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Abstract

We calculate the specific heats of quasi-particles of two-flavor QCD
in its crystalline phases for low temperature. We show that for the
different crystalline structures considered here there are gapless modes
contributing linearly in temperature to the specific heat. We evaluate
also the phonon contributions which are cubic in temperature. These
features might be relevant for compact stars with an inner shell in a
color superconducting crystalline phase.

1 Introduction

A number of theoretical studies have recently been devoted to QCD at low
temperatures T and high densities. Besides the theoretical interest for the
different QCD phases, the possibility of applications to compact stars, where
dense quark matter might exist, has driven much of the recent interest.

At high density and small T , quarks at the Fermi surface are expected to
condense, giving rise to color superconductivity, see [1, 2] and, for reviews,
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[3]. At the largest densities QCD with three flavors should be in the so called
CFL (color-flavor locked) phase. For decreasing density one expects pairing
between quarks of non vanishing total momentum, resulting in crystalline gap
behaviors [4, 5, 6, 7] (for reviews see [8, 9]). Crystalline phases had already
been discussed for electric superconductors [10, 11], so that one sometimes
also refers to the crystalline phases as LOFF phases. A crystalline color
superconductor shell might exist inside compact stars, between the external
hadronic crust and the internal CFL core.

In the present letter we discuss dispersion law and specific heats of the
quasi-particles present in the LOFF phase. These properties are relevant
for the calculation of the thermal conductivity and neutrino emissivity and
would affect the cooling of the compact stars.

Thus far crystalline color superconductivity has been studied only in a
two-flavor model. Different crystal structures have been computed, with the
conclusion, based on a Ginzburg-Landau discussion, that the most favored
structure at zero temperature is a cubic structure very close to a face centered
cube (FCC). However at non zero temperature the situation is far from being
clear (see the discussion in Ref. [8]), therefore we will discuss other crystalline
structures as well.

The plan of the paper is as follows. In section 2 we discuss the disper-
sion laws of the fermionic quasi-particles for different crystal structures of
the LOFF phase of high density QCD. We present the one-plane wave struc-
ture, the strip, and the face centered cube. In section 3 we calculate the
contribution of the fermionic quasi-particles to the specific heat for the three
mentioned structures. In section 4 we use the effective phonon Lagrangian to
calculate the phonon specific heats. Section 5 is devoted to the conclusions.

2 Fermi quasi-particle dispersion law

In this section we derive the Fermi quasi-particle dispersion law in the two-
flavor QCD LOFF phase for a few different crystalline structures. We will
work with an inhomogeneous condensate given by

∆̂(r) = ∆(r) εαβ3 εij (1)

where α, β are color indices and i, j = 1, 2 are flavor indices. Notice that the
gap term pairs together the color 1 and 2, whereas the fermions with color 3
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are unpaired. We work in presence of a difference in the chemical potential
of the u and the d quarks. We define

µu = µ + δµ , µd = µ− δµ . (2)

As usual the quasi-particle dispersion law is obtained by looking at the zeros
of the inverse propagator. For fermionic quasi-particles one has to solve the
eigenvalue equation

(S−1)ij
αβχβ

j = 0 , (3)

where S−1 is the inverse propagator in the LOFF phase in the Nambu-Gorkov
formalism and χβ

j are the Green eigenfunctions. Following the notations in
[8] we write S−1 as follows:

(S−1)ij
αβ =

(
δαβ[δij(E + iv ·∇) + δµ(σ3)ij ] −εαβ3εij∆(r)

−εαβ3εij∆(r)∗ δαβ [δij(E − iv ·∇) + δµ(σ3)ij ]

)

(4)
where E is the quasi-particle energy and v is the Fermi velocity, that in QCD
with massless quarks satisfies v = |v| = 1. Let us define

χα
i =

(
Ḡα

i

−i(σ2)αβF̄ β
i

)
. (5)

Performing the unitary transformation

Ḡα
i =

(
eiδµ σ3 v·r/v2

)
ij

Gα
j , F̄ α

i =
(
e−iδµ σ3 v·r/v2

σ2

)
ij

F α
j , (6)

one measures the energy of each flavor from its Fermi energy. The resulting
equations for F α

i and Gα
i are independent of color and flavor indices, that

therefore will be omitted below:

(E + iv ·∇)G− i∆(r)F = 0 ,
(E − iv ·∇)F + i∆(r)∗G = 0 . (7)

We solve these equations for three different crystalline structures, correspond-
ing to different decompositions of (1) in plane waves:

1. One plane wave;

2. Two antipodal plane waves;
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3. The face centered cubic (FCC) structure, formed by eight plane waves
with momenta pointing to the vertices of a cube.

The first case is discussed for metals in [11] by Fulde and Ferrel (FF); for
QCD is analyzed in [4]. The second case has been examined at T = 0 by [10];
we will refer to it as the strip below. The last case is the preferred solution at
T = 0 in Ginzburg-Landau analysis of Ref. [7]. The reason why we examine
these different structures is in the fact that the preferred structure at T 6= 0
can be different from that at T = 0, see e.g [6] and the discussion in [8].

2.1 One plane wave

For the FF condensate we take the direction of the Cooper pair total mo-
mentum 2q along the z−axis. The gap

∆(r) = ∆e2iqz (8)

is therefore a complex number. If we take G = Ĝ(r)eiq·r, F = F̂ (r)e−iq·r, we
get from Eqs.(7)

[E − qvz + iv ·∇] Ĝ(r) = + i∆F̂ (r) ,
[E − qvz − iv ·∇] F̂ (r) = − i∆Ĝ(r) . (9)

These are the standard Gorkov equations for a uniform superconductor with
energy E − qvz. The eigenfunctions are simple plane waves

Ĝ(r) = ueik·r F̂ (r) = weik·r , (10)

and the quasi-particle spectrum is given by:

E± = qvz ±
√

ξ2 + ∆2 , (11)

where ξ = k · v is the residual longitudinal momentum, i.e. the longitudinal
momentum measured from the Fermi surface. Because of the transformation
(6), quasi-particle energies are computed from the corresponding Fermi en-
ergies µu,d. Eq.(11) is the dispersion law of quasi-particle (E± ≥ 0) or hole
states (E± < 0). We notice that in this case, as in [12], [13] and [14], we are
in presence of gapless superconductivity.

An anisotropic dispersion law was also obtained in [4] by a different pro-
cedure (variational method). Their result reduces to (11) if one considers
only the leading order in the asymptotic µ →∞ limit.
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2.2 Strip and FCC structures

Both the strip and the cubic structure have real ∆(r). The solutions of Eqs.
(7) are Bloch functions

G = u(r)eik·r , F = w(r)eik·r , (12)

with u(r) and w(r) periodic functions and k in the first Brillouin zone. They
satisfy

[E − ξ + iv ·∇]u(r) = +i ∆(r)w(r) ,
[E + ξ − iv ·∇]w(r) = −i ∆(r)u(r) . (13)

The corresponding quasi-particles are gapless [10]. In fact, for E = 0 and
ξ = 0, the system (13) has two solutions. We have w± = ±u±, with u±
solutions of

v ·∇u±(r) = ±∆(r)u±(r) , (14)

and given by

u±(r) = exp
[
±
∫

∆(r′)
d(r′ · v)

v2

]
. (15)

Here the integration is over the path v = const.
To find the dispersion law of quasi-particles for small values of ξ one uses

degenerate perturbation theory and gets

E2 =
ξ2

A+A−
, (16)

with

A± =
1

Vc

∫
cell

d~r exp

[
±2

∫
∆(r ′)

d(r ′ · v)

v2

]
, (17)

where Vc is the volume of a unit cell of the lattice.
Let us now specialize to the case of the strip, i.e. the crystalline structure

formed by two plane waves with wave vectors ±2q. The inhomogeneous gap
is given by

∆(r) = ∆ cos 2qz (18)

and one gets

A
(s)
± ≡ A(s) = I0

(
∆

qv cos θ

)
, (19)
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where I0(z) is the modified Bessel function of the zeroth order.
Let us now turn to the FCC structure. Summing the eight plane waves,

the condensate can be put in the form

∆(r) = ∆ cos 2qx cos 2qy cos 2qz . (20)

With |r| = r and

B =
r

4

(
sin 2q(x + y + z)

x + y + z
+

sin 2q(x + y − z)

x + y − z
+

sin 2q(x− y + z)

x− y + z

+
sin 2q(−x + y + z)

−x + y + z

)
, (21)

one obtains for the cube

A
(fcc)
± =

(
q

π

)3 ∫
cell

dV exp

{
±∆

qv
B

}
, (22)

where the integration is over the elementary cell of volume (π/q)3.
Let us notice that whereas for the strip in Eq. (19) one has a closed

formula, for the FCC only numerical or approximate expressions can be given.
Since the parameter x = ∆/qv is expected to be small, expanding A

(fcc)
± as a

power series one obtains√
A

(fcc)
+ (x)A

(fcc)
− (x) = 1 + 0.035 x2 +O[x]4 . (23)

In conclusion for both the strip and the FCC the quasi-fermion spectrum is
gapless. This result remains valid also for massive quarks, since the effect
of the quark mass can be accounted for by reducing the quark velocity from
the value v = 1 valid for the massless case [15].

3 Specific heat of the Fermi quasi-particles

The contribution of the Fermi quasi-particles to the specific heat per unit
volume is

cv = ρ
∫ dΩ

4π

∫
dξ E

dn(E, T )

dT
, (24)

where, for the two flavor case (and |v| = 1),

ρ =
4µ2

π2
, (25)
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while n(E, T ) is the Fermi distribution function and the angular integration
is over the directions of v.

We should also remind that, in the case of two flavors, the two quarks
of color 3 are ungapped and as such each contributes to the specific heat as
follows:

cv =
µ2

3
T . (26)

Let us now specialize Eq. (24) to the three crystalline structure under
scrutiny. We limit the analysis to the small T range.

3.1 One plane wave

The dispersion law of quasi-particles is given by (11). Using (24) one gets in
the small temperature limit (T � ∆) and for ∆ < q

c(FF)
v =

ρTπ2

3

√
1− ∆2

q2
(quarks) . (27)

The specific heat depends linearly on temperature because the quasi-particle
dispersion law (11) gives rise to gapless modes. There is also a contribution
to the specific heat that comes from gapped modes, but this contribution is
exponentially suppressed with the temperature.

3.2 Strip and FCC structures

From Eq. (24), using (16) that is valid for the strip and the FCC alike, one
obtains, for T � ∆:

cv =
ρTπ2

3

∫
dΩ

4π

√
A+A− . (28)

This expression can be evaluated in closed form for the strip, when A± = A(s).
One gets

c(s)
v =

ρTπ2

3
1F2

(
−1/2; 1/2, 1; (∆/(qv))2

)
(quarks) (29)

where 1F2 denotes the generalized hypergeometric function [16]. Differ-
ently from the analysis of [10], here v is not small and we can take z =
∆/qv → 0 near the second order phase transition. Since for small z one has
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1F2(−1/2; 1/2, 1; z2) ' 1− z2, it is easily seen that the normal Fermi liquid
result (26) is obtained for z = 0. On the other hand, at finite ∆, the specific
heat turns out to be smaller.

For the face centered cube, A
(fcc)
± are isotropic and the angular integration

is trivial. One gets for this case

c(fcc)
v =

ρTπ2

3

√
A

(fcc)
+ A

(fcc)
− (quarks) . (30)

Using the expansion (23) one can get an approximate formula giving a power
series of ∆/qv. One recognizes that the specific heat for the cubic structure
is larger than in the ungapped case (26).

4 Specific heat of phonons

Besides Fermi quasi-particles we consider also the massless Nambu-Goldstone
bosons (NGB). Even though we expect a parametrically smaller O(T 3) con-
tribution in this case, the contribution of the NGB might be relevant for
future applications, e.g. for the calculation of thermal conductivity. For two
flavor QCD the only NGB are phonons [17, 18].

4.1 One or two plane waves

Let us begin with the phonon Lagrangian for the plane wave

L =
1

2

(
φ̇2 − v2

‖(∇‖φ)2 − v2
⊥|∇⊥φ|2

)
, (31)

where φ is the phonon field, ∇‖ = n ·∇, ∇⊥ = ∇ − n∇‖ and n along the
z−axis, i.e. the direction of q. In [17] we found

v2
‖ = cos2 θq , v2

⊥ =
1

2
sin2 θq , (32)

with cos θq = δµ2/q = 0.833. Here δµ2 is the δµ value corresponding to
the second order phase transition from the LOFF phase to the normal one.
The dispersion law, relating the phonon quasi-momentum k and energy ω,
therefore is

ω(k) =
√

v2
⊥(k2

x + k2
y) + v2

‖k2
z . (33)
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Let N be the total number of oscillatory modes. There is an oscillator for
any quark pair and the total number of quark pairs is given by the available
phase space, i.e. the pairing region. If V is the available volume, then

N

V
=

g

2

∫
d3k

(2π)3
, (34)

where g = 4 × 2 and we divide by two due to the fact that there are two
quarks in the pair. The integration over the pairing region gives

N

V
' g

2

4πµ2ζ

(2π)3
(2δ) . (35)

A factor 2δ arises from the integration over the longitudinal residual momen-
tum ξ; δ is the ultraviolet cutoff, of the order of µ while ζ is the fraction of
the phase space available for pairing in the LOFF phase. It is estimated of
the order of ∆/q.

The ratio N/V can be expressed in terms of a cutoff frequency by a
procedure analogous to the introduction of the Debye frequency for ordinary
crystals. We write

N

V
=
∫ ωD

0
f(ω)dω (36)

where f(ω) is given by

f(ω) =
g

2

∫ d3k

(2π)3
δ(ω − ω(k)) =

gω2

4π2v2
⊥v‖

. (37)

Substituting in (34) we see that ωD is of the order of µ(∆/q)1/3 therefore
large (excluding the second order phase transition region). More precisely
we get the formula

N

V
=

gω3
D

12π2v2
⊥v‖

. (38)

These results also hold in the case of the strip, i.e. two antipodal plane
waves. As a matter of fact one can prove, following the same procedure as in
[17], that the effective Lagrangian for the phonon field is still given by (31).

The specific heat per unit volume at small temperatures (ωD � T ), is
given by (kB = h̄ = 1):

cv =
4Nπ4

5V

(
T

ωD

)3

, (39)
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and therefore

c(FF)
v = c(s)

v =
8π2

15v2
⊥v‖

T 3 (phonons) . (40)

This result holds for the two considered structures (one or two plane waves).

4.2 Face-centered-cube

For the FCC crystal structure the phonon Lagrangian is given by [19]

L =
1

2

∑
i=1,2,3

(φ̇(i))2− a

2

∑
i=1,2,3

|∇φ(i)|2− b

2

∑
i=1,2,3

(∂iφ
(i))2−c

∑
i<j=1,2,3

∂iφ
(i)∂jφ

(j) .

(41)
In [18] we found

a = 1/12 b = 0 , c = (3 cos2 θq − 1)/12 . (42)

Eq. (36) is still valid with

f(ω) =
1

3

3∑
r=1

g

2

∫
d3k

(2π)3
δ(ω − ωr(k)) , (43)

since ωr(~k) = vr(n̂)k we get

f(ω) =
ω2g

48π3

3∑
r=1

∫
dn̂

v3
r(n̂)

=
ω2g

24π2
K . (44)

Here the velocities v2
r = v2

r(n̂) are the eigenvalues of the matrix
 a + b n2

1 c n1n2 c n1n3

c n1n2 a + b n2
2 c n2n3

c n1n3 c n2n3 a + b n2
3


 , (45)

with n1 = sin θ cos ϕ, n2 = sin θ sin ϕ, n3 = cos θ.
To get the Debye frequency and the specific heat we use the numerical

result

K =
1

2π

3∑
r=1

∫
dn̂

v3
r (n̂)

≈ 3.3× 102 (46)

corresponding to the values (42) of the parameters. For the specific heat we
get, similarly to Eq. (40), the result

c(fcc)
v =

4π2

15
K T 3 (phonons) . (47)

One can note that numerically c(fcc)
v > c(s)

v .
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5 Conclusions and Outlook

We have considered three different crystalline structures for high density
QCD in the LOFF phase: one plane wave, the strip, and the favorite face-
centered-cubic strucure. Gapless fermionic quasi-particles are found to exist
even in the presence of quark mass terms. These gapless fermions provide for
the dominant contributions to the thermal properties for low temperatures,
such as of possible interest for compact stars. Typically they contribute to
specific heats with terms linear in T which are dominant at low T . The
massless phonons contribute instead as T 3 and gapped particles have an
exponential suppression at low T . The previous calculations could be applied
to the evaluation of transport properties of compact stars. At the present a
reliable model for the LOFF phase in compact stars is still lacking, since the
study of the inhomogeneous superconducting phase of QCD with three flavors
has not yet been performed. Nevertheless one can make some conjecture by
imagining the existence of the LOFF phase inside the star, but outside the
inner core, where one might suppose the existence of quark matter in the
CFL phase. An application of previous results might be the evaluation of
the thermal conductivity in the LOFF phase for the existing model of 2-flavor
QCD. We plan to come to this subject in the future.

Acknowledgments: We would like to thank K. Rajagopal for an enlight-
ening discussion.

References

[1] B. C. Barrois, Nucl. Phys. B 129, 390 (1977); S. Frautschi, in Matter
at extreme density, Erice 1978; D. Bailin and A. Love, Phys. Rep. 107,
325 (1984).

[2] M. Alford, K. Rajagopal and F. Wilczek, Nucl. Phys. B 537, 443
(1999) [arXiv:hep-ph/9804403]; R. Rapp, T. Schafer, E. V. Shuryak
and M. Velkovsky, Phys. Rev. Lett. 81, 53 (1998) [arXiv:hep-
ph/9711396]; D. T. Son, Phys. Rev. D 59, 094019 (1999) [arXiv:hep-
ph/9812287]; R. D. Pisarski and D. H. Rischke, Phys. Rev.
Lett. 83, 37 (1999) [arXiv:nucl-th/9811104]; R. Rapp, T. Schafer,
E. V. Shuryak and M. Velkovsky, Annals Phys. 280, 35 (2000)

11



[arXiv:hep-ph/9904353]; T. Schafer and F. Wilczek, Phys. Rev. D 60,
114033 (1999) [arXiv:hep-ph/9906512].

[3] K. Rajagopal and F. Wilczek, in the Festschrift in honor of B.L. Ioffe,
’At the Frontier of Particle Physics / Handbook of QCD’, M. Shif-
man, ed., (World Scientific) vol. 3, p. 2061, arXiv:hep-ph/0011333;
T. Schafer and E. V. Shuryak, Lect. Notes Phys. 578, 203 (2001)
[arXiv:nucl-th/0010049]; M. G. Alford, Ann. Rev. Nucl. Part. Sci. 51,
131 (2001) [arXiv:hep-ph/0102047]; D. H. Rischke and R. D. Pisarski,
arXiv:nucl-th/0004016; G. Nardulli, Riv. Nuovo Cim. 25N3, 1 (2002)
[arXiv:hep-ph/0202037].

[4] M. G. Alford, J. A. Bowers and K. Rajagopal, Phys. Rev. D 63, 074016
(2001) [arXiv:hep-ph/0008208].

[5] J. A. Bowers, J. Kundu, K. Rajagopal and E. Shuster, Phys. Rev. D
64, 014024 (2001) [arXiv:hep-ph/0101067]; R. Casalbuoni, R. Gatto,
M. Mannarelli and G. Nardulli, Phys. Lett. B 511, 218 (2001)
[arXiv:hep-ph/0101326]; J. Kundu and K. Rajagopal, Phys. Rev. D
65, 094022 (2002) [arXiv:hep-ph/0112206]; A. K. Leibovich, K. Ra-
jagopal and E. Shuster, Phys. Rev. D 64, 094005 (2001) [arXiv:hep-
ph/0104073].

[6] I. Giannakis, J. T. Liu and H. c. Ren, Phys. Rev. D 66, 031501 (2002)
[arXiv:hep-ph/0202138].

[7] J. A. Bowers and K. Rajagopal, Phys. Rev. D 66, 065002 (2002)
[arXiv:hep-ph/0204079].

[8] R. Casalbuoni and G. Nardulli, arXiv:hep-ph/0305069.

[9] J. A. Bowers, arXiv:hep-ph/0305301.

[10] A. J. Larkin and Yu. N. Ovchinnikov, Zh. Exsp. Teor. Fiz. 47, 1136
(1964) .

[11] P.Fulde and R. A.Ferrell, Phys. Rev. 135, A550 (1964).

[12] M. G. Alford, J. Berges and K. Rajagopal, Phys. Rev. Lett. 84, 598
(2000) [arXiv:hep-ph/9908235].

12



[13] I. Shovkovy and M. Huang, Phys. Lett. B 564, 205 (2003) [arXiv:hep-
ph/0302142].

[14] M. Huang and I. Shovkovy, arXiv:hep-ph/0307273.

[15] R. Casalbuoni, F. De Fazio, R. Gatto, G. Nardulli and M. Ruggieri,
Phys. Lett. B 547, 229 (2002) [arXiv:hep-ph/0209105].

[16] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and
Products (sixth edition), edited by A. Jeffrey and D. Zwillinger, Aca-
demic Press (2000).

[17] R. Casalbuoni, R. Gatto, M. Mannarelli and G. Nardulli, Phys. Rev.
D 66, 014006 (2002) [arXiv:hep-ph/0201059].

[18] R. Casalbuoni, E. Fabiano, R. Gatto, M. Mannarelli and G. Nardulli,
Phys. Rev. D 66 (2002) 094006 [arXiv:hep-ph/0208121].

[19] R. Casalbuoni, R. Gatto and G. Nardulli, Phys. Lett. B 543, 139
(2002) [arXiv:hep-ph/0205219].

13


