb)

+O(α2
S) (50)

where

r̃i = ri i 6= 7

r̃7 =
8
3

(
f − 4 log

mb

µb

)
= −22

3
− 2π2

9
. (51)

Let us remark that only the coefficients related to the operators with i = 1, 2, 7, 8 are relevant, because
the others are multiplied by very small coefficient functions and can be neglected:

r1 = −1
6
r2

< r2 = −4.092− 12.78(0.29−mc/mb)

r8 =
4
27

(33− 2π2). (52)

The analytic expressions for the coefficient functions as well as a standard numerical evalutation are
given in [7]. The anomalous dimension γ

(0)
77 is derived from the coefficient of the logarithmic term in

k1. The values of γ
(0)
i7 are [7]:

γ
(0)
i7 =

(
−208

243
,
416
81

,−176
81

,−152
243

,−6272
81

,
4624
243

,
32
3

,−32
9

)
. (53)

Equation(50) is the main result of our paper and allows a complete resummation to NLO of transverse
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momentum logarithms.
The explicit calculation of the remainder function in (48) reads

r(τ) =
(τ − 1)(49τ8 + 468τ7 + 1797τ6 + 3642τ5 + 4450τ4 + 3642τ3 + 1797τ2 + 468τ + 49)

12(τ + 1)5(τ2 + 3τ + 1)2

+
−5− 61τ − 317τ2 − 912τ3 − 1622τ4 − 1934τ5 − 1622τ6 − 912τ7 − 317τ8 − 61τ9 − 5τ10

4(τ + 1)6(τ2 + 3τ + 1)2
log τ

− J [0,−3, τ ] + J [0,−3, 1/τ ]− 2J [0,−1, τ ] + J [−1, 0, τ ] + J [−1,−3, τ ]− J [−1,−3, 1/τ ]

− 2
√

τ arctan(
√

τ )
(τ + 1)(2τ2 + 7τ + 2)

(τ2 + 3τ + 1)2
+

π

2
√

τ
(τ + 1)(2τ2 + 7τ + 2)

(τ2 + 3τ + 1)2
+

49
12

+
5
4

log τ − 5
2

log(τ + 1) + log2(τ + 1), (54)

where

τ =
1−√1− 4x

1 +
√

1− 4x
. (55)

Let us notice that τ behaves as x for small values of the transverse momentum

τ(x) = x + O(x2) (56)

and it is a unitary variable

τ → 0 for x → 0
τ → 1 for x → 1/4.

The relation (55) may be inverted as
x =

τ

(τ + 1)2
. (57)

One can easily check that r(τ) vanishes for τ ∼ x → 0, by using the properties

J [0,−1, 0] = J [0,−3, 0] = J [−1, 0, 0] = J [−1,−3, 0] = 0 (58)

lim
τ→0

J [0,−3, 1/τ ] = lim
τ→0

J [−1,−3, 1/τ ] = −π2

3
. (59)

5 Conclusions

To sum up: eq. (47), which contains the final result, represents the full evaluation to O(αS) of the
transverse momentum distribution. It is explicitly given in terms of an analytic expression.
Contrary to what happens in hard processes at much larger energies, at the energy scales involved
here for the b decay the remainder function contribution does play a more important role.
A straightforward numerical evaluation of the remainder function r(x) of eq. (48) allows us to conclude
that its contribution can be safely neglected for small values of x, up to x ' 0.1, where it approaches
the zero limit of x → 0. For larger values of x, however, the size of its contribution increases to reach
values of the order of the 10–15% of the combined leading and next-to-leading logarithmic terms.
A detailed report describing the calculation giving rise the O(αS) evaluation presented here, together
with an analysis of the related phenomenological impact, will be presented in a future article [3].
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