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1 Introduction

Studies of the structure of hadronic events collected by the ALEPH detector at LEP between
91.2 and 209 GeV centre-of-mass energy are presented. The scope of this paper is a consistent
measurement of event-shape variables and determinations of �s at LEPI and LEPII energies. In
performing these determinations, the primary objective is to observe the running of the coupling
with centre-of-mass energy; therefore, the analyses at each energy point are designed, as far as
possible, to be coherent with each other and to have correlated systematic errors. Final results
of QCD analyses will be published in an upcoming paper. The data already discussed in [1{5]
up to 202 GeV have been re-processed using an improved selection as described in [6, 7]. The
general theoretical framework is outlined in [8] and summarised in in Appendix A. A new study
of theoretical uncertainties is included in this paper. The measurements at 130-136 GeV, at
189-192 GeV, at 196-202 GeV and at 203-209 are combined, and a re-analysis of data at the Z
boson resonance is included.

This paper is organised as follows: In Section 2 a brief description of the ALEPH detector
and of the overall event-selection and correction procedure is given, followed by measurements
of event-shape distributions. These measurements are analysed in Section 3 to determine �s.
Systematic uncertainties of the measurements of �s are given in Section 4. Results using di�erent
variables and di�erent energies are combined in Section 5. A summary and conclusions are found
in Section 6.

2 Experimental Procedure

A detailed description of the ALEPH detector is given in [9]. The qq() events at LEPII are
extracted by selecting hadronic events as described in Ref. [3]. Hadronic events in which a Z is
accompanied by an initial state photon radiation (ISR) are then removed in a procedure that
has several steps. First, ISR photons observed in the detector are identi�ed as follows. The
particles in the event are clustered into jets using the Durham algorithm [10] with a resolution
parameter of ycut = 0:002. Jets are identi�ed as dominantly electromagnetic if the fraction of
the jet's energy carried by charged hadrons is less than 10% and there are either no charged
hadrons or else less than half of the neutral energy is hadronic. From these `electromagnetic jets',
the photon and electron (or positron) candidates are taken as originating from an ISR photon
and are removed; the latter are often the result of photon conversion in the material before the
tracking chambers. Next, the invariant mass Mvis of the system of remaining particles in the
event is computed; the reduced centre-of-mass energy s0 is also estimated by reclustering the
remaining particles into two jets and calculating s0 based on the angles between them. Finally,
the events with a large ISR energy component are rejected by requiring that Mvis=

p
s > 0:7 or

s0=s > 0:81. According to Monte Carlo studies based on the PYTHIA generator version 5.7 [11],
the fraction of radiative events (de�ned by s0=s � 0:81) in the selected sample is � 4% at 206
GeV. It should be noted that in the calculation of the event shapes and other quantities in the
�nal analysis, all reconstructed particles in the selected event are used.

The events passing the anti-ISR cuts still contain some background from four-fermion pro-
cesses (WW, ZZ, Z�). These are identi�ed by �rst clustering the particles to exactly four jets
with the Durham algorithm. The energies of the jets are then rescaled, keeping their directions
constant, such that the total energy of the event is equal to Ecm and the total momentum is
zero. The quantities

d2 = min

"
(mij �MW )2 + (mkl �MW)2

M2
W

#
;

1



with MW= 80.25 GeV, and

cWW = cos(smallest interjet angle)

are then computed, where for d2 the minimum value is taken among all possible choices of jet
pairings ij and kl. Events are accepted as qq if d2 � 0:1 or cWW � 0:9.

The integrated luminosities and numbers of events accepted and expected are shown in Table
1. The expected number of signal events has been obtained from the program KORALZ [12],
those for WW background from KORALW [13] and for the ZZ and Z� backgrounds from
PYTHIA. The expected background is subtracted from the distributions. The data taken at

Ecm
R
Ldt events events expected expected

(GeV) (pb�1) found expected signal background

133 12.30 806 822 822 0.0
161 11.08 319 333 319 14
172 9.54 257 242 218 24
183 58.83 1319 1262 1109 153
189 174.36 3578 3578 3124 454
200 206.02 3514 3528 3005 523
206 216.19 3578 3590 3072 518

Table 1: Integrated luminosities and numbers of accepted and expected events. There is an
uncertainty of 2% in the predicted numbers of events.

130 and 136 GeV are averaged into a single data set at a nominal energy of 133 GeV. Weights
proportional to the luminosity are applied and distributions are corrected to 133 GeV. The same
procedure has been applied to the data sets at 189 and 192 GeV (averaged into a single set at
nominal

p
s= 189 GeV), at 196, 200 and 202 (averaged to

p
s= 200 GeV) and to the data taken

in the range from 203 to 209 GeV (averaged to 206 GeV).

Corrections for imperfections of the detector and for the residual e�ects of ISR are made
by means of multiplicative factors, as done in [5, 6]. These factors, which are derived from the
Monte Carlo model KORALZ, are by construction approximately independent of the model
used. For the simulation of hadronic �nal states in e+e� annihilation, JETSET version 7.4 [11]
and KORALZ are essentially equivalent. KORALZ is used for the detector corrections because
of its more accurate description of initial state photon radiation.

The detector systematics were, when appropriate, estimated using the Z data collected in
the same year as the high-energy data. The selection cuts on track parameters were changed
in the Monte Carlo until the number of events selected per unit luminosity were the same in
Monte Carlo and data. These changes were then applied for Monte Carlo only to the analysis
of the high-energy events, and the change in the extracted values for each event-shape variable
was taken as a systematic uncertainty.

A de�nition of the event-shape variables studied here is given in [3]; these are thrust T [16],
heavy jet mass squaredM2

H=s [17], wide and total jet broadening BW and BT [18], C-parameter
C [19] and � ln y3 [10]. The resulting event-shape distributions are shown in Figs. 1 and 1. The
Event-shape variables were measured using energy ow objects [9]: charged particle tracks and
neutral energy clusters in calorimeters. To account for imperfections in the description of neutral
objects, classes of objects in the range from 1 to 2 GeV were excluded from the analysis, and the
change in the resulting distribution was taken as systematic error. Systematic tests of the ISR
and WW rejection and the event selection cuts are performed via cut variations. The dominant
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uncertainty is found to be related to the Monte Carlo description of ISR, which appears in the
variation of cuts in Mvis and s0=s. All other cut variations led to small uncertainties.

The systematic uncertainty due to a residual model dependence has been estimated by
comparing with the results based on correction factors derived from HERWIG version 5.9 [14]
and from ARIADNE 4.10 [15].

Variations in the WW cross sections used for background subtraction by �2 % led to negli-
gible uncertainties in the corrected distributions.

In the event-shape distributions, the systematic uncertainty estimates in each bin are dom-
inated by the small changes in the selected events and tracks as cuts are varied, and hence are
very much limited in statistical precision. For this reason, the estimates for neighbouring bins
have been averaged in groups of three.

For the measurement of event shapes at the Z boson resonance, about 1.1 million events were
selected from the running periods in 1994 and 1995. Where appropriate, the experimental sys-
tematic uncertainties were obtained in a similar way than at LEPII. The dominant experimental
systematic uncertainty stems from the residual model dependence of detector corrections.

3 Measurements of �s

Distributions of event-shape variables are used to determine the strength of strong interactions.
The coupling constant �s is determined from a �t of the perturbative QCD prediction to the
measured event-shape distributions. The experimental situation at energies aboveMZ is di�erent
from measurements at MZ. Statistical uncertainties are larger and background conditions are
more diÆcult. In general theoretical uncertainties limit the precision of the measurements,
except for the very small data sets at 161 and 172 GeV, where statistical errors dominate. At
these energies it is particularly essential to combine measurements from di�erent variables.

A study with Monte Carlo generated distributions revealed that the �t procedure is system-
atically biased towards lower values of �s in the case of small event statistics, as encountered at
161 and 172 GeV. This bias originates from larger weights of downward uctuating bins in the
distributions compared to upward uctuations. It can be overcome by replacing the measured
statistical uncertainties of the distribution by expected statistical errors. The expected uncer-
tainties are obtained from a large number of Monte Carlo experiments, each of the same sample
size as the real data. The RMS in each bin of the Monte Carlo distributions is used in the �t
procedure as statistical error. This is done for all variables at all energy points above MZ .

Event-shape distributions are �tted in the central region of 3-jet production, where a good
perturbative description is available. The �t range is placed inside a region where hadronisation
corrections are well under control, where detector corrections are stable and background cor-
rections are small. At high energies the �t range was extended into the 2-jet region in order to
reduce the statistical error as much as possible. This generates larger perturbative uncertainties,
which are avoided at Q = MZ by restricting the �t range. The data are corrected for detector
e�ects, background from 4-fermion processes and for a residual ISR contribution, as outlined in
Section 2. The background from WW events is increasing with energy, and after subtraction
some bins of the distribution become negative. This a�ects the choice of the �t range, which
was restricted to regions with a good signal-to-background ratio.

Distributions of infrared- and collinear-safe observables at partonic level can be computed
in perturbative QCD to second order in �s using the ERT matrix elements [20]. In addition,
the variables used in this analysis exhibit the property of exponentiation so that leading and
next-to-leading logarithms can be resummed to all orders in �s into analytic functions [21{24].
These resummed calculations, valid in the semi-inclusive 2-jet region, have to be matched to
the �xed order part in order to obtain an improved prediction over the entire phase space.
The renormalization scale x� = �=Q is set under nominal conditions to one. For this analysis
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modi�ed Log(R) and R [21] matching schemes are used. For convenience the formulae are
given in Appendix A. A kinematic constraint is imposed such that the predicted distributions
vanish at a given boundary value ymax. In addition, improved calculations for � log(y3) have
become available [25], which add previously missing single-logarithmic terms due to multiple
gluon emission. The improved calculations have been implemented in the �t functions. It is
observed that the quality of the �ts to � log(y3) improves and the �tted value of �s is 1.5 %
lower compared to the partial prediction.

All these calculations above neglect quark masses. Quark mass e�ects are relevant for the
b-quark at MZ, where the fraction of b-quarks is large in an inclusive sample, while Q =

p
s

is still moderate. Calculations including a quark mass indicate that the expected change in �s
is of the order of 1% at MZ. The e�ect is scaling with m2

b=Q
2 and decreases to 0.2-0.3 % at

200 GeV. Mass corrections were computed to second order using the matrix elements of [26].
A pole b-quark mass Mb = 5 GeV was used and Standard Model values were taken for the
fraction of b-quarks. Since no corrections are yet available for the resummed calculations, the
full theoretical prediction can only account for the quark mass e�ect in the perturbative region.
The perturbative QCD prediction is corrected for hadronisation and resonance decays by means
of a transition matrix, which is computed with Monte Carlo generators. Corrected measurements
of event-shape distributions are compared to the theoretical calculation at particle level.

The value of �s is determined at each energy from a binned least-squares �t. Only statistical
uncertainties are included in the �2 of the �t. The �t quality is good for all variables at LEPII,
but inferior at LEPI for MH and BW . Nominal �t results are shown in Figs. 1 and 2 together
with the measured distributions. The resulting measurements of �s(Q) are given in Table 2
for 91.2 to 172 GeV and in Table 3 for 183 to 206 GeV. All individual measurements are also
shown in Fig. 3 together with combined measurements at each energy (see below). Systematic
theoretical and experimental uncertainties are discussed in the next section.
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Figure 1: The measured distributions, after correction for backgrounds and detector e�ects, of
thrust, -ln y3, heavy jet mass and wide jet broadening at energies between 91.2 and 206 GeV
together with the �tted QCD predictions. The error bars correspond to statistical uncertainties.
The �t ranges cover the central regions indicated by the solid line, the theoretical predictions
extrapolate well outside the �tted ranges, as shown by the dotted lines. The plotted distributions
are scaled by arbitrary factors.
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Q = 91.2 GeV

variable T � log y3 MH C BW BT

�s 0.1264 0.1180 0.1187 0.1225 0.1163 0.1260
stat. error 0.0001 0.0002 0.0002 0.0001 0.0002 0.0001
pert. error 0.0063 0.0038 0.0043 0.0058 0.0051 0.0080
hadr. error 0.0020 0.0015 0.0037 0.0015 0.0015 0.0029
exp. syst. error 0.0008 0.0010 0.0009 0.0007 0.0006 0.0007
total error 0.0067 0.0042 0.0057 0.0061 0.0054 0.0085

Q = 133 GeV

variable T � log y3 MH C BW BT

�s 0.1208 0.1177 0.1154 0.1182 0.1157 0.1183
stat. error 0.0039 0.0046 0.0049 0.0035 0.0032 0.0029
pert. error 0.0054 0.0030 0.0036 0.0049 0.0044 0.0068
hadr. error 0.0014 0.0008 0.0025 0.0012 0.0009 0.0019
exp. syst. error 0.0011 0.0010 0.0011 0.0011 0.0005 0.0015
total error 0.0069 0.0056 0.0067 0.0063 0.0055 0.0078

Q = 161 GeV

variable T � log y3 MH C BW BT

�s 0.1222 0.1127 0.1185 0.1173 0.1103 0.1081
stat. error 0.0063 0.0072 0.0080 0.0056 0.0054 0.0046
pert. error 0.0049 0.0027 0.0034 0.0045 0.0040 0.0062
hadr. error 0.0012 0.0006 0.0021 0.0010 0.0007 0.0015
exp. syst. error 0.0011 0.0010 0.0011 0.0011 0.0005 0.0016
total error 0.0081 0.0078 0.0090 0.0074 0.0068 0.0081

Q = 172 GeV

variable T � log y3 MH C BW BT

�s 0.1113 0.1080 0.1071 0.1092 0.1060 0.1144
stat. error 0.0074 0.0083 0.0081 0.0063 0.0066 0.0067
pert. error 0.0048 0.0027 0.0034 0.0045 0.0040 0.0060
hadr. error 0.0012 0.0005 0.0019 0.0010 0.0006 0.0014
exp. syst. error 0.0011 0.0011 0.0011 0.0011 0.0006 0.0016
total error 0.0090 0.0088 0.0090 0.0078 0.0077 0.0093

Table 2: Results on �s(Q) as obtained from �ts to distributions of event-shape variables at 91.2,
133, 161 and 172 GeV.
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Q = 183 GeV

variable T � log y3 MH C BW BT

�s 0.1130 0.1060 0.1087 0.1073 0.1054 0.1141
stat. error 0.0037 0.0037 0.0039 0.0038 0.0030 0.0031
pert. error 0.0048 0.0026 0.0032 0.0044 0.0038 0.0059
hadr. error 0.0011 0.0005 0.0018 0.0009 0.0006 0.0013
exp. syst. error 0.0012 0.0011 0.0011 0.0013 0.0005 0.0016
total error 0.0062 0.0047 0.0055 0.0060 0.0049 0.0070

Q = 189 GeV

variable T � log y3 MH C BW BT

�s 0.1164 0.1075 0.1097 0.1123 0.1066 0.1148
stat. error 0.0020 0.0023 0.0027 0.0022 0.0018 0.0020
pert. error 0.0046 0.0026 0.0032 0.0042 0.0038 0.0059
hadr. error 0.0011 0.0004 0.0017 0.0009 0.0005 0.0013
exp. syst. error 0.0011 0.0010 0.0012 0.0011 0.0005 0.0017
total error 0.0052 0.0037 0.0047 0.0050 0.0043 0.0065

Q = 200 GeV

variable T � log y3 MH C BW BT

�s 0.1114 0.1088 0.1038 0.1113 0.1039 0.1141
stat. error 0.0021 0.0022 0.0031 0.0024 0.0019 0.0021
pert. error 0.0045 0.0026 0.0031 0.0042 0.0037 0.0058
hadr. error 0.0011 0.0004 0.0016 0.0009 0.0005 0.0012
exp. syst. error 0.0011 0.0010 0.0018 0.0011 0.0005 0.0016
total error 0.0052 0.0036 0.0050 0.0050 0.0042 0.0064

Q = 206 GeV

variable T � log y3 MH C BW BT

�s 0.1088 0.1024 0.1059 0.1052 0.1028 0.1078
stat. error 0.0021 0.0023 0.0029 0.0023 0.0019 0.0021
pert. error 0.0045 0.0026 0.0031 0.0041 0.0037 0.0056
hadr. error 0.0010 0.0004 0.0016 0.0009 0.0005 0.0011
exp. syst. error 0.0011 0.0010 0.0011 0.0011 0.0005 0.0015
total error 0.0052 0.0036 0.0046 0.0049 0.0043 0.0063

Table 3: Results on �s(Q) as obtained from �ts to distributions of event-shape variables at 183,
189, 200 and 206 GeV.
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Figure 2: The measured distributions, after correction for backgrounds and detector e�ects, of
C-parameter and total jet broadening at energies between 91.2 and 206 GeV together with the
�tted QCD predictions. The error bars correspond to statistical uncertainties. The �t ranges cover
the central regions indicated by the solid line, the theoretical predictions extrapolate well outside
the �tted ranges, as shown by the dotted lines. The plotted distributions are scaled by arbitrary
factors.

4 Systematic Uncertainties

Experimental Uncertainties

Experimental systematic uncertainties of �s are estimated in a similar way to that for the event
shapes themselves, as described in Section 2. Changes of the distributions under variations of
cuts lead in general to small changes in �s. In the �t procedure the same expected statistical
error is assumed everywhere for all variants of the distribution, as outlined in Section 3. This
procedure reduces purely statistical components in the real systematic e�ect, which are poten-
tially large at LEPII energies. A special treatment was applied for the dominant systematic
uncertainty, the variation of the combined cut in Mvis=

p
s and s0=s from 0:7=0:81 to 0:85=0:9.

This cut variation entails the largest change in the number of events. The resulting error in
�s is uctuating from one energy to another and contains obviously an irreducible statistical
component. Therefore, an energy-independent luminosity-weighted average is constructed for
each variable separately at energies between 133 and 206 GeV. All other components of sys-
tematic uncertainty are added in quadrature to this error. The total experimental systematic
uncertainties of �s at LEPII are between 0.5 % and 1.5 %. Those at LEPI are below 1 % and
dominated by imperfections of the simulation of neutral hadronic calorimeter clusters.
Theoretical Uncertainties

A new method is applied to estimate systematic uncertainties related to the perturbative pre-
dictions. Sources of these uncertainties are the choice of the renormalization scale (x�) and the
logarithmic rescaling factor xL, the matching scheme and the matching modi�cation procedure.
A new test is included here for the logarithmic rescaling factor xL. It was �rst proposed for jet
broadening in deep-inelastic scattering [27]. The essence of this test consist in a replacement of
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Figure 3: Summary of all individual measurements of �s using six variables at eight centre-of-
mass energies. The error bars correspond to the total uncertainties, the shaded areas to the
combined measurements given in Table 4.

resummed large logarithms L = log( 1
y
) (y being an event shape variable such as 1 � T ), by a

rescaled variable L ! �L = log( 1
y�xL

). The rescaling factor should be chosen of order unity. A
variation of xL is expected to probe missing higher orders in a di�erent way from renormalisation
scale variations. Values of xL di�erent from unity will entail changes of the matching formulae,
which are given in Appendix A. The perturbative uncertainties are assessed as follows:

� the renormalization scale x� is varied between 0.5 and 2.0,

� the logarithmic rescaling factor xL varied in between 2/3 and 3/2
(for � log(y3) an equivalent e�ect is obtained with squared endpoints, i.e. a variation from
4/9 to 9/4),

� the modi�ed Log(R) matching scheme is replaced by the modi�ed R matching scheme,

� the value of the kinematic constraint ymax, obtained with parton shower simulations, is
replaced by the value of y0max using matrix element calculations and

� the �rst degree modi�cation of the modi�ed Log(R) matching scheme (p = 1) is replaced
by a second degree modi�cation (p = 2).

The uncertainties in �s corresponding to these theoretical uncertainties were previously ob-
tained by modifying the theory (e.g. setting a di�erent value of x�), and repeating the �ts to
the data. The quality of �ts carried out with extreme variations of theoretical predictions is
usually rather bad. The values for parameters determined under such conditions are less reliable.
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The new method derives directly the uncertainty of �s from the uncertainty of the theoretical
prediction. It proceeds in three steps. First a reference perturbative prediction, the modi�ed
Log(R) matching scheme, is calculated for the distribution of each variable using the values of �s
measured at MZ. Then all variants of the theory mentioned above are calculated with the same
value of �s. In each bin of the distribution, the largest upward and downward di�erences with re-
spect to the reference theory are taken to de�ne an uncertainty band around the reference theory.

In the last step, the reference theory is used again, but with a variable �s, in order to
�nd the range of �s values which result into predictions inside the uncertainty band for the �t
range under consideration. The largest respectively smallest allowed values of �s ful�lling the
condition �nally set the perturbative systematic error. The method is illustrated in Fig. 4,
taking thrust as an example.
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Figure 4: Theoretical uncertainties for the distribution of thrust at LEPI obtained with the
measured value �0s. The normalised di�erence between various perturbative predictions with
respect to a reference theory, the modi�ed logR matching scheme, are shown. All predictions
of the modi�ed logR matching scheme with accepted values of �s lie between the two full
lines, which correspond to the total uncertainty of �s, i.e. �0s + ��s resp. �0s � ��s. The
endpoints �0s ���s are obtained with the condition that valid predictions must lie within the
grey uncertainty band. This band comprises for a given measured value of �s all uncertainties
of the distribution. The dashed lines stem from the variation of the renormalization scale from
0:5 � x� � 2:0, the dotted line is the di�erence between the modi�ed logR and modi�ed R
matching scheme, the dashed-dotted line is the di�erence between p = 1 and p = 2 (see text),
the bullets stand for the variation of the rescaling factor xL and the upward pointing triangles
reect the uncertainty of the choice of ymax.
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The theoretical error depends on the absolute value of �s, scaling approximately with �3s,
and on the �t range. At LEPII energies the statistical uctuations are large. In order to avoid
biases from downward uctuations, the theoretical uncertainties are calculated with the value
of �s measured at LEPI. For each variable, the corresponding measurement is evolved to the
appropriate energy scale and the uncertainty is calculated for the �t range used at that energy
point.

An additional error is given for the b-quark mass correction procedure. This correction is only
available at O(�2s), no resummed expressions are yet available. The di�erence in �s obtained
with and without mass corrections is taken as systematic error.

The hadronisation model uncertainty is estimated by using HERWIG and ARIADNE instead
of PYTHIA for both hadronisation and detector corrections. The maximum change with respect
to the nominal result using PYTHIA is taken as error. At LEPII energies the hadronisation
model uncertainty is again subject to statistical uctuations. These uctuations are observed
from one energy to the next and originate from limited statistics of correction functions. Since
non-perturbative e�ects are expected to decrease with 1=Q, the energy evolution of hadronisation
errors has been �t to a simple A+B=Q form. The �t was performed for each variable separately.
In the �t procedure a weight scaling with luminosity is assigned to the hadronisation uncertainty
at each energy point. This ensures that the hadronisation uncertainty at MZ, which is basically
free of statistical uctuations, is not altered by the procedure.

The perturbative component of the error, which is the dominant source of uncertainty in
most cases, is highly correlated between the energy points. The perturbative errors decrease
with increasing Q, but faster than the coupling constant itself. The error is in general dominated
by the combination of renormalisation scale and logarithmic variable rescaling uncertainties.

5 Combined Results

The measurements obtained with di�erent variables are combined into a single measurement per
energy using weighted averages. A weight is assigned to each observable dependent measurement
�is proportional to the inverse square of its total error wi / 1=�2i . The weighted average �s is
then given by:

�s =
NX
i=1

wi�
i
s ; (1)

and the combined statistical error is

�stat�s =

vuuut NX
i6=j

(�iwi)2 + 2�ij�iwi�jwj : (2)

In order to obtain the statistical error of the weighted average, the correlation coeÆcients �ij
are needed. This is the correlation between �ts of �s to di�erent variables, which has been
obtained by �tting a large number of Monte Carlo data samples. The linear correlation coeÆ-
cient is typically 60-80 %. The correlation of systematic errors is taken into account in such a
way, that the weighted average is recomputed for all variations of the analysis, and the change
in �s with respect to the nominal value is taken as error. Combined results are given in Ta-
ble 4. The combined experimental systematic uncertainty at LEPII energies is obtained from
a luminosity-weighted average of the uncertainties between 133 GeV and 206 GeV. They are
also shown in Fig. 5, together with a �t of the QCD expectation. The curve is seen to be in
excellent agreement with the measurements. It worth noting that in the de�nition of the �2 of
the �t only the uncorrelated component of the errors is taken into account, which excludes the
theoretical error.
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Q [GeV] 91.2 133 161 172 183 189 200 206

�s(Q) 0.1201 0.1175 0.1145 0.1091 0.1083 0.1102 0.1083 0.1048
stat. error 0.0001 0.0027 0.0042 0.0051 0.0024 0.0015 0.0015 0.0016
pert. error 0.0050 0.0045 0.0043 0.0042 0.0039 0.0037 0.0037 0.0036
hadr. error 0.0016 0.0011 0.0009 0.0008 0.0008 0.0007 0.0007 0.0007
exp.syst. error 0.0008 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
total error 0.0053 0.0054 0.0062 0.0067 0.0047 0.0042 0.0041 0.0041

Table 4: Combined results of �s(Q) as obtained with weighted averages.

In a second step combined measurements between 133 and 206 GeV are evaluated at the scale
of the Z boson mass. This is done by using the predicted energy evolution of the coupling
constant at 3-loop level [28]. The evolved measurements at MZ are given in Table 5. Once
all measurements are evolved to the same scale, they can again be combined into a weighted
average of �s(MZ), again with weights proportional to the inverse square of total errors. In
contrast to the combination from di�erent variables, the measurements here are statistically
uncorrelated. Systematic error correlations are taken into account, all variations of the deter-
mination of �s have been performed for the weighted average. The result is given in Table 6.
A combination of measurements at LEPII energies without the point at MZ is given as well.
The total uncertainty of the combined LEPII measurement is comparable to the one including
LEPI, since the perturbative uncertainties are reduced at higher energies, even after evolution
to MZ. The measurements at LEPI and LEPII are in good agreement with each other and
with previously published ALEPH measurements of �s [8, 29{31]. Finally as a cross-check,

Q [GeV] 91.2 133 161 172 183 189 200 206

�s(MZ) 0.1201 0.1246 0.1248 0.1197 0.1199 0.1228 0.1215 0.1176
stat. error 0.0001 0.0031 0.0050 0.0061 0.0029 0.0019 0.0019 0.0020
pert. error 0.0050 0.0047 0.0047 0.0046 0.0043 0.0042 0.0041 0.0041
hadr. error 0.0016 0.0012 0.0010 0.0010 0.0009 0.0009 0.0008 0.0008
exp.syst. error 0.0008 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013
total error 0.0053 0.0059 0.0071 0.0079 0.0054 0.0048 0.0048 0.0048

Table 5: Combined results of �s(MZ) as obtained with weighted averages and evolved from
Q!MZ.

data set LEPI + LEPII LEPII

�s(MZ) 0.1211 0.1213
stat. error � 0.0009 � 0.0011
pert. error � 0.0044 � 0.0043
hadr. error � 0.0010 � 0.0009
exp. syst. error � 0.0011 � 0.0013
total error � 0.0047 � 0.0047

Table 6: Weighted average of combined measurements of �s(MZ) obtained at energies from 91.2
GeV to 206 GeV and a combined measurement without the point at MZ.

another combination method was investigated. A simultaneous �t to data sets at all energies
was performed. E�ectively, this implies using statistical uncertainties as weights, so this result
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Figure 5: The strong coupling constant �s measured between 91.2 and 206 GeV. The measure-
ments using di�erent event-shape variables are combined, correlations are taken into account.
The outer error bars indicate the total error. The inner error bars exclude the theoretical er-
ror, which is expected to be highly correlated between the measurements. A �t of the 3-loop
running formula is shown, where the hatched area corresponds to the statistical uncertainty of
�MS = 245 � 15 MeV.

is dominated by the precise data at MZ, and the result �s(MZ) = 0:1203� 0:0052 is practically
the same as without high energy data. The simultaneous �t method yields results which are
again consistent with those obtained with weighted averages.

6 Conclusions

New results are presented for a consistent measurement of event-shape variables recorded by
ALEPH at centre-of-mass energies between 91.2 GeV and 209 GeV. The energy evolution of the
strong coupling constant �s has been investigated.

The distributions of thrust, C-parameter, heavy jet mass, � lny3, wide and total jet broad-
ening have been compared to calculations of perturbative QCD, and the strong coupling con-
stant has been measured at all energies. The new combined ALEPH result is �s(MZ) =
0:1211 � 0:0047. The results are found to be in good agreement with the expected energy
evolution of the running coupling constant.
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A Theoretical predictions

To second order in �s, the distribution of a generic event-shape variable y is given by:

1

�tot

d�(y)

dy
= �s(�

2)A(y) +
�
�s(�

2)
�2 "

A(y)2�b0 ln

 
�2

s

!
+B(y)

#
; (1)

where �s =
�s
2�

; b0 =
33� 2nf
12�

; � = renormalisation scale: (2)

The coeÆcient functions A and B are obtained from integration of the ERT matrix elements.
Consider the cumulative cross section (Radiator) :

R(y; �s) � 1

�tot

Z y

0

d�(x; �s)

dx
dx ; (3)

which may be cast into the second-order form

RO(�2s)(y; �s) = 1 +A(y)�s + B(y)�s2 ; (4)

where A and B are integrated forms of A and B, and the explicit scale dependence has been
dropped for clarity.
The prediction of the Log(R) matching scheme is given by:

lnR(y; �s) = Lg1(�sL) + g2(�sL)� (G11L+G12L
2)�s (5)

� (G22L
2 +G23L

3)�s
2 +A(y)�s +

�
B(y)� 1

2
A2(y)

�
�s

2 ;

with L = ln(1=y) for y = 1�T;M2
H=s; y3; BT ; BW and L = ln(6=C) for C-parameter. Expressions

for the functions g1 and g2, which resum leading and next-to-leading logarithms to all orders in

15



�s, can be found in the literature [21] [22] [23] [24] [25].
A kinematic constraint is imposed to themodi�ed Log(R) matching scheme to guarantee that
the prediction of the distribution vanishes at a given value ymax.

lnR(ymax) = 0 ;
1

�tot

d�(y)

dy

����
y=ymax

=
dR

dy

����
y=ymax

= 0 : (6)

To ful�ll this constraint L is replaced by ~L = 1
p
ln
��

1
y

�p
+ ( 1

ymax
)p + 1

�
, respectively ~L =

1
p
ln
��

6
C

�p
+ ( 6

Cmax
)p + 1

�
for C-parameter. The power p is usually chosen equal to unity, the

case p = 2 is called second degree modi�cation. The values of ymax and Cmax are given in
Table 7. Hence the prediction of the modi�ed Log(R) matching scheme is simply obtained by

variable 1� T M2
H=s � ln y3 BT BW C

ymax 0.5 0.47 ln3 0.41 0.35 1

Table 7: Values of ymax at which distributions are forced to vanish.

replacing L by ~L in equation (5).
The expression for the R matching scheme reads as

R(y; �s) = (1 + c1�s + c2�s
2) exp

h
Lg1(�sL) + g2(�sL) +G21L�s

2
i

(7)

� G21L�s
2 �

h
C1 +G11L+G12L

2
i
�s

�
�
C2 + C1(G11L+G12L

2) +
1

2
(G11L+G12L

2)2 + (G22L
2 +G23L

3)

�
�s

2

+ A(y)�s + B(y)�s2 :
The constraints for the modi�ed R matching are

R(ymax) = 1 ;
1

�tot

d�(y)

dy

����
y=ymax

=
dR

dy

����
y=ymax

= 0 : (8)

Here a simple modi�cation of L does not satisfy the second constraint. Therefore, L is modi�ed
and the matching coeÆcients G11 and G21 become functions of y according to the condition:

~L(ymax) = 0 ; ~G11(ymax) = 0 ; ~G21(ymax) = 0 : (9)

This is achieved with the following modi�cation:

~L(y) =
1

p
ln

��
1

y

�p
+ (

1

ymax
)p + 1

�
(10)

~G11(y) = G11

�
1�

�
y

ymax

�p�

~G21(y) = G21

�
1�

�
y

ymax

�p�
;

with the special case of C-parameter ~L(C) = 1
p
ln
h
( 6
C
)p + ( 6

Cmax
)p + 1

i
.

Finally the expression for the modi�ed R matching scheme can be written as

~R(y; �s) = (1 + c1�s + c2�s
2) exp

�
~Lg1(�s ~L) + g2(�s ~L)� y

ymax
G11�s ~L+ ~G21

~L�s
2
�
(11)

� ~G21
~L�s

2 �
h
C1 + ~G11

~L+G12
~L2
i
�s

�
�
C2 + C1( ~G11

~L+G12
~L2) +

1

2
( ~G11

~L+G12
~L2)2 + (G22

~L2 +G23
~L3)

�
�s

2

+ A(y)�s + B(y)�s2 :
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The resummation in terms of the logarithmic variable L = log 1
y
can be re-written in terms

of a rescaled variable L̂ = log 1
y�xL

. Such a rescaling alters the resummed formulae in the
unmodi�ed case according to :

L = log

�
1

y

�
! L̂ = log

1

y � xL (12)

g1(�sL) ! g1(�sL̂)

g2(�sL) ! g2(�sL̂) + lnX
d

d�L

�
�Lg1(�s �L)

�
:

For modi�ed matching schemes the logarithmic variable L is replaced by :

~L =
1

p
ln

��
1

y

�p
�
�

1

ymax

�p
+ 1

�
! L̂ =

1

p
ln

��
1

xL � y
�p
�
�

1

xL � ymax

�p
+ 1

�
(13)

Rescaling the logarithmic variable also entails changes to the �xed-order coeÆcients both in the
modi�ed and unmodi�ed cases:

G12 ! Ĝ12 = G12 (14)

G11 ! Ĝ11 = G11 + 2G12 lnX

G23 ! Ĝ23 = G23

G22 ! Ĝ22 = G22 + 3G23 lnX

G21 ! Ĝ21 = G21 + 2G22 lnX + 3G23 ln
2X

C1 ! Ĉ1 = C1 +G11 lnX +G12 ln
2X

C2 ! Ĉ2 = C2 + (C1G11 +G21) lnX + (C1G12 +G22 +
1

2
G2
11) ln

2X

+(G23 +G12G11) ln
3X + 1

2
G2
12 ln

4X

In the case of the modi�ed R matching scheme, the modi�ed coeÆcients should be determined

in terms of the unmodi�ed ones. Factors of the type
h
1�

�
y

ymax

�pi
and changes related to the

renormalization scale are to be applied to the modi�ed quantities.
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