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Abstract

We present the first experimental results based on the jet boost algorithm, a technique to select
unbiased samples of gluon jets in e+e− annihilations, i.e. gluon jets free of biases introduced by
event selection or jet finding criteria. Our results are derived from hadronic Z0 decays observed
with the OPAL detector at the LEP e+e− collider at CERN. First, we test the boost algorithm
through studies with Herwig Monte Carlo events and find that it provides accurate measure-
ments of the charged particle multiplicity distributions of unbiased gluon jets for jet energies
larger than about 5 GeV, and of the jet particle energy spectra (fragmentation functions) for jet
energies larger than about 14 GeV. Second, we apply the boost algorithm to our data to derive
unbiased measurements of the gluon jet multiplicity distribution for energies between about 5
and 18 GeV, and of the gluon jet fragmentation function at 14 and 18 GeV. In conjunction with
our earlier results at 40 GeV, we then test QCD calculations for the energy evolution of the
distributions, specifically the mean and first two non-trivial normalized factorial moments of
the multiplicity distribution, and the fragmentation function. The theoretical results are found
to be in global agreement with the data, although the factorial moments are not well described
for jet energies below about 14 GeV.
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1 Introduction

Gluon jets were first observed in 1979 [1], at the PETRA e+e− collider at DESY. Certain
features of the jets were quickly measured, such as their production angular distributions,
leading, for example, to a determination of the gluon spin [2]. In contrast, it has proved
difficult to obtain meaningful information about internal characteristics of gluon jets. The
difficulty arises because gluon jets are usually produced in conjunction with other jets or the
beam remnants at accelerators, making their identification ambiguous. Gluon jets in e+e−

annihilations are usually studied using three-jet qqg events, for example, where q denotes a
quark jet, q an antiquark jet, and g a gluon jet. At hadron colliders, gluon jets are studied
using events with two energetic gluon jets produced in conjunction with the beam remnants and
less energetic jets. In either case, the gluon jets are identified using jet finding algorithms such
as the k⊥ [3] or cone [4] jet finder, which assign particles in an event to the jets. The jet finding
algorithms employ resolution criteria. Different jet algorithms or choices of the resolution scales
yield different assignments of particles to the jets. This produces the ambiguities mentioned
above. Many studies employ fixed values for the resolution scales, leading to truncation of
higher order radiation from the jets and thus to further ambiguity. Because of these intrinsic
ambiguities, jets defined in this manner are called “biased.”

Theoretical descriptions of gluon jets are usually based on a different approach. The theo-
retical approach assumes the production of a pair of gluons in an overall color singlet, i.e. gg
events from a point source. There are neither beam remnants nor other jets. The gg system
is divided into hemispheres in a frame in which the two gluons are back-to-back (they move in
opposite directions), using the plane perpendicular to the direction of the separating gluons.
The particles in a hemisphere define a jet. Since all particles in the event arise from one of
the two original gluons, there is no ambiguity about which particles to assign to the gluon
jets.1 Furthermore, there are no jet resolution criteria and thus no truncation of higher order
radiation, i.e. all events in the sample are used. The properties of the jets depend on a single
scale: the jet energy. Jets defined in this manner are called “unbiased,” in contrast to biased
jets, whose properties depend on the jet resolution scales as well. Many theoretical results have
been presented for unbiased gluon jets, based on Quantum Chromodynamics (QCD), the gauge
theory of strong interactions. Because most experimental studies are performed using biased
jets, tests of the theory have often been indirect.

So far, only three methods have been used to measure gluon jet properties in a manner
consistent with the theoretical prescription outlined in the previous paragraph, avoiding the
ambiguities associated with biased jets. First, radiative Υ decays, Υ→ γgg→ γ + hadrons,
have been studied [5, 6]. The gg system in these events corresponds to the event class of the
theoretical approach, described above. Second, rare events from hadronic Z0 → qq decays have
been selected [7–9], in which the q and q jets are approximately colinear: the event hemisphere
“gincl.” against which the q and q recoil corresponds almost exactly to an unbiased gluon jet
as shown in [10]. Third, the theoretical formalism of [11] has been applied [12] to extract
properties of unbiased gluon jets indirectly, by subtracting results obtained from two-jet qq

1Note that if the event is boosted along the gg event axis, the jet energies and multiplicities change. The
relationship between an unbiased jet’s energy and its mean particle multiplicity is universal, however, indepen-
dent of this boost or of the invariant mass of the gg system. The same comment applies to the qq color singlet
systems discussed in Sect. 2.
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events from those obtained from three-jet qqg events (see [11, 12] for more details).

The first and second of the above techniques provide an explicit association of particles in
an event to the gluon jets. This allows many characteristics of the jets, e.g. the distributions
of particle multiplicity and energy, to be studied. The jet energies associated with these two
techniques are limited, however, to Ejet ∼ 5 and 40 GeV, respectively. The third technique,
based on comparing results from qq and qqg events, yields measurements over a range of jet
energies, from about 5 to 15 GeV. This method does not associate particles in an event with
the gluon jet, however, yielding only the mean particle multiplicity of the jets, 〈ngluon〉.

In [13], an additional method to determine properties of unbiased gluon jets is proposed:
the so-called jet boost algorithm. The jet boost algorithm is described in Sect. 2. So far,
no experimental results have been presented based on this technique. Like the third method
mentioned above, the jet boost algorithm provides results over a range of jet energies. Like the
first and second methods, it specifies which particles in an event to associate with the gluon jet.
The jet boost method therefore combines features of the other approaches, offering a means to
measure a variety of properties of unbiased gluon jets as a function of energy.

In this paper, we present the first experimental study to use the jet boost algorithm. The
study is based on hadronic decays of the Z0 boson. The data were collected with the OPAL
detector at the LEP e+e− storage ring at CERN. We measure the charged particle multiplicity
distribution and the particle energy spectrum (fragmentation function) of the jets for a variety
of jet energies. The results are compared to QCD calculations to provide new and unique tests
of that theory.

2 The jet boost algorithm

The jet boost algorithm (henceforth referred to as the “boost algorithm” or “boost method”)
is motivated by the color dipole model of QCD [14]. Thus consider a quark-antiquark system
created from a color singlet source, e.g. e+e− → qq events. Because the q and q carry opposite
color charges, they form a dipole. Unbiased quark jets are defined by dividing the event in
half in a frame in which the q and q move back-to-back, using the plane perpendicular to the
direction of the separating q and q (see Fig. 1a). This is analogous to the definition of unbiased
gluon jets presented in the introduction. Note that the back-to-back frame is not necessarily
the center-of-momentum (c.m.) frame of the dipole. The energy scales of the jets, E∗

q and E∗

q,
are given by the hemisphere energies in the back-to-back frame. If a Lorentz boost is performed
along the hemisphere boundary assuming the q and q are massless, the dipole appears as shown
in Fig. 1b. In Appendix A.1 it is shown that the Lorentz β factor relating the back-to-back
and boosted frames is β = cos α, where α = θ/2 with θ the angle between the q and q in the
boosted frame. Furthermore, it is shown that the jet energies in the boosted frame, E ′

i (with
i = q or q), are related to the jet energies in the back-to-back frame, E∗

i , by

E∗

i = E ′

i sin
θ

2
. (1)

In e+e− → qqg events, the color charge of the gluon can be decomposed into two parts:
one equal and opposite to the color charge of the quark and the other equal and opposite to
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Figure 1: Schematic illustration of a qq color dipole viewed (a) in a frame in which the q and
q are back-to-back, and (b) in a frame boosted in a direction bisecting the dipole. The quark
and antiquark jets are labelled by their energies: E∗

q and E∗

q in the back-to-back frame and E ′

q

and E ′

q in the boosted frame.

the charge of the antiquark. A qqg event therefore consists of two independent dipoles, one
defined by the q and g and the other by the q and g. In a frame in which the angle θ = 2α
between the q and g is the same as the angle between the q and g, yielding a symmetric event as
in Fig. 2a, each dipole can be independently boosted to a back-to-back frame along the bisector
of the dipole using the boost factor β = cosα mentioned above, again assuming the partons are
massless (see Fig. 2b). The two dipoles in the back-to-back frames can then be combined to
yield an event with the color structure of a gg event in a color singlet, i.e. two back-to-back
gluon jet hemispheres (see Fig. 2c), since the combined quark-antiquark system has the color
structure of the gluon jet as mentioned above. This corresponds to the production of unbiased
gluon jets as discussed in the introduction. In the frame of the symmetric event (Fig. 2a), the
unbiased gluon jet is defined by the particles in a cone of half angle α around the gluon jet
axis [13]. The energy of the unbiased gluon jet, E∗

g (Fig. 2c), is related to the energy of the
gluon jet in the symmetric qqg event, E ′

g (Fig. 2a), by eq. (1) with i = g, as follows from the
correspondence between Figs. 1 and 2.

Three-jet qqg events from e+e− annihilations are usually identified using a jet finding algo-
rithm. Some of the most common jet finders are based on a transverse momentum cutoff, p⊥, cut,
to resolve the jets. Examples of such algorithms are the k⊥, Cambridge [15] and Luclus [16]
jet finders. The value of p⊥, cut (sometimes referred to as the virtuality scale [13]) specifies the
maximum transverse momentum of radiated particles within a jet. As a necessary but not
sufficient condition to avoid biasing the jets, p⊥, cut should be adjusted separately for each event
so that exactly three jets are reconstructed. In contrast, a fixed value of p⊥, cut truncates higher
order radiation in the jet. For gluon jets identified in this manner, any radiation (“sub-jet”)
emitted within the jet must necessarily have a smaller transverse momentum than the gluon
jet itself, otherwise the roles of the “sub-jet” and “gluon jet” would be reversed. Thus the
transverse momentum of the gluon jet, p⊥, gluon, defines an effective cutoff for sub-jet radiation,
i.e. p⊥, cut = p⊥, gluon. Note that the definition of transverse momentum is ambiguous in events
with hard, acolinear gluon radiation (for a discussion, see e.g. [11]). In the color dipole model,
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Figure 2: (a) A symmetric three-jet qqg event in which the angle θ = 2α between the quark and
gluon jets is the same as the angle between the antiquark and gluon jets. In the QCD dipole
model, the qqg event consists of two independent color dipoles. (b) Each of the dipoles can
be independently boosted to a back-to-back frame. (c) The dipoles in the back-to-back frames
can be combined to yield an event with the color structure of a gluon-gluon event in a color
singlet. Note that the combined quark-antiquark jet system in e+e− → qqg events has the color
structure of a gluon jet.

the transverse momentum of a gluon jet in a qqg event is defined by [11]

p⊥, gluon =
1

2

√

sqgsqg

s
, (2)

where sij (i, j = q, q, g) is the invariant mass squared of the ij pair, and s = E2
c.m. with Ec.m.

the event energy in the c.m. frame. Thus eq. (2) defines the virtuality scale of gluon jets in the
qqg events. An experimental demonstration that p⊥, gluon is an appropriate scale for gluon jets
in qqg events is presented in [12].

For a gluon jet to be unbiased, its properties should be independent of the jet resolution
scale(s). In [13] it is noted that independence from the resolution scales implies that the energy
and virtuality scales are the same:

E∗

g = p⊥, gluon . (3)

The boost algorithm prescription for identifying an unbiased gluon jet is then as follows [13].
Three-jet events are defined using a transverse momentum based jet algorithm. The resolution
parameter of the algorithm is adjusted for every event so that exactly three jets are recon-
structed. After identification of the gluon jet using standard experimental techniques (see e.g.
Sect. 4), the event is boosted to the symmetric frame in which the angle between the gluon and
quark jets is the same as the angle between the gluon and antiquark jets, as in Fig. 2a. The
algebra of this boost is uniquely specified by the requirement of eq. (3) (see Appendix A.2). In
the symmetric frame, the unbiased gluon jet is defined by all particles in a cone of half angle
α = θ/2 around the gluon jet direction, where θ is the angle between the gluon jet and the other
two jets (cf. Fig. 2a and the discussion above). The energy of the unbiased jet, E∗

g , is given by
eqs. (2) and (3).
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3 Detector and data sample

The OPAL detector is described in detail elsewhere [17, 18]. OPAL operated from 1989 to 2000.
The analysis presented here is based on the tracking system and electromagnetic calorimeter.
The tracking system consisted of a silicon microvertex detector, an inner vertex chamber, a large
volume jet chamber, and specialized chambers at the outer radius of the jet chamber to improve
the measurements in the z-direction.2 The tracking system covered the region | cos θ|< 0.98
and was enclosed by a solenoidal magnet coil with an axial field of 0.435 T. Electromagnetic
energy was measured by a lead-glass calorimeter located outside the magnet coil, which also
covered | cos θ|< 0.98.

The present analysis is based on a sample of about 3.13 million hadronic annihilation events,
corresponding to the OPAL sample collected within 3 GeV of the Z0 peak (mZ) from 1993 to
2000. This sample includes readout of both the r–φ and z coordinates of the silicon strip
microvertex detector [18]. The procedures for identifying hadronic annihilation events are
described in [19].

We employ the tracks of charged particles reconstructed in the tracking chambers and
clusters of energy deposited in the electromagnetic calorimeter. Tracks are required to have at
least 20 measured points (of 159 possible) in the jet chamber, or at least 50% of the number of
points expected based on the track’s polar angle, whichever is larger. In addition, the tracks
are required to have a momentum component perpendicular to the beam axis greater than
0.05 GeV/c, to lie in the region | cos θ|< 0.96, to point to the origin to within 5 cm in the r–φ
plane and 30 cm in the z direction, and to yield a reasonable χ2 per degree-of-freedom for the
track fit in the r–φ plane. Electromagnetic clusters are required to have an energy greater than
0.10 GeV if they are in the barrel section of the detector (| cos θ|< 0.82) or 0.25 GeV if they
are in the endcap section (0.82 < | cos θ|< 0.98). A matching algorithm [20] is used to reduce
double counting of energy in cases where charged tracks point towards electromagnetic clusters.
Specifically, if a charged track points towards a cluster, the cluster’s energy is re-defined by
subtracting the energy that is expected to be deposited in the calorimeter by the track. If the
energy of the cluster is smaller than this expected energy, the cluster is not used. In this way,
the energies of the clusters are primarily associated with neutral particles.

Each accepted track and cluster is considered to be a particle. Tracks are assigned the pion
mass. Clusters are assigned zero mass since they originate mostly from photons.

To eliminate residual background and events in which a significant number of particles is
lost near the beam direction, the number of accepted charged tracks in an event is required to
be at least five and the thrust axis of the event, calculated using the particles, is required to
satisfy | cos(θthrust)|< 0.90, where θthrust is the angle between the thrust and beam axes. The
number of events which pass these cuts is about 2.77 million. The residual background to this
sample from all sources is estimated to be less than 1% and is neglected.

2Our right handed coordinate system is defined so that z is parallel to the e− beam axis, x points towards
the center of the LEP ring, r is the coordinate normal to the beam axis, φ is the azimuthal angle around the
beam axis with respect to x, and θ is the polar angle with respect to z.
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4 Gluon jet selection

We apply the k⊥ jet finder to the sample of events described in Sect. 3. The resolution scale, ycut,
is adjusted separately for each event so that exactly three jets are reconstructed. Both charged
and neutral particles are used for the definition of the jets. The jets are assigned energies using
the technique of calculated energies with massless kinematics (see for example [21]). Jet energies
determined in this manner are more accurate than visible jet energies, with the latter defined by
a sum over the reconstructed energies of the particles assigned to the jet. We employ massless
kinematics because the boost algorithm assumes massless jets (see Sect. 2 and the Appendices).
The jets are ordered such that jet 1 has the largest energy and jet 3 the smallest energy.

Due to the gluon radiation spectrum in e+e− → qqg events, jet 1 is likely to be a quark
(q or q) jet. We therefore assume jet 1 is always a quark jet. We then use the technique
of displaced secondary vertices to identify the other quark jet. Displaced secondary vertices
are associated with heavy quark decay, especially that of the b quark. At LEP, b quarks
are produced almost exclusively at the electroweak vertex: thus a jet containing a b hadron
is almost always a quark jet. To reconstruct secondary vertices in jets, we use the method
described in [22]. For jets with a secondary vertex, the signed decay length, L, is calculated
with respect to the primary vertex, along with its uncertainty, σL. To be tagged as a quark
jet, a jet is required to contain a successfully reconstructed secondary vertex with L/σL > 3.0.
We select events for which exactly one of the lower energy jets is tagged as a quark jet. The
remaining lower energy jet in these events is identified as the gluon jet.

We next examine the selected events as a function of the energy E∗

g (see eq. (3)) of the
identified gluon jet. E∗

g is calculated using the jet 4-momenta in the laboratory frame and the
Lorentz invariant expression eq. (2). We require E∗

g to be at least 5.0 GeV so that the jet is
well defined. For 5.0≤E∗

g < 9.5 GeV, the estimated gluon jet purity is about 80% or larger
once the final selection cuts have been applied (see below). For values of E∗

g above this, the
purity is lower because the assumption that jet 1 is a quark jet becomes less accurate as the
gluon jet energy increases. Therefore, for E∗

g ≥ 9.5 GeV, we impose additional requirements on
the two identified quark jets. A quark jet in an event with 9.5≤E∗

g < 16.0 GeV is required to
contain a successfully reconstructed secondary vertex with L/σL > 3.0 if it is either jet 1 or 2,
or L/σL > 5.0 if it is jet 3. These cuts account for the fact that the L/σL distributions of jets
depend upon the jet energy. For events with 16.0≤E∗

g < 20.0 GeV, a quark jet is required to
contain a secondary vertex with L/σL > 5.0 irrespective of whether it is jet 1, 2 or 3. We retain
events in which the two identified quark jets (as defined in the previous paragraph) satisfy these
more stringent requirements. We do not consider gluon jets with E∗

g ≥ 20.0 GeV because of the
low event statistics.

The resulting qqg sample contains many events with soft or nearly colinear jets. To eliminate
these events, we impose cuts on the jet energies and angles with respect to the other jets. Besides
the requirement E∗

g ≥ 5.0 GeV for gluon jets, mentioned above, we determine the following scale
for quark jets in the laboratory frame:

κjet = Ejet sin

(

θmin.

2

)

, (4)

with θmin. the smaller of the angles between the jet under consideration and the other two
jets. The scale eq. (4) was proposed in [23] (see also [24]). Note the similarity between eqs. (1)
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Bin in E∗

g (GeV) Number of jets 〈E∗

g〉 (GeV) Purity (%)

5.0–5.5 4022 5.25 ± 0.01 ± 0.01 88.8 ± 0.4 ± 1.4
5.5–6.5 6652 5.98 ± 0.01 ± 0.01 87.3 ± 0.3 ± 1.6
6.5–7.5 5017 6.98 ± 0.01 ± 0.01 84.2 ± 0.4 ± 2.3
7.5–9.5 7390 8.43 ± 0.01 ± 0.01 79.2 ± 0.3 ± 2.2
9.5–13.0 1713 10.92 ± 0.02 ± 0.04 94.5 ± 0.3 ± 3.6
13.0–16.0 485 14.24 ± 0.04 ± 0.05 86.1 ± 0.9 ± 4.2
16.0–20.0 117 17.72 ± 0.11 ± 0.21 73.9 ± 2.5 ± 8.9
5.0–20.0 25 396 7.32 ± 0.01 ± 0.07 85.1 ± 0.2 ± 2.6

Table 1: Bins in the unbiased jet energy E∗

g , and the corresponding number of jets, mean
energies, and estimated purities, for the gluon jets in our final event sample. The last row
gives the results for the entire sample. For the 〈E∗

g〉 and purity results, the first uncertainty is
statistical and the second systematic.

and (4). We require the quark jets to satisfy κjet ≥ 8.0 GeV. After applying all cuts, the number
of selected events is 25 396.

The purity of this sample is evaluated using simulated events generated with the Herwig
Monte Carlo event generator, version 6.2 [25]. Herwig is chosen because it is known to provide
a better description of gluon jets in e+e− annihilations than the available alternatives (see
e.g. [7]). The Monte Carlo events are examined at the “detector level.” The detector level
includes initial-state photon radiation, simulation of the OPAL detector [26], and the same
analysis procedures as are applied to the data. The detector level Herwig sample in our study
contains six million inclusive Z0 events. The parameter values we use for Herwig are documented
in [27]. We determine the directions of the primary quark and antiquark from the Z0 decay
after the parton shower has terminated. The reconstructed jet closest to the direction of an
evolved primary quark or antiquark is considered to be a quark jet. The distinct jet closest to
the evolved primary quark or antiquark not associated with this first jet is considered to be the
other quark jet. The remaining jet is the gluon jet. Using this method, the overall purity of
the final gluon jet sample is found to be 85.1 ± 0.2 (stat.)%.

The data are binned in seven intervals of E∗

g . The bin edges are chosen so that the mean
gluon jet energy for most bins corresponds to an energy at which unbiased quark jet multiplicity
data are available for comparison (see Sect. 9.1.3). Table 1 summarizes the bin definition,
number of gluon jets, mean jet energy 〈E∗

g〉 and estimated gluon jet purity, for each bin. The
systematic uncertainties attributed to the 〈E∗

g〉 and purity results are discussed in Sect. 8.

The boost algorithm (Sect. 2) is applied to the selected qqg events. Henceforth, by “gluon
jet,” we refer to gluon jets treated according to this prescription.

Because we rely on b quark tagging to identify gluon jets, the events we study are enriched in
heavy quark jets. This is in apparent contradiction with the assumption of the boost algorithm
that the jets are massless. The Herwig Monte Carlo predicts that about 80% of the events in the
final sample are b events. In Sect. 6, we show that this reliance on b events does not affect the
applicability of the method (see Fig. 6 below). Also note that the properties of hard, acolinear
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gluon jets do not depend on the event flavor according to QCD, as has been experimentally
demonstrated in e.g. [28].

5 Experimental distributions

We study the charged particle multiplicity distributions of the identified gluon jets, nch.
gluon.

The multiplicity distributions are presented in terms of their fractional probabilities, P (nch.
gluon),

and are thus normalized to have unit area. We also study the fragmentation functions of the
jets. The fragmentation function 1/N (dnch.

gluon/dx∗

E) is defined by the inclusive distribution of
scaled charged particle energies x∗

E = E∗/E∗

g in the back-to-back frames of the qg and qg dipoles
(see Fig. 2b). The fragmentation functions are normalized to the number of events N in the
respective bins of E∗

g (see Table 1). To determine the particle energies E∗, particles assigned to
the gluon jet in the symmetric frame (Fig. 2a) are boosted to the back-to-back frames of the
dipoles using the boost factor β = cos α mentioned in Sect. 2 (see also Appendix A.1). In the
data, it is not possible to know the dipole with which a particle should be associated. Therefore,
we tried both possibilities. We found that the same results are obtained irrespective of whether
the particles are boosted to the frame of the qg or the qg dipole.

We also examine the mean and first two non-trivial normalized factorial moments of the
nch.

gluon distribution, denoted 〈nch.
gluon〉, F2, gluon and F3, gluon, respectively. Normalized factorial

moments [29] are defined by

Fℓ =
〈n(n − 1) · · · (n − ℓ + 1)〉

〈n〉ℓ , (5)

with n = nch.
gluon and ℓ a positive integer. Note that F2 is directly related to the dispersion of a

distribution while F3 is related to both the skew and dispersion (see e.g. [8]). Thus normalized
factorial moments provide information about the shape of a distribution, or equivalently about
event-to-event fluctuations from the mean. We study normalized factorial moments because
QCD predictions for the shape of multiplicity distributions are usually presented in that form
(for a review, see [30]).

6 Test of the boost algorithm

Before describing our results, we present a test of the boost algorithm using events generated
with the Herwig Monte Carlo event generator. With simulated events, it is possible to compare
gluon jets from e+e− hadronic Z0 decays as used in the experiment with unbiased gluon jets
from color singlet gg events as used in theoretical calculations.

The Monte Carlo events are examined at the “hadron level.” The hadron level does not
include initial-state radiation or detector simulation and utilizes all charged and neutral par-
ticles with lifetimes greater than 3× 10−10 s, which are treated as stable. For the inclusive
Z0 hadronic events, we generated a sample with 10 million events. For the gg event samples,
10 million events were generated at each energy (see below).
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Figure 3: Charged particle multiplicity distributions of gluon jets, nch.
gluon, for different jet en-

ergies E∗

g . The data have been corrected for detector acceptance and resolution, for event
selection, and for gluon jet impurity. The total uncertainties are shown by the vertical lines,
with the statistical component delimited by small horizontal lines. The data are presented in
comparison to predictions of the Herwig Monte Carlo event generator at the hadron level. Two
different sets of Monte Carlo results are included: one based on e+e− events treated using the
boost algorithm, and one based on hemispheres of gg events.
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The dashed histograms in Fig. 3 show the prediction of Herwig for the nch.
gluon distributions

of Z0 events, obtained using the boost algorithm. The results are shown for the seven bins
of energy E∗

g defined in Table 1. The events are selected using the procedures described in
Sect. 4 for the data, except that the quark jet identification is performed using Monte Carlo
information as explained in Sect. 4. The solid histograms show the corresponding results for
hemispheres of gg events. The energies of the gg hemispheres are chosen to equal the mean
energies of the jets obtained from the boost algorithm, for each bin. The solid points with
uncertainties in Fig. 3 show our corrected data: these are discussed in Sect. 9.1.

The analogous results for the mean value 〈nch.
gluon〉 and the normalized factorial moments

F2, gluon and F3, gluon are presented in Fig. 4. The small figures above the distributions in Fig. 4
show the fractional differences between the results of the boost and gg hemisphere methods.
Note that the statistical uncertainties of these differences are much smaller than the differences
themselves, as is also true for the other difference plots between the boost and gg hemisphere
methods presented below.

From Fig. 3 it is seen that the results of the boost algorithm correspond well with those of the
gg hemispheres. Nonetheless, a small shift towards lower nch.

gluon is present in the distributions
from the boost method, as is most clearly visible from the difference plot in Fig. 4a. From
this plot, the shift is seen to be about 2%, independent of the energy. This difference of 2% is
comparable to the experimental uncertainties (see Sect. 9.1) and no correction is made for it.
From the difference plots in Figs. 4b and c, it is seen that the results for F2, gluon and F3, gluon

from the boost method agree to better than about 1% with those of gg hemispheres, i.e. the
shapes of the nch.

gluon distributions found using the two methods are very similar. We conclude
that the boost algorithm provides an accurate means to measure unbiased gluon jet multiplicity,
at least for jet energies larger than 5 GeV.

An analogous study of the gluon jet fragmentation function is presented in Fig. 5. For
E∗

g ∼> 11 GeV (Figs. 5e–g), the results of the boost and gg hemisphere methods are seen to be
in reasonable agreement, i.e. the solid and dashed curves are quite similar. For smaller energies
(Figs. 5a–d), the boost algorithm predicts a significant excess of particles with large x∗

E values
compared to the gg events, however. The reason the boost method more accurately describes
the properties of gg events as the jet energy increases is that the assumption of massless gluon
jets (Sect. 2) becomes more accurate for larger jet energies. We verified using Monte Carlo
events with Ec.m. > mZ that the agreement between the two methods is even better for E∗

g

values above those in our study.

The difference plots in the top portions of Figs. 5a–g show the fractional differences between
the results of the boost and gg hemisphere methods. The difference plots for Figs. 5a–f are
presented on two scales, one for 0.0≤x∗

E ≤ 0.50 and the other for 0.50≤x∗

E ≤ 1.00, to improve
their visibility. For E∗

g ≤ 10.92 GeV (Figs. 5a-e), the results of the boost algorithm are seen
to deviate from those of the gg hemispheres by up to about 20% or more, even for x∗

E ∼< 0.50
where the experimental uncertainties are relatively small (see Sect. 9.2 for a discussion of the
data). For E∗

g = 14.24 and 17.72 GeV (Figs. 5f and g), the deviations for x∗

E ∼< 0.50 are at
most about 10% and in most x∗

E bins much less. In our study of the gluon jet fragmentation
function (Sect. 9.2), we therefore restrict our attention to the jet samples with E∗

g = 14.24 and
17.72 GeV.
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Figure 4: (a) The mean charged particle multiplicity value of gluon jets, 〈nch.
gluon〉, as a func-

tion of the gluon jet energy E∗

g . (b,c) The corresponding results for the two lowest non-trivial
normalized factorial moments, F2, gluon and F3, gluon. The data have been corrected for detector
acceptance and resolution, for event selection, and for gluon jet impurity. The total uncertain-
ties are shown by the vertical lines, with the statistical component delimited by small horizontal
lines. The data are presented in comparison to predictions of the Herwig Monte Carlo event
generator at the hadron level. The small figures above each distribution show the fractional
differences between the results of Herwig found using the boost (“bo”) and gg event hemisphere
(“gg”) methods.
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Figure 5: Charged particle fragmentation functions of gluon jets, 1/N (dnch.
gluon/dx∗

E), for differ-
ent jet energy values E∗

g . The data have been corrected for detector acceptance and resolution,
for event selection, and for gluon jet impurity. The total uncertainties are shown by the vertical
lines, with the statistical component delimited by small horizontal lines. The data are presented
in comparison to predictions of the Herwig Monte Carlo event generator at the hadron level.
The small figures above each distribution show the fractional differences between the results of
Herwig found using the boost (“bo”) and gg event hemisphere (“gg”) methods.
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Figure 6: Hadron level results from the Herwig Monte Carlo for the (a) nch.
gluon and

(b) 1/N (dnch.
gluon/dx∗

E) distributions, for uds and b flavor events. The results in (a) are given
for jet energies 5≤E∗

g ≤ 20 GeV, corresponding to the range for which we find the boost
method to be applicable for the nch.

gluon distribution. Analogously, the results in (b) are given
for 13≤E∗

g ≤ 20 GeV, corresponding to the more limited range for which we find the boost
method to be applicable for the 1/N (dnch.

gluon/dx∗

E) distribution.

Fig. 6 shows the results we obtain from applying the boost algorithm to uds and b flavor
events from Herwig. For simplicity, the results for the nch.

gluon distribution (Fig. 6a) include
all jet energies, 5≤E∗

g ≤ 20 GeV. The results for the 1/N (dnch.
gluon/dx∗

E) distribution (Fig. 6b)
are restricted to the two highest energy bins (13≤E∗

g ≤ 20 GeV) for the reason stated in the
previous paragraph. With the exception of the highest bin in Fig. 6b (x∗

E ≥ 0.80), it is seen
that the uds and b events yield essentially identical results for the gluon jet properties. This
establishes that our reliance on b events to identify gluon jets (Sect. 4) does not introduce a
significant bias, i.e. the theoretical assumption of massless jets is not an important consideration
for the quark jets. We also tested the massless parton assumption of the boost algorithm by
repeating the comparisons of the gg and boost results shown in Figs. 3–5 after scaling the
charged particle 3-momenta so that the magnitude of a particle’s 3-momentum equaled its
energy, and found that our conclusions were unchanged.

It is interesting to establish the degree to which gluon jet properties determined using the
boost method are independent of the jet algorithm chosen for the initial definition of the jets.
Fig. 7a shows the Herwig prediction for the nch.

gluon distribution, for jets defined using the Luclus,
Cambridge, cone and Jade [31] jet finders, in addition to the k⊥ jet finder used for our standard
analysis. Note that the Jade algorithm uses the invariant mass between jets as a resolution
criterion. The cone jet finder uses the total particle energy within a cone. These two jet finders
– unlike the other three – are therefore not based on the transverse momentum p⊥, cut between
jets and so do not correspond to the framework of the dipole model or boost algorithm (see
Sect. 2). The five jet algorithms are seen to yield essentially identical results, demonstrating the
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Figure 7: Hadron level results from the Herwig Monte Carlo for the (a) nch.
gluon and

(b) 1/N (dnch.
gluon/dx∗

E) distributions, for different choices of the jet finding algorithm used for
the initial definition of gluon jets. The results in (a) are given for jet energies 5≤E∗

g ≤ 20 GeV,
corresponding to the range for which we find the boost method to be applicable for the nch.

gluon

distribution. Analogously, the results in (b) are given for 13≤E∗

g ≤ 20 GeV, correspond-
ing to the more limited range for which we find the boost method to be applicable for the
1/N (dnch.

gluon/dx∗

E) distribution.

independence of the boost method from the jet finder choice. The fact that the cone and Jade
jet finders yield essentially the same results as the three p⊥, cut based algorithms demonstrates
the robustness of the boost algorithm in this respect. The corresponding results for the gluon
jet fragmentation function are shown in Fig. 7b. Again, all five jet algorithms are seen to yield
essentially identical results.

7 Correction procedure

We correct the data to the hadron level (Sect. 6) and for gluon jet impurity. This allows our
data to be compared more directly to the results of other studies and to theoretical calculations
(Sect. 9).

The multiplicity distributions are corrected in two steps. In the first step, the data are
corrected for particle acceptance, resolution, and secondary electromagnetic and hadronic in-
teractions using an unfolding matrix. The matrix is constructed using detector level Monte
Carlo events (Sect. 4) subjected to the same analysis procedures as the data. The matrix re-
lates the value of nch.

gluon at the detector level to the corresponding value before the same event
is processed by the detector simulation. In the second step, the data are corrected for event
acceptance and selection, initial-state radiation and gluon jet impurity using bin-by-bin factors.
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The factors are constructed by taking the ratio of hadron to detector level Monte Carlo predic-
tions. The method of bin-by-bin corrections is described in [32]. The matrices and bin-by-bin
factors are determined using Herwig. The matrices indicate that about 80% of the events ex-
hibit a migration of one nch.

gluon bin or less between the detector and hadron levels. About 50%
of the events have the same value of nch.

gluon at the two levels. The overall size of the corrections,
including the bin-by-bin factors, varies from about 10 to 30%.

The fragmentation functions are corrected using the bin-by-bin method, also based on Her-
wig. A matrix procedure is not used for the fragmentation functions because they include more
than one entry per event. The typical size of the corrections is 15%.

8 Systematic uncertainties

To evaluate systematic uncertainties for the corrected data, we repeated the analysis with the
changes given in the list below. The differences between the standard results and those found
using each of these conditions were used to define symmetric systematic uncertainties. The
systematic uncertainties were added in quadrature to define the total systematic uncertainties.
The systematic uncertainty evaluated for each bin was averaged with the results from its two
neighbors to reduce the effect of bin-to-bin fluctuations. The single neighbor was used for bins
at the ends of the distributions.

The applied changes are:

1. The Ariadne Monte Carlo [33], version 4.11, and the Jetset Monte Carlo [34], version 7.4,
were used to correct the data, rather than Herwig. Samples of six million Ariadne and
Jetset events at the detector level (Sect. 4) were used for this purpose. The parameter
values used for these two models are given in [27] and [28], respectively.

2. Charged tracks alone were used for the data and Monte Carlo samples with detector
simulation, rather than charged tracks plus electromagnetic clusters (note: in the standard
analysis, electromagnetic clusters are used in the definition of the jets, see Sect. 4).

3. The particle selection was further varied, first by restricting charged tracks and elec-
tromagnetic clusters to the central region of the detector, | cos θ| < 0.70, rather than
| cos θ| < 0.96 for the charged tracks and | cos θ| < 0.98 for the clusters, and second by
increasing the minimum transverse momentum of charged tracks with respect to the beam
axis from 0.05 GeV/c to 0.15 GeV/c.

4. The quark jet tagging requirements were changed by requiring the decay length of the
lower energy quark jet to satisfy L/σL > 2.0 for 5.0≤E∗

g < 9.5 GeV, rather than L/σL >
3.0, and at the same time by requiring the decay lengths of jets 1 and 2 to satisfy L/σL >
2.0 for 9.5≤E∗

g < 16.0 GeV, again rather than L/σL > 3.0. This resulted in 35 607 events
with an estimated purity of 80.5 ± 0.1 (stat.)%. As an additional check on the quark jet
selection we increased the minimum κjet value of quark jets (see eq. (4)) from 8 to 10 GeV,
with the L/σL requirements at their standard values. This resulted in 23 128 events with
an estimated purity of 85.7 ± 0.2 (stat.)%.

18



For the first item, the largest of the described differences with respect to the standard result
was assigned as the systematic uncertainty, and similarly for the third and fourth items.

The largest contribution to the systematic uncertainties generally arose from using Ariadne
or Jetset to correct the data. The second largest contribution generally arose from using charged
particles alone or from restricting particles to | cos θ| < 0.70.

Systematic uncertainties were also evaluated for the gluon jet purities listed in Table 1.
These uncertainties were derived by repeating the analysis using each of the systematic varia-
tions given in the above list, except for item 4 since this check is specifically designed to alter
the purities. The results are given in Table 1. Similarly, the systematic uncertainties listed in
Table 1 for the mean gluon jet energies 〈E∗

g〉 were derived using the systematic variations in
the above list, except for item 1 since data at the detector level do not depend on the Monte
Carlo.

9 Results

9.1 Multiplicity distributions

The corrected multiplicity distributions are shown by the solid points with uncertainties in
Fig. 3. The vertical lines show the total uncertainties, with statistical and systematic terms
added in quadrature. Statistical uncertainties were evaluated for the corrected data using 50
independent samples of Monte Carlo events at the hadron level, each with about the same event
statistics as the data (this comment applies to all the corrected measurements presented in this
paper). The statistical components of the uncertainties are delimited by small horizontal lines
(for some points the statistical uncertainties are too small to be visible). These data are listed
in Tables 2–4. The corresponding results for 〈nch.

gluon〉, F2, gluon and F3, gluon are presented in Fig. 4
and Table 5.

In Fig. 8 we again present the corrected results for 〈nch.
gluon〉, F2, gluon and F3, gluon, this time

including our direct measurements at E∗

g = 40.1 GeV [8, 9] based on e+e− → qqgincl. events.
Fig. 8a also includes a direct measurement of 〈nch.

gluon〉 from the CLEO Collaboration at E∗

g =
5.2 GeV [5], based on radiative Υ(3S) decays. The open points in Fig. 8a show our earlier
results [12] based on subtracting multiplicities in qq and qqg events [11]. The results from
the present study are seen to be consistent with these latter data, and are considerably more
precise. Our results are also consistent with the CLEO measurement.

From Fig. 4a (or Fig. 8a) it is seen that the energy evolution of 〈nch.
gluon〉 is well described

by Herwig. The Herwig predictions for the higher moments F2, gluon and F3, gluon are also in
reasonable agreement with the data, as seen from Figs. 4b and c (or Figs. 8b and c), although
the Monte Carlo curves lie somewhat below the measurements for jet energies smaller than
about 12 GeV.

In the following, we present fits of QCD expressions to the 〈nch.
gluon〉, F2, gluon and F3, gluon

data. The theoretical expressions are at the “parton level.” The corresponding distributions are
denoted 〈nparton

gluon 〉, F parton
2, gluon and F parton

3, gluon. The parton level is based on quarks and gluons present
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nch.
gluon P (nch.

gluon), E∗

g = 5.25 GeV P (nch.
gluon), E∗

g = 5.98 GeV P (nch.
gluon), E∗

g = 6.98 GeV

0 0.0036 ± 0.0009 ± 0.0036 0.0025 ± 0.0005 ± 0.0025 0.0019 ± 0.0004 ± 0.0019
1 0.0266 ± 0.0021 ± 0.0068 0.0190 ± 0.0014 ± 0.0040 0.0117 ± 0.0011 ± 0.0069
2 0.0808 ± 0.0046 ± 0.0093 0.0618 ± 0.0026 ± 0.0048 0.0427 ± 0.0022 ± 0.0057
3 0.1490 ± 0.0067 ± 0.0078 0.1186 ± 0.0046 ± 0.0044 0.0943 ± 0.0046 ± 0.0073
4 0.1982 ± 0.0063 ± 0.0058 0.1794 ± 0.0057 ± 0.0029 0.1494 ± 0.0052 ± 0.0099
5 0.199 ± 0.006 ± 0.012 0.1935 ± 0.0044 ± 0.0050 0.1857 ± 0.0058 ± 0.0088
6 0.154 ± 0.006 ± 0.010 0.1769 ± 0.0040 ± 0.0061 0.1803 ± 0.0050 ± 0.0078
7 0.1000 ± 0.0046 ± 0.0059 0.1236 ± 0.0043 ± 0.0042 0.1422 ± 0.0048 ± 0.0069
8 0.0545 ± 0.0029 ± 0.0049 0.0710 ± 0.0029 ± 0.0024 0.0961 ± 0.0044 ± 0.0064
9 0.0230 ± 0.0021 ± 0.0012 0.0330 ± 0.0020 ± 0.0019 0.0543 ± 0.0029 ± 0.0053
10 0.0079 ± 0.0012 ± 0.0012 0.0139 ± 0.0011 ± 0.0018 0.0256 ± 0.0020 ± 0.0035
11 0.00232 ± 0.00046 ± 0.00071 0.0050 ± 0.0007 ± 0.0014 0.0106 ± 0.0011 ± 0.0020
12 0.00041 ± 0.00028 ± 0.00041 0.00129 ± 0.00038 ± 0.00077 0.0039 ± 0.0007 ± 0.0010
13 — 0.00034 ± 0.00016 ± 0.00031 0.00094 ± 0.00043 ± 0.00055
14 — — 0.00017 ± 0.00017 ± 0.00017
15 — — 0.00017 ± 0.00006 ± 0.00017

Table 2: The charged particle multiplicity distribution of gluon jets, nch.
gluon, for E∗

g = 5.25,
5.98 and 6.98 GeV. The data have been corrected for detector acceptance and resolution, for
event selection, and for gluon jet impurity. The first uncertainty is statistical and the second
systematic.

nch.
gluon P (nch.

gluon), E∗

g = 8.43 GeV P (nch.
gluon), E∗

g = 10.92 GeV

0 0.0012 ± 0.0003 ± 0.0012 0.0008 ± 0.0004 ± 0.0008
1 0.0069 ± 0.0010 ± 0.0066 0.0047 ± 0.0012 ± 0.0047
2 0.0280 ± 0.0019 ± 0.0075 0.0152 ± 0.0028 ± 0.0047
3 0.0646 ± 0.0029 ± 0.0078 0.0373 ± 0.0043 ± 0.0052
4 0.1157 ± 0.0035 ± 0.0075 0.0749 ± 0.0060 ± 0.0062
5 0.1621 ± 0.0052 ± 0.0085 0.1083 ± 0.0071 ± 0.0063
6 0.1783 ± 0.0043 ± 0.0080 0.1419 ± 0.0080 ± 0.0082
7 0.1632 ± 0.0045 ± 0.0086 0.1530 ± 0.0087 ± 0.0061
8 0.1207 ± 0.0039 ± 0.0073 0.1428 ± 0.0085 ± 0.0063
9 0.0756 ± 0.0031 ± 0.0064 0.1173 ± 0.0075 ± 0.0066
10 0.0443 ± 0.0021 ± 0.0053 0.0862 ± 0.0070 ± 0.0053
11 0.0226 ± 0.0010 ± 0.0031 0.0550 ± 0.0055 ± 0.0033
12 0.0103 ± 0.0008 ± 0.0020 0.0320 ± 0.0034 ± 0.0032
13 0.0044 ± 0.0006 ± 0.0012 0.0172 ± 0.0031 ± 0.0030
14 0.00141 ± 0.00043± 0.00071 0.0074 ± 0.0019 ± 0.0016
15 0.00048 ± 0.00022± 0.00032 0.0042 ± 0.0013 ± 0.0011
16 0.00019 ± 0.00007± 0.00015 0.0011 ± 0.0005 ± 0.0011
17 — 0.0004 ± 0.0004 ± 0.0004
18 — 0.00018 ± 0.00018 ± 0.00018

Table 3: The charged particle multiplicity distribution of gluon jets, nch.
gluon, for E∗

g = 8.43 and
10.92 GeV. The data have been corrected for detector acceptance and resolution, for event
selection, and for gluon jet impurity. The first uncertainty is statistical and the second system-
atic. 20



nch.
gluon P (nch.

gluon), E∗

g = 14.24 GeV P (nch.
gluon), E∗

g = 17.72 GeV

0 0.0001 ± 0.0001 ± 0.0001 0.00004 ± 0.00001 ± 0.00004
1 0.0005 ± 0.0005 ± 0.0005 0.0004 ± 0.0004 ± 0.0004
2 0.0068 ± 0.0028 ± 0.0036 0.0013 ± 0.0013 ± 0.0013
3 0.0179 ± 0.0047 ± 0.0062 0.0080 ± 0.0072 ± 0.0057
4 0.0363 ± 0.0078 ± 0.0079 0.018 ± 0.013 ± 0.011
5 0.072 ± 0.011 ± 0.008 0.047 ± 0.018 ± 0.014
6 0.099 ± 0.013 ± 0.006 0.067 ± 0.023 ± 0.019
7 0.131 ± 0.016 ± 0.010 0.102 ± 0.033 ± 0.016
8 0.137 ± 0.014 ± 0.010 0.103 ± 0.029 ± 0.023
9 0.132 ± 0.013 ± 0.007 0.125 ± 0.034 ± 0.027
10 0.116 ± 0.016 ± 0.006 0.143 ± 0.031 ± 0.023
11 0.0924 ± 0.013 ± 0.006 0.128 ± 0.029 ± 0.024
12 0.067 ± 0.012 ± 0.006 0.153 ± 0.031 ± 0.051
13 0.047 ± 0.010 ± 0.006 0.054 ± 0.020 ± 0.046
14 0.025 ± 0.006 ± 0.007 0.022 ± 0.018 ± 0.022
15 0.01447 ± 0.0020 ± 0.0040 0.017 ± 0.013 ± 0.017
16 0.0051 ± 0.0019 ± 0.0039 0.010 ± 0.010 ± 0.009

Table 4: The charged particle multiplicity distribution of gluon jets, nch.
gluon, for E∗

g = 14.24
and 17.72 GeV. The data have been corrected for detector acceptance and resolution, for
event selection, and for gluon jet impurity. The first uncertainty is statistical and the second
systematic.

E∗

g 〈nch.
gluon〉 F2, gluon F3, gluon

5.25 4.803 ± 0.030 ± 0.047 0.9528 ± 0.0030 ± 0.0087 0.863 ± 0.008 ± 0.020
5.98 5.190 ± 0.030 ± 0.062 0.956 ± 0.002 ± 0.011 0.870 ± 0.006 ± 0.027
6.98 5.677 ± 0.030 ± 0.074 0.963 ± 0.002 ± 0.011 0.891 ± 0.006 ± 0.026
8.43 6.291 ± 0.030 ± 0.090 0.970 ± 0.002 ± 0.011 0.915 ± 0.005 ± 0.027
10.92 7.378 ± 0.062 ± 0.077 0.989 ± 0.004 ± 0.011 0.964 ± 0.012 ± 0.026
14.24 8.62 ± 0.13 ± 0.10 0.988 ± 0.005 ± 0.015 0.960 ± 0.016 ± 0.041
17.72 9.52 ± 0.30 ± 0.33 0.973 ± 0.007 ± 0.029 0.914 ± 0.021 ± 0.078

Table 5: The mean, 〈nch.
gluon〉, and first two non-trivial normalized factorial moments, F2, gluon

and F3, gluon, of the charged particle multiplicity distribution of gluon jets. The data have been
corrected for detector acceptance and resolution, for event selection, and for gluon jet impurity.
The first uncertainty is statistical and the second systematic.
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at the end of the perturbative shower. The theoretical results are compared to the charged
particle hadron level data3, without hadronization corrections. By hadronization correction,
we mean the ratio of the parton to hadron level predictions from a QCD Monte Carlo program,
e.g. Herwig. We do not apply hadronization corrections because they are model dependent.
The fitted parameters therefore incorporate effects from hadronization, in addition to possible
effects from approximations in the QCD expressions themselves. Our strategy is to compare
the parameter values obtained from different distributions (where appropriate) to see whether
they are generally similar despite hadronization, and thereby to test the global consistency of
the formalism in a qualitative way.

9.1.1 3NLO perturbative expressions

A QCD analytic calculation of the energy evolution of 〈nparton
gluon 〉, valid to the next-to-next-to-

next-to-leading order (3NLO) of perturbation theory, is presented in [35]. So far, only two tests
of this expression have been performed. The first test [35] is based on two data points only:
the gincl. and Υ(3S)-derived results shown in Fig. 8a. The second test [12] is based on these
same two data points and the less direct measurements shown by the open symbols in Fig. 8a.
3NLO analytic results for F parton

2, gluon and F parton
3, gluon are presented in [36]. So far, there have been no

experimental tests of the energy evolution of these expressions.

The solid curve in Fig. 8a shows the result of a two parameter χ2 fit of the 3NLO expression
for 〈nparton

gluon 〉 to the 〈nch.
gluon〉 data. The fit is performed assuming nF = 5, where nF is the number

of active quark flavors in the perturbative stage of an event. Essentially identical curves are
obtained if nF = 3 or 4 (see below) is used instead. The fitted data are the seven measurements
of 〈nch.

gluon〉 from the present study (see Table 5) and the gincl. and Υ(3S) results shown in
Fig. 8a. The fits are performed using statistical uncertainties only to determine the χ2. The
fitted parameters are the QCD scale parameter Λ and an overall normalization constant K
(see [35]). Note that Λ is strongly correlated with ΛMS [37] but is not necessarily the same.
Note also that there is an ambiguity in the appropriate value to use for nF because c and b
quarks are rarely produced in the perturbative evolution of jets at LEP. The fitted parameter
values and corresponding χ2 results are listed in the top portion of Table 6. The results are given
for nF = 3, 4 and 5. The systematic uncertainties attributed to the parameters are defined by
adding the following contributions in quadrature: (1) the uncertainty of the fitted parameters
returned by the fitting routine when the total uncertainties of the data are used to perform the
fit, rather than the statistical uncertainties only (note: point-to-point systematic uncertainties
are treated as uncorrelated); (2) the difference between the results of the standard fit and
those found by fitting only the 〈nch.

gluon〉 data of Table 5 (i.e. excluding the gincl. and Υ(3S)
measurements).

From Fig. 8a and Table 6, it is seen that the 3NLO expression provides a good description
of the 〈nch.

gluon〉 measurements, i.e. χ2/d.o.f. = 0.74 for nF = 5, with slightly higher χ2 for nF =
3 and 4. The result Λ = 0.296 ± 0.037 (stat.+syst.) GeV we find for nF = 5 is much more
similar to the corresponding quark jet result, Λ = 0.190 ± 0.032 (stat.) GeV [12], than to the
value Λ = 0.60± 0.06 (stat.) GeV found previously [12] (“stat.+syst.” means the statistical and

3The issue of how this comparison differs from one based on both charged and neutral particles at the hadron
level is addressed in Sect. 9.1.1.
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Figure 8: (a) The mean charged particle multiplicity value of gluon jets, 〈nch.
gluon〉, as a function

of the gluon jet energy E∗

g . The data have been corrected for detector acceptance and reso-
lution, for event selection, and for gluon jet impurity. The total uncertainties are shown by
the vertical lines, with the statistical component delimited by small horizontal lines. (b,c) The
corresponding results for the two lowest non-trivial normalized factorial moments, F2, gluon and
F3, gluon. The data are presented in comparison to the result of QCD analytic calculations, and
to the Herwig Monte Carlo at the hadron level.
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nF Λ (GeV) K χ2/d.o.f.
3 0.470 ± 0.027 ± 0.050 0.1366 ± 0.0047 ± 0.0084 6.2/7

〈nch.
gluon〉 4 0.385 ± 0.024 ± 0.046 0.1164 ± 0.0042 ± 0.0080 5.6/7

5 0.296 ± 0.019 ± 0.038 0.0986 ± 0.0037 ± 0.0073 5.2/7
3 0.166 ± 0.012 ± 0.049 — 8.7/2

F2, gluon 4 0.143 ± 0.009 ± 0.042 — 8.2/2
5 0.114 ± 0.009 ± 0.032 — 8.2/2
3 0.051 ± 0.004 ± 0.016 — 8.4/2

F3, gluon 4 0.040 ± 0.003 ± 0.013 — 8.4/2
5 0.029 ± 0.002 ± 0.011 — 8.1/2

Table 6: Results of fits of the 3NLO expressions for 〈nch.
gluon〉 [35], F2, gluon and F3, gluon [36] to

our data. The χ2 values are based on the statistical uncertainties of the data points. The first
uncertainty is statistical and the second systematic.

systematic terms have been added in quadrature). Our data therefore provide a much improved
demonstration of the consistency of the 3NLO expressions for the scale dependence of unbiased
quark and gluon jet multiplicities than previously available.

The solid curves in Figs. 8b and c show the corresponding results of fits of the 3NLO
expressions for F parton

2, gluon and F parton
3, gluon to the data. We note that the hadronization corrections

predicted for F2, gluon and F3, gluon (from Herwig) exhibit a significant dependence on energy,
especially for E∗

g ∼< 12 GeV. The hadronization correction predicted for F2, gluon changes by
about 19% for 5≤E∗

g ≤ 12 GeV, for example (from 0.70 to 0.83), compared to about 12% for
12≤E∗

g ≤ 40 GeV (from 0.83 to 0.93). For F3, gluon, the results are 71% (from 0.34 to 0.58) and
43% (from 0.58 to 0.83), respectively. (In comparison, the hadronization correction predicted
for the 〈nch.

gluon〉 distribution in Fig. 8a changes by only about 10% and 6% over these intervals,
corresponding to corrections of 0.39, 0.35 and 0.33 at 5, 12 and 40 GeV.) Therefore, the fits
of the 3NLO expressions for F parton

2, gluon and F parton
3, gluon shown in Figs. 8b and c are restricted to the

three data points with E∗

g > 12 GeV, i.e. the data at 14.24, 17.72 and 40.1 GeV. The results of

the fits are listed in the central and bottom portions of Table 6. Since F parton
2, gluon and F parton

3, gluon are
normalized moments, they are independent of an overall normalization factor, i.e. Λ is the only
free parameter. The χ2/d.o.f. of these fits are seen to be quite large (Table 6): this is because
the statistical uncertainties are relatively small and the F2, gluon and F3, gluon measurements
at 17.72 GeV are low compared to the corresponding data at 14.24 GeV and 40.1 GeV (see
Figs. 8b and c). Note, however, that the F2, gluon and F3, gluon measurements at 17.72 GeV have
large systematic uncertainties and that the fitted curves in Figs. 8b and c describe the energy
evolution of F2, gluon and F3, gluon from 14 to 40 GeV quite well if the total uncertainties of
the measurements are considered. In contrast, the 3NLO curves lie below the data at smaller
energies.

The systematic uncertainties attributed to the Λ values found from fitting the F2, gluon and
F3, gluon data (Table 6) are defined by adding the following contributions in quadrature: (1) the
uncertainty of the fitted parameters returned by the fitting routine when the total uncertainties
of the data are used to perform the fit, rather than the statistical uncertainties only; (2) the
difference between the standard results and those found by repeating the fits including the data
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at 10.92 GeV; (3) the difference between the standard results and those found by repeating
the fits excluding the gincl. measurements at 40.1 GeV. The open band in Fig. 8b shows the
uncertainty of the 3NLO curve, defined by increasing or decreasing Λ by one standard deviation
of its total uncertainty as determined using the F2, gluon data. The corresponding one standard
deviation band for the F3, gluon curve is too small to be visible.

The fitted results for Λ from F2, gluon and F3, gluon, viz. 0.114 and 0.029 GeV (for nF = 5),
differ from each other and also from the result Λ = 0.296 GeV found from the fit to the 〈nch.

gluon〉
data (Table 6). These differences may be a consequence of the different energy dependence of
the hadronization corrections for the three distributions, predicted to be more substantial for
F3, gluon than for F2, gluon, and for F2, gluon than for 〈nch.

gluon〉, as discussed above. For purposes
of comparison, it is interesting to express these Λ results in terms of the coupling strength
at the Z0 pole, αS (mZ).4 The fitted Λ results for 〈nch.

gluon〉, F2, gluon and F3, gluon correspond to
αS (mZ) = 0.123±0.002, 0.107±0.003 and 0.090±0.002, respectively, where the statistical and
systematic uncertainties have been added in quadrature. Since Λ in the 3NLO calculations does
not correspond to ΛMS, these values of αS (mZ) cannot be compared directly to the world average
αS (mZ) = 0.117±0.002 [39]. Furthermore they cannot be compared directly to each other since
the effects of hadronization are different for the 〈nch.

gluon〉, F2, gluon and F3, gluon distributions as
noted above. Nonetheless, the three αS results are globally similar to each other and to the
world average value, i.e. they are more similar to αS ∼ 0.1 than to e.g. αS ∼ 0.01 or 1.0. It is
notable that the 3NLO results for F parton

2, gluon and F parton
3, gluon found using these qualitatively sensible

values (αS ∼ 0.1) are much more similar to the experimental measurements in Figs. 8b and c
than to the leading order QCD predictions of 4/3 and 9/4, respectively [36]. In this general
sense, the 3NLO calculations provide a qualitatively consistent and successful description of
the gluon jet multiplicity data, at least for E∗

g ∼> 14 GeV.

We note that most of the multiplicity in high energy jets is generated by hard, virtual
gluons, common to both charged and neutral particles at the hadron level. As a consequence,
the shapes of the multiplicity distributions of neutral and charged hadrons are expected to
be very similar, so that it makes no difference if parton level expressions are compared to
charged particle data only (as is done here) or to data including neutral hadrons as well. The
shapes of the multiplicity distributions of charged and neutral particles at the hadron level
can differ, however, because of resonance decays which introduce correlations, e.g. in π0 → γγ
decays which produce most of the stable neutral particles at the hadron level. Using hadron
level Herwig events, we verified that the fitted results for Λ from the 〈ngluon〉, F2, gluon and
F3, gluon distributions are almost identical if neutral particles at the hadron level are used to
define the multiplicity distributions, rather than charged particles, as long as the π0 is declared
stable. The results for the normalization constant K in the 3NLO expression for 〈nparton

gluon 〉 differ
in the fits for neutral and charged hadrons, however, because the mean numbers of charged and
neutral hadrons are not the same.

9.1.2 Fixed αS expressions

Analytic expressions for 〈nparton
gluon 〉, F parton

2, gluon and F parton
3, gluon have also been derived assuming a fixed

value of αS [40, 41]. By assuming αS is fixed, the QCD evolution equations for multiplicity

4We relate Λ to αS (mZ) using the two-loop formula given, for example, by (75) in [38].
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nF αS rg/q

3 0.293 ± 0.016 ± 0.035 1.718 ± 0.014 ± 0.040
4 0.297 ± 0.017 ± 0.036 1.697 ± 0.014 ± 0.041
5 0.301 ± 0.017 ± 0.036 1.679 ± 0.014 ± 0.042

Table 7: Results for αS and rg/q from fitting the fixed αS expression for 〈nch.
gluon〉 [40] to our

data. Note that the energy scale associated with these results is ambiguous (see text). The
first uncertainty is statistical and the second systematic.

can be solved exactly, without recourse to a perturbative approximation (for a recent review,
see [38]). The solutions based on fixed αS therefore more completely incorporate such higher
order effects as energy conservation than do the 3NLO calculations. On the other hand, the
fixed αS results do not account for the change in αS with scale.

The dashed curve in Fig. 8a shows the result of a fit of the fixed αS expression for gluon jet
multiplicity [40],

〈nparton
gluon 〉 =

(

E∗

g

Q0

)γ

, (6)

to the 〈nch.
gluon〉 data. The fitted data are the seven measurements of 〈nch.

gluon〉 in Table 5 and
the gincl. and Υ(3S) results in Fig. 8a. The fitted parameters are γ and Q0. Q0 is a cut-
off for soft gluon radiation while γ is the so-called anomalous dimension of QCD, which
takes into account perturbative corrections to the coupling strength. The results are γ =
0.548±0.009 (stat.)±0.028 (syst, ) and Q0 = 0.295±0.017 (stat.)±0.053 (syst.) GeV, where the
systematic uncertainties are evaluated as explained for the 3NLO fit to 〈nch.

gluon〉 in Sect. 9.1.1.
The χ2/d.o.f. is 21/7, larger than the result found using the 3NLO expression (see Table 6). The
fixed αS calculation provides a reasonable description of the data within the total uncertainties
of the measurements, however.

Assuming a specific value for nF , i.e. nF = 3, 4 or 5, our result for γ can be used to derive
values for αS and rg/q, where rg/q is the ratio between the mean particle multiplicities of gluon
and quark jets:

rg/q =
〈ngluon〉
〈nquark〉

, (7)

(see e.g. (120) and (121) in [38] and the ensuing text). The results are given in Table 7. Note
that since αS is constant in this formalism, as is rg/q, there is an ambiguity in the energy scale
of these results. This ambiguity may partly explain the large value αS ∼ 0.3 we obtain for the
coupling strength. In addition, the assumption that αS is constant is not entirely realistic for
the energy range of our study. For these reasons, the results for αS in Table 7 are not very
meaningful. They are included for completeness only. In contrast, the results for rg/q are found
to be only weakly dependent on the energy scale and on the corresponding variation in αS [40]
and thus have more significance. For the multiplicity ratio, we obtain rg/q ≈ 1.7. This result is
discussed further in Sect. 9.1.3.

The fixed αS expressions for F2, gluon and F3, gluon [41] depend on nF and γ. Because these
expressions are complicated, we do not fit them to data but instead evaluate them using the
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result for γ found by fitting the 〈nch.
gluon〉 measurements (cf. the dashed curve Fig. 8a). The

results, evaluated for nF = 5, are shown by the dashed lines in Figs. 8b and c. Almost identical
results are obtained for nF = 3 or 4. The shaded regions indicate the total uncertainties, defined
by repeating the study after increasing or decreasing γ by its total uncertainty (see above).
The fixed αS prediction for F2, gluon (Fig. 8b) is seen to accommodate the data within its fairly
large uncertainty. The corresponding result for F3, gluon (Fig. 8c) agrees with the data point at
40.1 GeV but lies above the measurements at lower energies.

9.1.3 Comparison to quark jets

It is interesting to compare the results of Table 5 to corresponding measurements for quark
jets. This allows further tests of QCD calculations.

The particle multiplicity of unbiased quark jets has been measured at many scales. For our
study, we choose results from the ARGUS [42], JADE [43] and HRS [44] experiments at c.m.
energies of 10.5, 12.0 and 29.0 GeV, and from the TASSO [45] experiment at 14.0, 22.0 and
34.5 GeV. We select these data because the quark jet energies, given by half the c.m. values,
correspond to the mean energies 〈E∗

g〉 of our gluon jets, with the exception of the sample with
〈E∗

g〉= 8.43 GeV (see Table 1).

Fig. 9a shows the ratio of the mean charged particle multiplicities between gluon and quark
jets, rg/q (see eq. (7)), for the six energies for which the quark jet scales correspond to our

gluon data. The analogous results for F2 and F3, denoted F
g/q
2 and F

g/q
3 , are shown in Figs. 9b

and c. The latter results are limited to energies of 6.98, 10.92, 14.24 and 17.72 GeV because
information about higher moments of the quark jet (hemisphere) multiplicity distributions is not
available for the other energies. Figs. 9a–c include our previous measurements at 40.1 GeV [8,9].
Fig. 9a also includes the result for rg/q we obtain by dividing the CLEO [5] and ARGUS [42]
measurements of unbiased gluon and quark multiplicities, respectively. The quark jet data
have in all cases been corrected for the small differences in energy between the gluon and
corresponding quark jet samples, and for the presence of c and b flavored jets. The reason
for this latter correction is that the theoretical results for rg/q assume massless quarks. The
corrections were determined using bin-by-bin factors derived from Herwig. The total corrections
for the mean multiplicities of quark jets are about 10% and are approximately independent of
energy. The corresponding corrections for the F2 and F3 distributions of quark jets are about
1% and 3%, respectively. Very similar results are obtained using Jetset and Ariadne.

The dotted and dash-dotted curves in Fig. 9a show the Herwig predictions for rg/q at the
hadron and parton levels. It is seen that the parton and hadron level results are very similar,
even for small energies E∗

g ∼ 5 GeV. We conclude that hadronization effects are small for rg/q.
Comparing the dotted and dash-dotted curves in Figs. 9b and c, it is seen that the hadronization
corrections predicted for F

g/q
2 and F

g/q
3 are fairly large and have a significant dependence on

energy. The hadronization correction of F
g/q
2 is predicted to be about 20% for E∗

g = 7 GeV,

decreasing to about 12% at 14 GeV and 6% at 40 GeV. The corresponding values for F
g/q
3 are

50%, 25% and 12%.

A 3NLO analytic expression for rg/q is presented in [46]. Λ is the only free parameter in this
expression. The open band in Fig. 9a shows the results we obtain by evaluating this expression
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Figure 9: (a) The ratio between the mean charged particle multiplicities of unbiased gluon
and uds flavored quark jets, rg/q, as a function of jet energy. The data have been corrected
for detector acceptance and resolution, for event selection, and for gluon jet impurity. The
vertical lines indicate the total uncertainties. Statistical uncertainties are too small to be visible.
(b,c) The corresponding results for the factorial moments of the multiplicity distributions, F2

and F3. The data are presented in comparison to the results of QCD calculations, and to the
Herwig Monte Carlo at the hadron and parton levels.
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using nF = 5. The lower edge of the band corresponds to Λ = 0.296 GeV, i.e. the value from
Sect. 9.1.1 from the fit of the 3NLO expression for 〈nch.

gluon〉. The upper edge shows the result
using the corresponding value [12] for unbiased quark jet multiplicity, Λ = 0.190 GeV. The 3NLO
prediction is seen to lie 15–20% above the data. We also tried to fit the 3NLO expression for
rg/q to the data in Fig. 9a. We find that the theoretical expression is unable to simultaneously
provide a good description of the data at both low and high energies. A fit of the three highest
energy points (14.24, 17.72 and 40.1 GeV) yields Λ = 1.07 ± 0.16 (stat.) GeV, with a χ2/d.o.f.
of 6.1/2. This value of Λ is considerably larger than that found from the fit to the 〈nch.

gluon〉
data, mentioned above. In contrast to rg/q, 3NLO perturbative expressions for F

g/q
2 and F

g/q
3

are not yet available.

The long-dashed line in Fig. 9a shows the prediction of the fixed αS calculation for rg/q,
assuming nF = 5 (see Table 7). The shaded band corresponds to the one standard deviation

total uncertainty for this quantity (Table 7). The corresponding results for F
g/q
2 and F

g/q
3 are

shown in Figs. 9b and c. The fixed αS result for F
g/q
2 is determined by taking the ratio of

the F2 expressions for gluon and quark jets [41], using αS = 0.301 from Table 7. The fixed

αS result for F
g/q
3 is determined in an analogous manner. The overall description of rg/q by

the fixed αS calculation (Fig. 9a) is seen to be similar to that of the 3NLO result, being
in somewhat better agreement with the data at high energies (E∗

g ≈ 40 GeV) and in worse

agreement at low energies (E∗

g ∼< 10 GeV). The fixed αS prediction for F
g/q
2 (Fig. 9b) is in good

agreement with the measurements, while the prediction for F
g/q
3 (Fig. 9c) is in good agreement

for E∗

g ∼> 14 GeV. Given the significant hadronization corrections predicted for these last two
distributions, discussed above, the good agreement between the data and fixed αS results in
Figs. 9b and c may be somewhat accidental.

A theoretical result for rg/q has also been determined in the context of the dipole model [48].
This result is shown by the short-dashed curve in Fig. 9a. The dipole model prediction is seen
to lie above the data, but to be in somewhat better agreement with the measurements than
the 3NLO result.

Finally, we include in Fig. 9a a theoretical result [47] for rg/q based on a numerical, rather
than an analytic, solution of the QCD evolution equations for multiplicity. This result is shown
by the solid line. Like the fixed αS solution, the numerical solution is “exact” in the sense that
it is not based on a perturbative approximation. The numerical result allows better accounting
of energy conservation effects and phase space limits than the analytic results, and incorporates
a running value for αS (see [38,47] for further discussion). The value of Λ used for the numerical
calculation is 0.50 GeV, determined from a fit to measurements of jet rates in Z0 decays [47].
The numerical calculation is seen to provide a much improved description of the rg/q data
compared to the 3NLO or fixed αS expressions. This suggests that much of the discrepancy
between the data and analytic results in Fig. 9 is a consequence of technical difficulties in the
calculations (the inclusion of energy conservation, etc.), rather than shortcomings of QCD.
Similar conclusions are presented in [38].
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bin in x∗

E 1/N (dnch.
gluon/dx∗

E), E∗

g = 14.24 GeV 1/N (dnch.
gluon/dx∗

E), E∗

g = 17.72 GeV

0.00–0.01 4.9 ± 1.2 ± 4.7 27.1 ± 5.3 ± 7.3
0.01–0.02 104.7 ± 4.3 ± 4.9 155 ± 13 ± 17
0.02–0.03 131.4 ± 5.0 ± 7.2 128 ± 11 ± 17
0.03–0.04 93.4 ± 6.1 ± 5.8 110 ± 9 ± 16
0.04–0.05 89.0 ± 3.8 ± 6.6 106 ± 8 ± 25
0.05–0.06 61.8 ± 4.0 ± 8.3 83 ± 8 ± 21
0.06–0.07 55.4 ± 4.0 ± 7.1 76 ± 7 ± 16
0.07–0.08 54.7 ± 3.2 ± 5.6 46 ± 6 ± 15
0.08–0.09 41.1 ± 2.7 ± 4.7 50 ± 6 ± 14
0.09–0.10 33.9 ± 2.9 ± 3.5 48 ± 5 ± 18
0.10–0.12 27.0 ± 1.7 ± 3.7 24 ± 3 ± 15
0.12–0.14 15.9 ± 1.6 ± 2.8 18.2 ± 2.4 ± 6.0
0.14–0.16 14.7 ± 1.0 ± 3.0 11.1 ± 2.1 ± 2.9
0.16–0.18 10.2 ± 1.0 ± 2.0 10.5 ± 2.0 ± 3.3
0.18–0.20 7.6 ± 0.7 ± 1.2 5.4 ± 1.5 ± 4.3
0.20–0.25 4.75 ± 0.40 ± 0.88 4.2 ± 0.7 ± 3.1
0.25–0.30 1.96 ± 0.27 ± 0.66 2.6 ± 0.6 ± 1.3
0.30–0.40 0.66 ± 0.09 ± 0.50 0.71 ± 0.17 ± 0.71
0.40–0.50 0.19 ± 0.06 ± 0.14 0.14 ± 0.06 ± 0.14
0.50–0.60 0.160 ± 0.082 ± 0.086 0.029 ± 0.013 ± 0.029
0.60–0.80 0.014 ± 0.009 ± 0.014 0.012 ± 0.012 ± 0.012
0.80–1.00 0.0002 ± 0.0002 ± 0.0002 —

Table 8: The charged particle fragmentation function of gluon jets, 1/N (dnch.
gluon/dx∗

E), for
E∗

g = 14.24 and 17.72 GeV. The data have been corrected for detector acceptance and resolution,
for event selection, and for gluon jet impurity. The first uncertainty is statistical and the second
systematic.

9.2 Fragmentation functions

We next turn to a discussion of the gluon jet fragmentation function. Our results for the
corrected fragmentation functions of unbiased gluon jets at E∗

g = 14.24 and 17.72 GeV are
presented in Figs. 5f and g, and again in Fig. 10. Numerical values for these data are given in
Table 8.

Unlike multiplicity, the shape of fragmentation functions is not presently calculable. If the
shape of a fragmentation function is known at a particular scale, the DGLAP [49] evolution
equations can be used to predict the shape at a different scale, however. Since gluon jets
can evolve through splitting to a quark-antiquark pair, as well as through gluon emission,
the evolution of the gluon jet fragmentation function depends on the quark jet fragmentation
function, in addition to that of the gluon. In [9], we presented results for the unbiased gluon
jet fragmentation function at 40.1 GeV. Measurements of unbiased, flavor-separated (uds, c
and b) quark jet fragmentation functions at 45.6 GeV are presented in [50]. By applying the
DGLAP equations to these measurements, we can obtain QCD predictions for the gluon jet
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Figure 10: The charged particle fragmentation function of gluon jets, 1/N (dnch.
gluon/dx∗

E), for
(a) E∗

g = 14.24 and (b) 17.72 GeV. The data have been corrected for detector acceptance and
resolution, for event selection, and for gluon jet impurity. The total uncertainties are shown
by the vertical lines, with the statistical component delimited by small horizontal lines. The
data are presented in comparison to a QCD prediction based on DGLAP evolution of unbiased
gluon and quark jet fragmentation functions measured at 40.1 and 45.6 GeV, respectively, and
to the Herwig Monte Carlo at the hadron level. The small figures above each distribution show
the differences between the QCD and Herwig curves relative to the data, in units of the total
experimental uncertainties.
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a b c d
uds 0.2589 ± 0.0074 −2.949 ± 0.016 0.859 ± 0.029 0.2967 ± 0.0020
c 0.546 ± 0.035 −2.67 ± 0.016 2.37 ± 0.21 0.2651 ± 0.0029
b 0.3284 ± 0.0016 −3.042 ± 0.0016 2.6055 ± 0.015 0.31805 ± 0.00017
g 0.0891 ± 0.0047 −3.84 ± 0.012 2.62 ± 0.26 0.4144 ± 0.0023

Table 9: Parameter values used to describe the fragmentation functions of unbiased quark and
gluon jets at 45.6 GeV (see eq. (8)). The uncertainties are statistical.

fragmentation function at the scales of the present study.

We note that the quark jet data in [50] are presented in terms of the scaled charged particle
three-momenta xp = 2p/Ec.m. (with p the particle three-momentum), rather than xE = 2E/Ec.m.

(with E the particle energy), and that xp and xE differ for small particle energies (or momenta).
Using detector level events, we find that fragmentation functions defined using xp differ from
those defined by xE by about 1% for xp (or xE) = 0.10, and by about 2.5% for xp (or xE) = 0.05,
for example.

The fragmentation functions of gluon and quark jets are parametrized at a reference scale√
s0 using the empirical formula [51]

F i(xE ;
√

s0) = ai x
bi

E (1 − xE)ci exp{−di ln2 xE} , (8)

where i = g, uds, c, or b. To determine the parameters a, b, c and d for quark jets, we fit eq. (8)
to the measurements in [50], i.e. we choose

√
s0 = 45.6 GeV. To determine the parameters for

gluon jets at this same scale, we first apply an energy correction to the 40.1 GeV data. The
corrections are performed using bin-by-bin factors determined from Herwig and have a typical
size of about 5%. Eq. (8) is then fitted to the corrected gluon jet data to determine the
parametrization of the gluon jet fragmentation function at 45.6 GeV. The fits are performed
using the statistical uncertainties of the data and provide good descriptions of the measurements
to within their overall uncertainties. The results we obtain are listed in Table 9.

We then use the program Evolve [52] to determine the QCD prediction for the gluon jet
fragmentation function at other scales. Evolve is based on next-to-leading order expressions
(see [53]) determined in the MS renormalization scheme. We determine the predictions of the
program for the gluon jet fragmentation functions at 14.24 and 17.72 GeV, and calculate the
global χ2 with respect to our corresponding measurements. The global χ2 is defined by the
sum of the χ2 from the two energies. The χ2 are calculated using the statistical uncertainties
of the data. To avoid the edges of the distribution where there are theoretical ambiguities [52],
the global χ2 is evaluated in the xE range from 0.10 to 0.80 only. Note this excludes the small
xE region where fragmentation functions defined using xE or xp differ by more than 1%.

We fit the value of αS (mZ) in Evolve to minimize the global χ2. The result is αS (mZ) =
0.128 ± 0.008 (stat.) ± 0.015 (syst.). The χ2/d.o.f. of the fit, based on statistical uncertainties,
is 40.5/21. The systematic uncertainty is defined by adding the following contributions in
quadrature: (1) the uncertainty returned by the fitting routine when the total uncertainties
of the data are used to perform the fit, rather than the statistical uncertainties only; (2) the
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difference with respect to the standard result if the range 0.05≤xE ≤ 0.80 is used to define the
global χ2, rather than 0.10≤xE ≤ 0.80. The systematic uncertainty from the second term is
about 50% larger than that from the first term. While our result for αS (mZ) is not competitive
with other measurements (see e.g. [39]), it does provide a unique consistency test of QCD since
it is the first determination of αS (mZ) in the MS scheme based on unbiased gluon jets. The
result of the fit is shown in comparison to the data in Figs. 10a and b. The difference plots in the
top portions of these figures show the differences between the data and fit in units of the total
experimental uncertainties. The fit is seen to provide a good description of the measurements.

10 Summary

In this paper, we present the first experimental study to use the jet boost algorithm, a method
based on the QCD dipole model to extract properties of unbiased gluon jets from e+e− → qqg
events. We test the jet boost algorithm using the Herwig Monte Carlo QCD simulation pro-
gram, comparing the results of this method to those derived from unbiased gluon jets defined
by hemispheres of inclusive gg events from a color singlet point source. We examine two dis-
tributions: the distribution of charged particle multiplicity in the jets, nch.

gluon, and the charged
particle fragmentation functions, 1/N (dnch.

gluon/dx∗

E). We find that the results of the jet boost
algorithm for the multiplicity distribution are in close correspondence to those of the gg hemi-
spheres for jet energies E∗

g larger than about 5 GeV. For the fragmentation functions, the results
of the two methods agree to good precision for E∗

g ∼> 14 GeV.

We use the jet boost algorithm to extract measurements of the unbiased gluon jet multiplic-
ity distribution for seven intervals of energy between 5.25 and 17.72 GeV. These are the first
measurements of the nch.

gluon distribution in this energy range. The distributions are analyzed to
determine their means 〈nch.

gluon〉 and first two non-trivial factorial moments F2, gluon and F3, gluon.
The factorial moments are strongly correlated with the dispersion and skew of the multiplicity
distribution and thus characterize its shape.

In conjunction with our previous results for unbiased gluon jet multiplicity at 40.1 GeV [7]–
[9], we test two QCD analytic expressions for the energy evolution of 〈nch.

gluon〉, F2, gluon and F3, gluon:
one based on the next-to-next-to-next-to-leading order (3NLO) perturbative approximation of
QCD [35, 36] and the other [40, 41] utilizing a fixed value of the strong coupling strength, αS.
The 3NLO expression takes into account the running nature of the coupling strength while
the fixed αS expression more accurately incorporates higher order effects such as energy con-
servation. To avoid the introduction of model dependent hadronization correction factors, the
parton level analytic results are compared directly to the hadron level measurements.

The 3NLO expression for 〈nch.
gluon〉 is found to provide a good description of the data using a

value of the QCD scale parameter Λ = 0.296± 0.037 (stat. + syst.) GeV, much more similar to
the corresponding result for quark jets, Λ = 0.190±0.032 (stat) GeV [12], than found in previous
studies. Our results therefore provide a much improved demonstration of the consistency of the
QCD expressions for gluon and quark jet multiplicity. These results are found using nF = 5, with
nF the number of active quark flavors. Very similar descriptions of the data are found using nF =
3 or 4. Note that these Λ values are not defined in the context of a particular renormalization
scheme and so do not correspond e.g. to ΛMS. The 3NLO expressions are found to provide a
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reasonable description of the energy evolution of the F2, gluon and F3, gluon data between about
14 and 40 GeV, using values of Λ which are globally similar to that found from the fit to the
〈nch.

gluon〉 data. The fitted 3NLO curves lie below the F2, gluon and F3, gluon measurements at smaller
energies, however. These discrepancies at low energies may be a consequence of hadronization
effects, which are predicted to be significant for the F2, gluon and F3, gluon distributions. The fixed
αS expressions are found to be in general agreement with the 〈nch.

gluon〉 data, and also with the
F2, gluon data within fairly large theoretical uncertainties. The fixed αS result for F3, gluon lies
above the data except for E∗

g ≈ 40 GeV.

We also examine the ratio of the gluon to quark jet mean charged particle multiplicities,
rg/q, and the corresponding ratios for F2 and F3. We find that a numerical solution [47] of the
QCD evolution equations for particle multiplicity provides a good description of the rg/q data,
while the 3NLO and fixed αS calculations with their fitted values of Λ from the 〈nch.

gluon〉 data
are 15–20% too high. This suggests that energy conservation and phase space limits, which
are more properly incorporated into the numerical solution than into the analytic results, are
important considerations for the accurate description of this quantity.

We measure the fragmentation function of unbiased gluon jets at 14.24 and 17.72 GeV. In
conjunction with our previous measurements of unbiased gluon and quark jet fragmentation
functions at 40.1 and 45.6 GeV, respectively, we fit these data using the DGLAP evolution
equations at next-to-leading-order in the MS scheme. This fit yields a result for the strong
interaction coupling strength αS (mZ) = 0.128±0.008 (stat.)±0.015 (syst.), consistent with the
world average. While this result is not competitive in precision with other measurements of
αS, it does provide a unique consistency test of QCD.
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A Appendix: boost algebra

A.1 Boost to the back-to-back frame of a dipole

Consider a massless jet with energy E ′ and 3-momentum of magnitude p′. The jet lies in
the x–y plane and makes angles θ and α with respect to another massless jet and the x axis,
respectively (see Fig. 11). We wish to boost the event to a Lorentz frame in which the jet
points along the y axis. The energy and momentum of the jet in the boosted frame are E∗ and
p∗. A boost along the x axis yields the condition

p∗x = γ (p′x − β E ′) = 0 , (9)

with γ = 1/
√

1 − β2 and β = v, where v is the relative speed between the boosted and original
frames (note that the speed of light c is set to unity). Since p′x = p′ cos α and p′ = E ′, eq. (9)
yields β = cos α. The energy of the jet in the boosted frame is

E∗ = γ (E ′ − β p′x) = E ′ sin α . (10)

If the x axis corresponds to the bisector of the two jets, so that α = θ/2, then the same boost
brings the other massless jet to the −y direction so that the boosted frame corresponds to a
frame in which the two jets are back-to-back. Then β = cos(θ/2) and E∗ = E ′ sin(θ/2).

A.2 Boost from the c.m. frame to the symmetric frame of a three-jet

qqg event

In the c.m. frame of a three-jet qqg event we define

xi ≡
2 Ei√

s
i = q, q̄, g , (11)

with Ei the energy of jet i. x′

i is the corresponding quantity in the boosted reference frame for
which the event is symmetric, i.e. the frame in which the angle between the gluon jet and the
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quark jet is the same as the angle between the gluon jet and the antiquark jet, θ′qg = θ′q̄g ≡ θ′

(cf. Fig. 2a for which θ′ = θ = 2α).

Under the assumption the jets are massless, it is straightforward to show in the c.m. frame
that

sij = s (1 − xk) , (12)

where sij = (pi + pj)
2 with pi the 4-momentum of object i, and where i, j and k are cyclic,

i.e. i = q with j = q means k = g, etc. The virtuality scale (eq. (2)) of the gluon jet can then be
written:

p⊥, gluon =
1

2

√

s(1 − xq)(1 − xq̄) . (13)

Setting p⊥, gluon equal to the jet energy scale E∗

g (see eq. (1)), as dictated by eq. (3), yields [13]

(1 − xq)(1 − xq̄) = (x′

g)
2 sin2 θ′

2
. (14)

We can also express sij using the angle between partons i and j, θij :

sij = 4EiEj sin2 θij

2
. (15)

This latter expression, unlike eq. (12), is valid in any frame. Evaluating eq. (15) in the sym-
metric frame and equating it to eq. (12) yields

1 − xk = x′

ix
′

j sin2
θ′ij
2

, (16)

which leads to the following expression:

(1 − xq)(1 − xq̄)

1 − xg

= x′2
g

sin2 (θ′qg/2) sin2 (θ′q̄g/2)

sin2 (θ′qq̄/2)
. (17)

Since θ′qg = θ′q̄g = θ′ in the symmetric frame, then θ′qq̄ = 2π − 2θ′, so that sin (θ′qq̄/2) =
2 sin (θ′/2) cos (θ′/2). Inserting these results into eq. (17) yields [13]

(1 − xq)(1 − xq̄)

1 − xg

=
x′2

g

4

sin2 (θ′/2)

cos2 (θ′/2)
. (18)

The expression for the angle θ′ [13] is obtained by combining eqs. (14) and (18):

cos2 θ′

2
=

1 − xg

4
. (19)

When inserted into eq. (14), this yields the expression for the gluon jet energy in the symmetric
frame:

x′

g =

√

√

√

√

4(1 − xq)(1 − xq̄)

3 + xg

. (20)
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Similarly, using eq. (16) to derive expressions analogous to eq. (17) for (1−xq)(1−xg)/(1−xq̄)
and (1 − xq̄)(1 − xg)/(1 − xq) yields the results for the quark and antiquark energies in the
symmetric frame:

x′

q =
x′

g

1 − xq

, x′

q̄ =
x′

g

1 − xq̄

. (21)

Consider the c.m. frame of the event to be described by a Cartesian coordinate system with
the z axis along the gluon jet direction and the three-jet event in the y–z plane. The scaled
three momenta of the jets are then

2 ~pg/Ec.m. = (0, 0, xg) (22)

2 ~pq/Ec.m. = (0, xq,y, xq,z) (23)

2 ~pq̄/Ec.m. = (0,−xq,y, xq̄,z) . (24)

with |~pi|= Ei such that xi,y is the component of scaled momentum in the y direction, etc. Since
we boost from the c.m. frame, the scaled energy in the symmetric frame is

x′

q + x′

g + x′

q̄ = γ(xq + xg + xq̄) = 2γ , (25)

where γ = 1/
√

1 − β2
y − β2

z , with βy and βz the Lorentz boost factors along the y and z

directions. Knowing all the xi (measured), x′

i (from eqs. (20) and (21)) and γ (from eq. (25)),
the transformation equations

x′

g = γ(xg + βzxg) (26)

x′

q = γ(xq + βzxq,z + βyxq,y) (27)

can be solved to find the boost factors βz and βy. With the Lorentz boost factors defined,
all the particles in the event can then be boosted to the symmetric event frame to define the
unbiased gluon jets in the manner explained in Sect. 2.
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