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High Level Trigger
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Abstract—The ALICE high level trigger has to process data
online, in order to select interesting (sub)events, or to compress
data efficiently by modeling techniques. Focusing on the main
data source, the time projection chamber (TPC), we present two
pattern recognition methods under investigation: a sequential ap-
proach (cluster finder and track follower) and an iterative approach
(track candidate finder and cluster deconvoluter). We show, that
the former is suited for pp and low multiplicity PbPb collisions,
whereas the latter might be applicable for high multiplicity PbPb
collisions of 3000. Based on the developed tracking
schemes we show that using modeling techniques, a compression
factor of around 10 might be achievable.

Index Terms—Data compression, hough transforms, particle
tracking, pattern recognition.

I. INTRODUCTION

THE ALICE experiment [1] at the upcoming Large Hadron
Collider at CERN will investigate PbPb collisions at a

center of mass energy of about 5.5 TeV per nucleon pair and
pp collisions at 14 TeV. Its main tracking detector, the time pro-
jection chamber (TPC), is read out by 557 568 analog-to-dig-
ital channels (ADCs), producing a data size of about 75 MB
per event for central PbPb collisions and around 0.5 MB for pp
collisions at the highest assumed multiplicities [2].

The event rate is limited by the bandwidth of the permanent
storage system. Without any further reduction or compression,
the ALICE TPC detector can only take central PbPb events up to
20 Hz and minimum bias1 pp events at a few hundred hertz. Sig-
nificantly higher rates are possible by either selecting interesting
(sub)events, or compressing data efficiently by modeling tech-
niques. Both requires pattern recognition to be performed on-
line. In order to process the detector information at 10–25 GB/s,
a massive parallel computing system is needed, the high level
trigger (HLT) system.
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1A minimum bias trigger selects events with as little as possible bias in respect
to the nuclear cross section.

A. Functionality

The HLT system is intended to reduce the data rate produced
by the detectors as far as possible to have reasonable taping
costs. The key component of the system is the ability to process
the raw data performing track pattern recognition in real time.
Based on the extracted information, clusters and tracks, data
reduction can be done in different ways.

• Trigger: Generation and application of a software trigger
capable of selecting interesting events from the input data
stream.

• Select: Reduction in the size of the event data by selecting
subevents or region of interest.

• Compression: Reduction in the size of the event data by
compression techniques.

As such, the HLT system will enable the ALICE TPC detector
to run at a rate of up to 200 Hz for heavy ion collisions, and up
to 1 kHz for pp collisions. In order to increment the statistical
significance of rare processes, dedicated triggers can select can-
didate events or subevents. By analyzing tracking information
from the different detectors and (pre-)triggers online, selective
or partial readout of the relevant detectors can be performed thus
reducing the event rate.

The tasks of such a trigger are selections based upon the on-
line reconstructed track parameters of the particles, e.g., to se-
lect events containing e e candidates coming from quarko-
nium decay or to select events containing high energy jets made
out of collimated beams of high particles [3]. In the case
of low multiplicity events such as for pp collisions, the online
reconstruction can be used to remove pileup (superimposed)
events from the trigger event.

B. Architecture

The HLT system receives data from the front-end electronics.
A farm of clustered SMP nodes ( 500 to 1000 nodes), based
on off-the-shelf PCs and connected with a high bandwidth, low
latency network provide the necessary computing power. The
hierarchy of the farm has to be adapted to both the parallelism
in the data flow and to the complexity of the pattern recognition.

Fig. 1 shows a sketch of the architecture of the system. The
TPC detector consists of 36 sectors, each sector being divided
into six subsectors. The data from each subsector are transferred
via an optical fiber from the detector front-end into 216 custom
designed readout receiver cards (RORCs). Each receiver node is
interfaced to an RORC using its internal PCI bus. In addition to
the different communication interfaces, the RORCs provide an
FPGA coprocessor for data intensive tasks of the pattern recog-
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Fig. 1. Architecture of the HLT system.

nition and enough external memory to store several dozen event
fractions. A hierarchical network interconnects all the receiver
nodes.

Each sector is processed in parallel, results are then merged
in a higher level. The first layer of nodes receives the data from
the detector and performs the preprocessing task, i.e., cluster
and track seeding on the subsector level. The next two levels of
nodes exploit the local neighborhood: track segment reconstruc-
tion on sector level. Finally, all local results are collected from
the sectors or from different detectors and combined on a global
level: track segment merging and final track fitting.

The farm is designed to be completely fault tolerant avoiding
all single points of failure, except for the unique detector links.
A generic communication framework has been developed based
on the publisher–subscriber principle, which one allows to con-
struct any hierarchy of communication processing elements [4].

II. ONLINE PATTERN RECOGNITION

The main task of the HLT system is to reconstruct the com-
plete event information online. Concerning the TPC and the
other tracking devices, the particles should ideally follow he-
lical trajectories due to the solenoidal magnetic field of the L3
magnet, in which these detectors are embedded. Thus, we math-
ematically describe a track by a helix with parameters.2

A TPC track is composed out of clusters. The pattern recogni-
tion task for the HLT system is to process the raw data in order
to find clusters and to assign them to tracks thereby determining
the helix track parameters using different fitting strategies.

For HLT tracking, we distinguish two different approaches:
the sequential feature extraction and the iterative feature
extraction.

2To describe an arbitrary helix in three dimensions, one needs seven contin-
uous parameters and a handedness switch. For the special case of the ALICE ge-
ometry there are then five independent parameters plus the handedness switch.

The sequential method, corresponding to the conventional
way of event reconstruction, first calculates the cluster centroids
with a cluster finder and then uses a track follower on these
space points to determine the track parameters. This approach
is applicable for lower occupancy like pp and low multiplicity
PbPb collisions. However, at larger multiplicities expected
for PbPb at LHC, clusters start to overlap and deconvolution
becomes necessary in order to achieve the desired tracking
efficiencies.

For that reason, the iterative method first searches for pos-
sible track candidates using a suitable defined track candidate
finder and then assigns clusters to tracks using a cluster evalu-
ator possibly deconvoluting overlapping clusters shared by dif-
ferent tracks.

For both methods, a helix fit on the assigned clusters finally
determines the track parameters.

In order to reduce data shipping and communicaton overhead
within the HLT, as much as possible of the local pattern recog-
nition will be done on the RORC. We therefore intend to run
the cluster finder or the track candidate finder directly on the
FPGA coprocessor of the receiver nodes while reading out the
data over the fiber. In both cases the results, cluster centroids or
track candidate parameters, will be sent from the RORC to the
memory of the host over the PCI bus.

A. Sequential Tracking Approach

The classical approach of pattern recognition in the TPC
is divided into two sequential steps: cluster finding and track
finding. In the first step, the cluster finder reconstructs the
cluster centroids, which are interpreted as the three-dimen-
sional space points produced by the traversing particles. The
list of space points is then passed to the track follower, which
combines the clusters to form track segments. A similar
reconstruction chain has successfully been used in the STAR
L3 trigger [5], and thus has been adapted to the ALICE HLT
framework.
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1) The Cluster Finder: The input to the cluster finder is a
list of the above threshold timebin sequences for each pad. The
algorithm builds the clusters by matching sequences on neigh-
boring pads. In order to speed up the execution time, every cal-
culation is performed on-the-fly; sequence centroid calculation,
sequence matching, and deconvolution. Hence, the loop over
sequences is done only once. Only two lists of sequences are
stored at every time: the current pad and the previous pad(s).
For every new sequence, the centroid position in the time direc-
tion is calculated by the ADC weighted mean. The mean is then
added to a current pad list, and compared to the sequences in
the previous. If a match is found, the mean position in both pad
and time is calculated and the cluster list is updated. Every time
a match is not found, the sequence is regarded as a new cluster.

In the case of overlapping clusters, a crude deconvolution
scheme can be performed.3 In the time direction, overlapping
sequences are identified by local minima of the charge values
within a sequence. These sequences are separated by cutting at
the position of the minimum in the time direction. The same ap-
proach is being used for the pad direction, where a cluster is cut
if there is a local minimum of the pad charge values.

The algorithm is inherently local, as each padrow can be pro-
cessed independently. This is one of the main reasons to use a
circuit for the parallel computation of the space points on the
FPGA of the RORC [6].

2) The Track Follower: The tracking algorithm is based on
conformal mapping. A space point is transformed in the
following way:

(1)

where the reference point is a point on the trajectory of
the track. If the track is assumed to originate from the interac-
tion point, the reference point is replaced by the vertex coordi-
nates. The transformation has the property of transforming the
circular trajectories of the tracks into straight lines. Since then
fitting straight lines is easier and much faster than fitting circles
(if we neglect the changes in the weights of the points induced
by conformal mapping), the effect of the transformation is to
speed up the track fitting procedure.

The track finding algorithm consists of a follow-your-nose
algorithm, where the tracks are built by including space points
close to the fit [7]. The tracks are initiated by building track
segments, and the search is starting at the outermost padrows.
The track segments are formed by linking space points, which
are close in space. When a certain number of space points have
been linked together, the points are fitted to straight lines in
conformal space. These tracks are then extended by searching
for further clusters, which are close to the fit.

3) Track Merging: Tracking can be done either locally on
every subsector, on the sector level, or on the complete TPC. In
the first two scenarios, the tracks have to be merged across the
detector boundaries. A simple and fast track merging procedure

3The deconvolution can be switched on/off by a flag of the program

has been implemented for the TPC. The algorithm basically tries
to match tracks which cross the detector boundaries and whose
difference in the helix parameters are below a certain threshold.
After the tracks have been merged, a final track fit is performed
in real space.

4) Tracking Performance: The tracking performance has
been studied and compared with the offline TPC reconstruction
chain. In the evaluation the following quantities has been
defined.

• Generated good track—A track which crosses at least
40% of all padrows. In addition, it is required that half of
the innermost 10% of the clusters are correctly assigned.

• Found good track—A track for which the number of
assigned clusters is at least 40% of the total number of
padrows. In addition, the track should not have more than
10% wrongly assigned clusters.

• Found fake track—A track which has sufficient amount
of clusters assigned, but more than 10% wrongly assigned
clusters.

The tracking efficiency is the ratio of the number of found
good tracks to the number of generated good tracks. For com-
parison, the identical definitions have been used both for offline
and HLT.

Fig. 2 shows the comparison of the integral efficiency of the
HLT and offline reconstruction chains for different charged par-
ticle multiplicities for a magnetic field of 0.4 T. We see that
up to of 2000 the HLT efficiency is more than 90%, but
for higher multiplicities the HLT code becomes too inefficient to
be used for physics evaluation. In this regime other approaches
have to be applied.

5) Timing Performance: The TPC analysis in HLT is di-
vided into a hierarchy of processing steps from cluster finding,
track finding, track merging, to track fitting.

Fig. 3 shows the foreseen processing hierarchy for the se-
quential approach. Cluster finding is done in parallel on each
front-end processor (FEP), whereas track finding and track fit-
ting is done sequentially on the sector level processors. The
final TPC tracks are obtained on the event processors, where
the tracks are being merged across the sector boundaries and a
final track fit is performed (compare to Fig. 1).

Fig. 4 shows the required computing time measured on a stan-
dard reference PC4 corresponding to the different processing
steps for different particle multiplicities. The error bars denote
the standard deviation of processing time for the given event
ensemble. For particle multiplicity of , about
24 s are required to process a complete event, or 4800 CPUs are
required to date for the TPC alone at an event rate of 200 Hz.5

Table I compares the CPU time needed to reconstruct a TPC
event of for HLT and offline. In both cases,
loading the data into memory was not included in the mea-
surements,6 in order to purely compare the two algorithms. For
the overall performance of the HLT system, however, other fac-
tors, such as the transparent publisher–subscriber interface and

4800 MHz Twin Pentium III, ServerWorks Chipset, 256 kB L3 cache
5The estimate ignores any communication and synchronization overhead in

order to operate the HLT system.
6For offline, in addition 28 seconds are needed for data loading.
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Fig. 2. Integral tracking efficiency for HLT online and ALIROOT offline reconstruction as a function of different particle multiplicities for B = 0.4 T.

Fig. 3. HLT processing hierarchy for one TPC sector (= six subsectors).

network latencies, become more important to allow an overall
throughput with the expected rates.

B. Iterative Tracking Approach

For large particle multiplicities, clusters in the TPC start
to overlap, and deconvolution becomes necessary in order to
achieve the desired tracking efficiencies. The cluster shape is
highly dependent on the track parameters, and in particular
on the track crossing angles with the padrow and drift time.
In order to properly deconvolute the overlapping clusters,
knowledge of the track parameters that produced the clusters
are necessary. For that purpose, the Hough transform is suited,
as it can be applied directly on the raw ADC data thus providing
an estimate of the track parameters. Once the track parameters
are known, the clusters can be fit to the known shape, and the
cluster centroid can be correctly reconstructed. The cluster

deconvolution is geometrically local, and thus trivially parallel,
and can be performed in parallel on the raw data.

1) Hough Transform: The Hough transform is a standard
tool in image analysis that allows recognition of global pat-
terns in an image space by recognition of local patterns (ide-
ally a point) in a transformed parameter space. The basic idea is
to find curves that can be parametrized in a suitable parameter
space. In its original form, one determines a curve in param-
eter space for a signal corresponding to all possible tracks with
a given parametric form to which it could possibly belong [8].
All such curves belonging to the different signals are drawn in
parameter space. That space is then discretized and entries are
stored in a histogram. If the peaks in the histogram exceed a
given threshold, the corresponding parameters are found.

As previously mentioned, in ALICE the local track model
is a helix. In order to simplify the transformation, the detector
is divided into subvolumes in pseudo-rapidity. If one restricts
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Fig. 4. Computing times measured on an P3 800 MHz dual processor for different TPC occupancies and resolved with respect to the different processing steps.

TABLE I
INTEGRAL COMPUTING TIME COMPARISON PERFORMANCE

the analysis to tracks originating from the vertex, the circular
track in the -volume is characterized by two parameters: the
emission angle with the beam axis and the curvature . The
transformation is performed from -space to -space
using the following equations:

(2)

Each ADC value above a certain threshold transforms into
a sinusoidal line extending over the whole -range of the pa-
rameter space. All the corresponding bins in the histogram are
incremented with the corresponding ADC value. The superpo-
sition of these point transformations produces a maximum at the
circle parameters of the track. The track recognition is now done
by searching for local maxima in the parameter space.

Fig. 5 shows the tracking efficiency for the Hough transform
applied on a full multiplicity event and a magnetic field of 0.2 T.
An overall efficiency above 90% was achieved. The tracking ef-
ficiency was taken as the number of verified track candidates
divided with the number of generated tracks within the TPC
acceptance. The list of verified track candidates was obtained
by taking the list of found local maxima and laying a road in
the raw data corresponding to the track parameters of the peak.
If enough clusters were found along the road, the track can-
didate was considered a track, if not the track candidate was
disregarded.

However, one of the problems encountered with the Hough
transform algorithm is the number of fake tracks coming from
spurious peaks in the parameter space. Before the tracks are ver-
ified by looking into the raw data, the number of fake tracks is
currently above 100%. This problem has to be solved in order
for the tracks found by the Hough transform to be used as an ef-
ficient input for the cluster fitting and deconvoluting procedure.7

2) Timing Performance: Fig. 6 shows a timing measure-
ment of the Hough based algorithm for different particle
multiplicities. The Hough transformation is computed in
parallel locally on each receiving node, whereas the other
steps (histogram adding, maxima finding, and merging tracks
across -slices) are done sequentially on the sector level. The
histograms from the different subsectors are added in order
to increase the signal-to-noise ratio of the peaks. For particle
multiplicities of , the four steps require about
700 s per event corresponding to 140 000 CPUs for a 200 Hz
event processing rate. It should be noted that the algorithm was
already optimized but some additional optimizations are still
believed to be possible. However, present studies indicate that
one should not expect to gain of more than a factor of 2 without
using hardware specifics of a given processor architecture.

The advantage of the Hough transform is that it has a
very high degree of locality and parallelism, allowing for
the efficient use of FPGA coprocessors. Given the hierarchy
of the TPC data analysis, it is obvious that both the Hough
transformation and the cluster deconvolution can be performed
in the receiver nodes. The Hough transformation is a particular
input/output (I/O)-bound as it creates large histograms that have
to be searched for maxima, which scales poorly with modern
processor architectures and is ideally suited for FPGA copro-
cessors. Currently, different ways of implementing the above
outlined Hough transform in hardware are being investigated.

7That is also the reason why the efficiency does not drop for very low p

tracks like the offline tracker in Fig. 7. Strictly speaking, the efficiency shown
in Fig. 5 merely represents the quality of the track candidates after the fakes
have been removed.
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Fig. 5. Tracking efficiency for the Hough transform on a high occupancy event. The overall efficiency is above 90%.

Fig. 6. Computation time measured on an 800 MHz processor for different TPC occupancies and resolved with respect to the different processing steps for the
Hough transform approach.

III. DATA MODELING AND DATA COMPRESSION

One of the main goals of the HLT is to compress data effi-
ciently with a minimal loss of physics information.

In general, two modes of data compression can be considered.

• Binary lossless data compression, allowing bit-by-bit re-
construction of the original data set.

• Binary lossy data compression, not allowing bit-by-bit
reconstruction of the original data, while retaining, how-
ever, all relevant physical information.

Methods such as run-length encoding (RLE), Huffman, and
LZW are considered lossless compressions, while thresholding
and hit finding operations are considered lossy techniques that
could lead to a loss of small clusters or tail of clusters. It should
be noted that data compression techniques in this context should
be considered lossless from a physics point of view. Many of the

state-of-the-art compression techniques were studied on simu-
lated TPC data and presented in detail in [9]. They all result in
compression factors of close to 2. However, the most effective
data compression can be done by cluster and track modeling, as
will be outlined in the following.

A. Cluster and Track Modeling

From a data compression point of the view, the aim of the
track finding is not to extract physics information, but to build
a data model, which will be used to collect clusters and to code
cluster information efficiently. Therefore, the pattern recog-
nition algorithms are optimized differently, or even different
methods can be used compared to the normal tracking.

The tracking analysis comprises of two main steps: cluster
reconstruction and track finding. Depending on the occupancy,
the space points can be determined by a simple cluster finding
or require more complex cluster deconvolution functionality in
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Fig. 7. Comparison of the tracking efficiency of the offline reconstruction chain before and after data compression. A total loss of efficiency of� 1%was observed.

areas of high occupancy (see Sections II-A and -B). In the latter
case, a minimum track model may be required in order to prop-
erly decode the digitized charge clouds into their correct space
points.

In any case, the analysis process is two-fold: clustering and
tracking. Optionally, the first step can be performed online while
leaving the tracking to offline, and thereby only recording the
space points. Given the high resolution of space points on one
hand, and the size of the chamber on the other, would result in
rather large encoding sizes for these clusters. However, taking a
preliminary zeroth order tracking into account, the space points
can be encoded with respect to their distance to such track-
lets, leaving only small numbers which can be encoded very
efficiently. The quality of the tracklet itself, with the helix pa-
rameters that would also be recorded, is only secondary as the
tracking is repeated offline with the original cluster positions.

B. Data Compression Scheme

The input to the compression algorithm is a lists of tracks
and their corresponding clusters. For every assigned cluster, the
cluster centroid deviation from the track model is calculated
in both pad and time direction. Its size is quantized with re-
spect to the given detector resolution,8 and represented by a
fixed number of bits. In addition, the total charge of the cluster
is stored. Since the cluster shape itself can be parametrized as
a function of track parameters and detector specific parame-
ters, the cluster widths in pad and time are not stored for every
cluster. During the decompression step, the cluster centroids are
restored, and the cluster shape is calculated based on the track
parameters. In Tables II and III, the track and cluster parameters
are listed together with their respective size being used in the
compression. Instead of assigning only found clusters and their
padrow numbers to a track, we store for every padrow a cluster

8The quantization steps have been set to 0.5 mm for the pad direction and
0.8 mm for the time direction, which is compatible with the intrinsic detector
resolution.

TABLE II
TRACK PARAMETERS AND THEIR RESPECTIVE SIZE

TABLE III
CLUSTER PARAMETERS AND THEIR RESPECTIVE SIZE

structure with a minimum size of one bit, indicating whether the
cluster is “present” or not.

The compression scheme has been applied to a simulated
PbPb event with a multiplicity of . The input
tracks used for the compression are tracks reconstructed with
the sequential tracking approach. The remaining clusters, or the
clusters which were not assigned to any tracks during the track
finding step, were disregarded and not stored for further anal-
ysis.9 A relative size of 11% for the compressed data with re-
spect to the original set is obtained.

In order to evaluate the impact on the physics observables, the
compressed data is decompressed and the restored cluster are
processed by the offline reconstruction chain. In Fig. 7, the of-
fline tracking efficiency before and after applying the compres-
sion is compared as a function of . A total loss of about 2%
in efficiency is observed. Fig. 8 shows for the same events the

9The remaining clusters mainly originate from very low p tracks such as
�-electrons, which could not be reconstructed by the track finder. Their uncom-
pressed raw data amounts to a relative size of about 20%.
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Fig. 8. Comparison of the p resolution of the offline reconstruction chain before and after data compression.

resolution as a function of before and after the compres-
sion is applied. The observed improvement of the resolution
is connected to the method by which the errors of the cluster
are calculated. For the case of the standard offline reconstruc-
tion chain, the errors are calculated using the cluster information
itself, whereas for the compression scheme they are calculated
using the track parameters.

Keeping the potential gain of statistics by the increased event
rate written to tape in mind, one has to weight the tradeoff
between the impact on the physics observables and the cost for
the data storage. For occupancy events of more than 20% (corre-
sponding to ), clusters start to overlap and have
to be properly deconvoluted in order to effectively compress the
data.

In this scenario, the Hough transform or another effective
iterative tracking procedure would serve as an input for the
cluster fitting/deconvolution algorithm. With high online
tracking performance, track and cluster modeling, together
with noise removal, can reduce the data size by a factor of 10.

IV. CONCLUSION

Focusing on the TPC, the sequential approach, which consists
of cluster finding followed by track finding, is applicable for pp
and low multiplicity PbPb data up to of 2000 to 3000
with more than 90% efficiency. The timing results indicate that

the desired frequency of 1 kHz for pp and 200 Hz for PbPb can
be achieved. For higher multiplicities of the
iterative approach using the circle Hough transform for primary
track candidate finding shows promising efficiencies of around
90% but with high computational costs.

By compressing the data using data modeling techniques, the
results for low multiplicity events show that one can compress
data of up to 10% relative to the original data sizes with a small
loss of the tracking efficiency of about 2%, but slightly improved

resolution.
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