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Abstract

The supersymmetric CP problem is studied within superstring-motivated exten-
sions of the MSSM with an additional U(1)′ gauge symmetry broken at the TeV scale.
This class of models offers an attractive solution to the µ problem of the MSSM, in
which U(1)′ gauge invariance forbids the bare µ term, but an effective µ parameter
is generated by the vacuum expectation value of a Standard Model singlet S which
has superpotential coupling of the form SHuHd to the electroweak Higgs doublets.
The effective µ parameter is thus dynamically determined as a function of the soft
supersymmetry breaking parameters, and can be complex if the soft parameters have
nontrivial CP-violating phases. We examine the phenomenological constraints on the
reparameterization invariant phase combinations within this framework, and find that
the supersymmetric CP problem can be greatly alleviated in models in which the
phase of the SU(2) gaugino mass parameter is aligned with the soft trilinear scalar
mass parameter associated with the SHuHd coupling. We also study how the phases
filter into the Higgs sector, and find that while the Higgs sector conserves CP at the
renormalizable level to all orders of perturbation theory, CP violation can enter at the
nonrenormalizable level at one-loop order. In the majority of the parameter space,
the lightest Higgs boson remains essentially CP even but the heavier Higgs bosons can
exhibit large CP-violating mixings, similar to the CP-violating MSSM with large µ
parameter.



1 Introduction

While phenomenological models with low energy supersymmetry (SUSY) are arguably the
best candidates for physics beyond the Standard Model (SM), they typically include a large
number of parameters associated with the soft supersymmetry breaking sector. For example,
the minimal supersymmetric standard model (MSSM), which has two Higgs doublets and
conserved R-parity, contains 105 new parameters [1], including the bilinear Higgs superpo-
tential parameter µ and the soft SUSY breaking parameters (this counting does not include
the gravitino mass and coupling). The parameter count generically increases if such SUSY
models are extended beyond the minimal gauge structure and particle content of the MSSM
(unless symmetry relations exist in the theory which relate subsets of parameters). Many
of these new parameters are phases, which both provide new sources of CP violation and
modify the amplitudes for CP-conserving processes. Even if certain sectors of the theory
exhibit no CP violation at tree level (e.g. if the relevant phases can be eliminated by global
phase rotations), the phases can leak into such sectors of the theory at the loop level and
have an impact on collider phenomenology and cosmology.

In contrast to the SM, in which the only source of CP violation is present in the CKM
matrix and thus is intimately tied to flavor physics, CP-violating phases within SUSY mod-
els can occur in both flavor-conserving and flavor-changing couplings. The phases of the
flavor-conserving couplings (which have no analogue in the SM) are of particular interest be-
cause they can have significant phenomenological implications which can be studied without
knowledge of the origin of intergenerational mixing. In the MSSM, these phases are given
by reparameterization invariant combinations of the phases of the gaugino mass parameters
Ma (a = 1, 2, 3), the trilinear couplings Af , the µ parameter, and the Higgs bilinear coupling
b ≡ µB. However, not all of these phases are physical; after utilizing the U(1)PQ and U(1)R

global symmetries of the MSSM, the reparameterization invariant phase combinations are
θf = φµ + φAf

− φb and θa = φµ + φMa − φb (in self-evident notation).
Such phases have traditionally been assumed to be small due to what is known as the

supersymmetric CP problem: the experimental upper limits on the electric dipole moments
(EDMs) of the electron, neutron, and certain atoms individually constrain the phases to
be less than O(10−2) (for sparticle masses consistent with naturalness) [2, 3, 4]. However,
recent studies have shown that EDM bounds can be satisfied without requiring all repa-
rameterization invariant phase combinations to be small, if either (i) certain cancellations
exist between different EDM contributions [5, 6, 7, 8, 9], or (iii) the sparticles of the first
and second families have multi-TeV masses [10].1 Even within each of these scenarios, the
particularly strong constraints arising from the atomic EDMs [13] lead to a general upper
bound of <∼ O(10−3) on the reparameterization invariant phase present in the chargino sec-
tor (θ2 in our notation), while the other phases are comparatively unconstrained [8]. These
constraints will be discussed in detail later in the paper; for now, it is worth noting that

1The EDM bounds are more difficult to satisfy in both of these scenarios when tan β (the ratio of
electroweak Higgs VEVs) is large. Not only are cancellations in the one-loop EDMs more difficult to achieve,
but certain two-loop contributions are then enhanced [11, 12] which do not decouple when the sfermions are
heavy. In part for this reason, we will restrict our attention in this paper to the small tanβ regime.
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this “CP hierarchy problem” is an intriguing issue to be addressed within models of the soft
parameters which include CP violation.2

Of course, if the reparameterization invariant phases are sizeable, they can have important
phenomenological consequences. Within the MSSM, one of the examples in which these
phases can have a significant impact is the Higgs sector. As is well known, the MSSM Higgs
sector conserves CP at tree level. However, radiative corrections involving the SM fields and
their superpartners (with the dominant effects typically due to top and stop loops) have
a substantial impact on Higgs masses and mixings. For example, the one-loop radiative
corrections substantially elevate the tree-level theoretical upper bound of MZ on the mass
of the lightest Higgs boson [16]; these results have been improved by utilizing complete
one-loop on-shell renormalization[17], renormalization group methods [18], diagrammatic
methods with leading order QCD corrections [19], two-loop on-shell renormalization [20],
and complete two-loop effective potential [21]. Indeed, if the radiative corrections include a
nontrivial dependence on phases, the Higgs potential violates CP explicitly at one-loop. The
Higgs mass eigenstates then no longer have definite CP properties, which leads to important
implications for Higgs production and decay [22, 23, 24, 25].

The MSSM offers a minimal framework for stabilizing the Higgs sector against quadratic
divergences. However, it is well known that the MSSM has a hierarchy problem with respect
to the scale of the superpotential µ parameter [26], which has a natural scale of O(MGUT ),
and the electroweak scale. An elegant framework in which to address this “µ problem” is to
generate the µ parameter via the the vacuum expectation value (VEV) of a SM singlet S.
One simple possibility3 [28] is to invoke an additional nonanomalous U(1)′ gauge symmetry
broken at the TeV scale, as expected in many string models. For suitable U(1)′ charges, the
bare µ parameter is forbidden but the operator hsSHu ·Hd is allowed, such that an effective µ
term is generated after S develops a VEV of order the electroweak/TeV scale (assuming the
Yukawa coupling hs ∼ O(1), as is well-motivated within semirealistic superstring models).
This framework is of particular interest because such extra U(1) groups are often present in
plausible extensions of the MSSM, and in fact are ubiquitous within many classes of four-
dimensional superstring models. Indeed, additional nonanomalous U(1) gauge groups are
present in virtually all known 4D string models with semirealistic features, such as gauge
structure which includes SU(3)c×SU(2)L×U(1)Y (or a viable GUT extension) and particle
content which includes the MSSM fields.4

2However, there are unavoidable theoretical uncertainties involved in the determination of the hadronic
EDMs and the atomic EDMs (see e.g. [14, 15] for discussions). These uncertainties are particularly problem-
atic for the mercury EDM, which yields the strongest constraints on the SUSY phases. For this reason, there
are disagreements in the literature over how to include this bound. Here we take a conservative approach
by including the Hg EDM constraint.

3The µ parameter can also be generated in models with no additional gauge groups, i.e. the next-to-
minimal supersymmetric standard model (NMSSM). However, NMSSM models generically possess discrete
vacua and the tensions of the walls separating them are too large to be cosmologically admissable [27].

4For example, many examples of such semirealistic models have been constructed within perturbative
heterotic string theory (see e.g. [29] for an overview). An interesting class of constructions is the set of
free fermionic models [30, 31, 32], in which a number of extra U(1)’s are always present at the string scale.
Whether or not all of these U(1)s persist to the TeV scale depends on the details of the vacuum restabilization
procedure. Although there are cases in which only the MSSM gauge structure remains at low energy [33],
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Within this class of models, the electroweak and U(1)′ symmetry breaking is driven by
the soft SUSY breaking parameters, and hence the Z ′ mass is expected to be of order a few
TeV or less. Such a Z ′ should be easily observable at either present or forthcoming colliders.
Indeed, the nonobservation to date of a Z ′ puts interesting but stringent limits on the Z ′

mass and mixing with the ordinary Z both from direct searches at the Tevatron [38] and
indirect tests from precision electroweak measurements [39]. Although limits depend on the
details of the Z ′ couplings, typically MZ′ > 500 − 800 GeV and the Z − Z ′ mixing angle
αZ−Z′ <∼ O(10−3).5 These models have been analyzed at tree level in [41, 42, 43], where it
was found that there are corners of parameter space in which an acceptable Z−Z ′ hierarchy
can be achieved. Further studies of a different class of string-motivated U(1)′ models can be
found in [44].

As the phase of the µ parameter filters into the amplitudes for many physical observables
in the MSSM (and plays an important role in the Higgs sector at one-loop), it is worthwhile
to analyze models which solve the µ problem in the presence of explicit CP violation. In
this paper, we thus study the supersymmetric CP problem in U(1)′ models, focusing on the
radiative corrections to the Higgs sector of the U(1)′ model of [41] in the case that the soft
supersymmetry breaking parameters have general CP-violating phases (radiative corrections
in the CP-conserving case has been studied in [45]). We begin by classifying the reparame-
terization invariant phase combinations and comment on the phenomenological constraints
on these phases from EDM bounds. We then turn to the Higgs sector, which conserves CP
at tree level, but phases enter the Higgs potential through the stop mass-squared matrix
at one-loop (just as in the MSSM). The VEV’s of the electroweak Higgs doublets Hu,d and
singlet S are then determined by minimizing the loop-corrected Higgs potential. Within
this framework, an effective µ parameter of the correct magnitude is generated which also
has a phase governed by the phases of the soft SUSY breaking parameters. We study the
pattern of Higgs masses and mixings including the EDM and Z ′ constraints, and discuss the
phenomenological implications for Higgs searches.

2 The SUSY CP Problem in U(1)′ Models

We study the class of U(1)′ models of [41], in which the gauge group is extended to

G = SU(3)c × SU(2)L × U(1)Y ×U(1)′, (1)

with gauge couplings g3, g2, gY , gY ′ , respectively. The matter content includes the MSSM
superfields and a SM singlet S, which are all generically assumed to be charged under the

typically one or more extra U(1)s persists to the electroweak scale [34, 35]. Additional U(1)s also are generic
in supersymmetric braneworld models derived from Type II string orientifolds [36] (due at least in part to
the U(N) gauge groups associated with a stacks of D branes). Phenomenological analyses also indicate that
typically extra U(1)s are present in the low energy theory and broken at the electroweak/TeV scale [37].

5A potentially more stringent limit on the Z ′ mass arises from cosmology if the U(1)′ gauge symmetry
forbids the standard implementation of the seesaw mechanism for neutrino masses. In such scenarios, the
right-handed neutrinos may be light, and BBN constraints then require model-dependent limits that in some
cases are as strong as MZ′ >∼ 4 TeV [40].
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additional U(1)′ gauge symmetry. Explicitly, the particle content is: L̂i ∼ (1, 2,−1/2, QL),
Êc

i ∼ (1, 1, 1, QE), Q̂i ∼ (3, 2, 1/6, QQ), Û c
i ∼ (3̄, 1,−2/3, QU), D̂c

i ∼ (3̄, 1, 1/3, QD), Ĥd ∼
(1, 2,−1/2, Qd), Ĥu ∼ (1, 2, 1/2, Qu), Ŝ ∼ (1, 1, 0, QS), in which i is the family index.6

The superpotential includes a Yukawa coupling of the two electroweak Higgs doublets
Hu,d to the singlet S, as well as a top quark Yukawa coupling:

W = hsŜĤu · Ĥd + htÛ
c
3Q̂3 · Ĥu. (2)

Gauge invariance of W under U(1)′ requires that Qu +Qd +QS = 0 and QQ3 +QU3 +Qu = 0.
This choice of charges not only forbids the “bare” µ parameter but also a Kähler potential
coupling of the form HuHd + h.c. required for the Giudice-Masiero mechanism [47] (the
Kähler potential is otherwise assumed to be of canonical form).7

The form of (2) is motivated by string models in which a given Higgs doublet only has O(1)
Yukawa couplings to a single (third) family. We will consider the small 〈Hu〉/〈Hd〉 ≡ tanβ
regime only8 such that the Yukawa couplings of the b and τ can be safely neglected. The
origin of the Yukawa couplings of the first and second generations of quarks and leptons
is not addressed. As we are primarily interested in the third family, we shall suppress the
family index in what follows.

The soft supersymmetry breaking parameters include gaugino masses Ma (a = 1, 1′, 2, 3),
trilinear couplings As and At, and soft mass-squared parameters m2

α:

−Lsoft = (
∑
a

Maλaλa + AshsSHu ·Hd + AthtŨ
cQ̃ ·Hu + h.c.) + m2

u|Hu|2 + m2
d|Hd|2

+ m2
s|S|2 + M2

Q̃
|Q̃|2 + M2

Ũ
|Ũ |2 + M2

D̃
|D̃|2 + M2

Ẽ
|Ẽ|2 + M2

L̃
|L̃|2. (3)

These soft SUSY breaking parameters are generically nonuniversal at low energies. We do
not address the origin of these low energy parameters via RG evolution from high energy
boundary conditions in this paper.

The gaugino masses Ma and soft trilinear couplings As,t of (3) can be complex; if so, they
can provide sources of CP violation (without loss of generality, the Yukawa couplings hs,t can
be assumed to be real). However, not all of these phases are physical, just as the case in the
MSSM. Let us first consider the MSSM. The reparameterization invariant combinations of
phases in the MSSM are easily determined by forming invariants with respect to the global
U(1)PQ and U(1)R symmetries present in the limit that the soft breaking parameters and
the µ term are set to zero [49]; for reference, the U(1)R,PQ charge assignments are presented

6Note that if the U(1)′ charges are family nonuniversal they provide a tree-level source of FCNC. Phe-
nomenological bounds thus dictate that the charges of the first and second families should be identical to
avoid overproduction of FCNC without fine-tuning [46].

7Other than these constraints, we prefer to leave the U(1)′ charges unspecified because our aim is not
to construct a specific model. In an explicit model there will be additional constraints on the U(1)′ charges
(e.g from anomaly cancellation). We also do not consider kinetic mixing in the analysis [48]. However, even
if kinetic mixing is absent at tree level will be generated through 1-loop RG running if TrQY Q1′ 6= 0 [48].

8Here low values of tan β such as tanβ = 1 are allowed (this region is excluded in the MSSM). The reason
is that the Higgs bosons are generically heavier in U(1)′ models (as in the NMSSM and other models with
extended Higgs sectors), and even at tree level the lightest Higgs boson can easily escape LEP bounds.
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Field Q̂ Û c D̂c Ĥu Ĥd λa Ma µ b Af m2
α

U(1)R 1 1 1 0 0 1 −2 2 0 −2 0
U(1)PQ 0 0 0 1 1 0 0 −2 −2 0 0

Table 1: The U(1)R,PQ charge assignments for the MSSM fields and spurions.

Field Q̂ Û c D̂c Ĥu Ĥd Ŝ λa Ma Af m2
α

U(1)R 1 1 1 0 0 2 1 -2 - 2 0

Table 2: The U(1)R charge assignments for the fields and spurions in the U(1)′ framework. Note that Ŝ
(whose VEV induces an effective µ parameter) has nonzero R charge.

in Table 2. A convenient basis of the resulting reparameterization invariant phases thus is
θf = φµ+φAf

−φb and θa = φµ+φMa−φb, which enter the mass matrices of the sfermions and
the gauginos/Higgsinos, respectively. An analysis of the MSSM tree level Higgs sector also
suggests it is useful to exploit U(1)PQ to set φb = 0 (φb is then dropped from the invariants
above), in which case the Higgs VEVs are real.

Performing the same exercise in the U(1)′ framework, one immediately notices that the
U(1)PQ symmetry of the MSSM is embedded within the U(1)′ gauge symmetry. However, a
nontrivial U(1)R symmetry remains; the U(1)R charges of the superfields and the associated
spurion charges of the soft parameters are presented in Table 2. The reparameterization
invariant phase combinations are therefore θf f ′ = φAf

− φAf ′ 6=f
, θa f = φMa − φAf

, and
θa b = φMa − φMb6=a

, of which only two are linearly independent (e.g. φa b = φa f − φb f). We
will see that (in analogy to the MSSM) the tree-level Higgs sector suggests it is convenient to
measure all phases with respect to the phase of As. (In fact, one can go further and exploit
the U(1)R symmetry to set φAs = 0, although we prefer not to do that in this paper.) A
basis of reparameterization invariant phase combinations can then be chosen as

θf s = φAf
− φAs

θa s = φMa − φAs. (4)

To see this more explicitly and to lay the foundation for our analysis of the Higgs sector
including one-loop radiative corrections, let us now review the tree-level Higgs potential
analyzed in [41]. Gauge symmetry breaking is driven by the VEVs of the electroweak Higgs
doublets Hu, Hd

Hu =

(
H+

u

H0
u

)
, Hd =

(
H0

d

H−
d

)
, (5)

and the singlet S. The tree level Higgs potential is a sum of F terms, D terms, and soft
supersymmetry breaking terms:

Vtree = VF + VD + Vsoft, (6)
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in which

VF = |hs|2
[
|Hu ·Hd|2 + |S|2(|Hu|2 + |Hd|2)

]
, (7)

VD =
G2

8

(
|Hu|2 − |Hd|2

)2
+

g2
2

2
(|Hu|2|Hd|2 − |Hu ·Hd|2)

+
g2

Y ′

2

(
Qu|Hu|2 + Qd|Hd|2 + QS|S|2

)2
, (8)

Vsoft = m2
u|Hu|2 + m2

d|Hd|2 + m2
s|S|2 + (AshsSHu ·Hd + h.c.). (9)

where G2 = g2
2 + g2

Y and gY =
√

3/5g1, g1 is the GUT normalized hypercharge coupling.

At the minimum of the potential, the Higgs fields are expanded9 as follows:

〈Hu〉 =
1√
2

( √
2H+

u

vu + φu + iϕu

)
, 〈Hd〉 =

1√
2

(
vd + φd + iϕd√

2H−
d

)

〈S〉 =
1√
2
eiθ (vs + φs + iϕs) , (10)

in which v2 ≡ v2
u + v2

d = (246 GeV)2. In the above, a phase shift eiθ has been attached to
〈S〉. Since gauge invariance dictates that only the phase of the combination SHu ·Hd enters
the potential, we can assume that the VEVs of Hu,d are real and attach a phase only to S
without loss of generality (this choice is also consistent with our assignment of U(1)R charges
in Table 2). The effective µ parameter is generated by the singlet VEV 〈S〉:

µeff ≡ hsvs√
2

eiθ. (11)

The only complex parameter which enters the Higgs potential at tree level is As. However,
the global phases of the Higgs fields (more precisely, of the combination SHu ·Hd) can always
be chosen to absorb the phase φAs of As by performing a U(1)R rotation on the fields, such
that As and the VEV’s can all be taken to be real without loss of generality [41]. To state
this another way, the minimization conditions with respect to the CP odd directions ϕ1,2,s

all lead to the condition
sin(θ + φAs) = 0, (12)

such that θ = −φAs at tree level. With this condition, the Higgs sector is CP conserving.
The Higgs mass eigenstates thus have definite CP quantum numbers, with three CP even
Higgs bosons Hi=1,2,3 and one CP odd Higgs boson A0, as well as a charged Higgs pair
H±. Expressions for their masses at tree level and a discussion of the associated Higgs
phenomenology can be found in [41].

9As discussed in [41], gauge rotations can be used to set 〈H+
u 〉 = 0. However, 〈H−

d 〉 = 0 is not automatic
and imposes constraints on the parameter space of the model. Indeed, 〈H−

d 〉 = 0 implies that the physical
charged Higgs is nontachyonic (M2

H± > 0).
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Although the Higgs sector conserves CP at tree level whether or not the soft SUSY
breaking parameters are complex, this is generically not true for other sectors of the theory
and care must be taken in the phenomenological analysis (e.g. for the EDM bounds) if there
are nontrivial CP-violating phases in the soft terms even if the Higgs sector is only analyzed
at tree level. Clearly, this is due to the fact that the phases which enter the mass matrices of
the sfermion and the gaugino/higgsino sectors involve the phase of the singlet VEV θ (i.e.,
the phase of the effective µ parameter µeff) as well as the phases of the A terms and the
gaugino masses. For example, the reparameterization invariant phase combination which
enters the chargino mass matrix within this class of U(1)′ models is

θχ̃± = θ + φM2 = φM2 − φAs + . . . = θ2 s + . . . , (13)

in which the terms represented by (+ . . .) are higher-loop contributions. As previously men-
tioned, this phase is strongly constrained by EDM experimental bounds (although the precise
constraints can depend in detail on the other parameters of the model). More generally, the
statement of (flavor-independent) SUSY CP violation within U(1)′ models is that if any
of the phases θf s and θa s defined in (4) are nonzero, they can lead to CP-violating effects
which may be in conflict with experiment and must be checked. This is in direct analogy
to the statement of flavor-independent SUSY CP violation in the MSSM. However, as µ is
dynamically generated within U(1)′ models, its phase φµ is now a function of the phases of
the other soft breaking parameters rather than an independent quantity.

Returning now to the question of CP violation in the Higgs sector, (12) suggests that it
is natural to consider the combination of phases

θ ≡ θ + φAs (14)

as the parameter which governs CP violation in the Higgs sector. Note that θ is a reparame-
terization invariant quantity, while θ is not (θ = θ in the basis in which φAs = 0). While θ = 0
at tree level, it acquires a nonzero value at one-loop if the sfermion and gaugino/higgsino
mass matrices have nontrivial phases. This calculation is outlined in the next section.

3 Higgs Sector CP Violation

Previously we discussed the SUSY CP problem within U(1)′ models, and reviewed the tree
level Higgs sector (the patterns of gauge symmetry breaking which led to an acceptable
Z − Z ′ hierarchy were analyzed at tree level in [41]). In what follows, we will compute the
one-loop radiative corrections to the Higgs sector of this class of Z ′ models within a general
framework including nontrivial CP violation (radiative corrections in the CP-conserving case
were previously presented in [45]).

3.1 Radiative Corrections to the Higgs Potential

The effective potential approach provides an elegant way of determining the true vacuum
state of a spontaneously broken gauge theory. The potential has the form

V = Vtree + ∆V + . . . , (15)
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where Vtree is defined in (6), and the one-loop contribution ∆V has the Coleman-Weinberg
form

∆V =
1

64π2

{
StrM4(Hu, Hd, S)

(
ln
M2(Hu, Hd, S)

Q2
− 3

2

)}
. (16)

in the mass-independent renormalization scheme DR.10 In the above, Str ≡ ∑
J(−1)2J+1(2J+

1) is the usual supertrace, Q is the renormalization scale, and M represents the Higgs field-
dependent mass matrices of the particles and sparticles of the theory.11

Here we will include only the dominant terms due to top and scalar top quark loops:

∆V =
6

64π2

 ∑
k=1,2

(
m2

t̃k

)2

ln
m2

t̃k

Q2

− 3

2

− 2
(
m2

t

)2
[
ln

(
m2

t

Q2

)
− 3

2

] (17)

in which the masses depend explicitly on the Higgs field components (note that ∆V naturally
vanishes in the limit of exact SUSY). The top mass-squared is given by m2

t = h2
t |Hu|2, and

the stop masses-squared are obtained by diagonalizing the mass-squared matrix

M̃2 =

(
M2

LL M2
LR

M2
LR

†
M2

RR

)
(18)

via the unitary matrix St as S†
t M̃

2St = diag
(
m2

t̃1
, m2

t̃2

)
. The entries of M̃2 are given by

M2
LL = M2

Q̃
+ h2

t |Hu|2 − 1

4

(
g2
2 −

g2
Y

3

)(
|Hu|2 − |Hd|2

)
+ g2

Y ′QQ

(
Qu|Hu|2 + Qd|Hd|2 + Qs|S|2

)
(19)

M2
RR = M2

Ũ
+ h2

t |Hu|2 − 1

3
g2

Y

(
|Hu|2 − |Hd|2

)
+ g2

Y ′QU

(
Qu|Hu|2 + Qd|Hd|2 + Qs|S|2

)
(20)

M2
LR = ht

(
A∗

t H
0∗
u − hsSH0

d

)
, (21)

in which we have emphasized the fact that the LR entry depends only on the neutral compo-
nents of the Higgs fields. As the stop LR mixing can be complex, the term hthsAtSH0

uH
0
d +

h.c. present in |M2
LR|2 can provide a source of CP violation in the Higgs sector. From the

discussion of the previous section, we can infer that this source is the phase θt s ≡ φAt −φAs .

10See Martin’s paper in [21] for a detailed discussion of the regularization and renormalization scheme
dependence of the effective potential.

11While the complete effective potential is scale invariant, it is scale dependent when truncated to any finite
loop order in perturbation theory due to the renormalization of the parameters and the Higgs wavefunctions.
In the MSSM, most of the scale-dependent terms can be collected in the pseudoscalar mass, which itself can
be regarded as a free parameter of the theory. The remaining Q2-dependence arises from the D term
contributions generated by wavefunction renormalization, such that in the limit in which g2 = gY = 0
all of the scale dependence can be absorbed into the pseudoscalar mass. For the U(1)′ models, the scale
dependence can be absorbed into the pseudoscalar mass only if the D term contributions vanish and the
superpotential parameter hs = 0, because the potential also includes quartic Higgs couplings which arise
from F terms. These properties are manifest in the Higgs mass-squared matrix presented below.
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The vacuum state is characterized by the vanishing of all tadpoles and positivity of the
resulting Higgs boson masses. Recalling the expressions for the Higgs fields in (10), the
vanishing of tadpoles for V along the CP even directions φu,d,s enables the soft masses m2

u,d,s

to be expressed in terms of the other parameters of the potential:

m2
u = M2

0 cos2 β − λuv
2
u −

1

2

(
λudv

2
d + λusv

2
s

)
− 1

vu

(
∂∆V

∂φu

)
0

(22)

m2
d = M2

0 sin2 β − λdv
2
d −

1

2

(
λudv

2
u + λdsv

2
s

)
− 1

vd

(
∂∆V

∂φd

)
0

(23)

m2
s = M2

0 cot2 α− λsv
2
s −

1

2

(
λusv

2
u + λdsv

2
d

)
− 1

vs

(
∂∆V

∂φs

)
0

, (24)

in which the subscript 0 indicates that the derivatives of ∆V are to be evaluated at φi = 0
and ϕi = 0. Here the various λ coefficients represent the quartic couplings in the potential

λu,d =
1

8
G2 +

1

2
Q2

u,dg
2
Y ′ , λs =

1

2
Q2

s g2
Y ′ ,

λud = −1

4
G2 + QuQd g2

Y ′ + h2
s , λus,ds = QsQu,d g2

Y ′ + h2
s . (25)

The Higgs soft masses (22) are written in terms of two angle parameters: (i) tan β, which
measures the hierarchy of the Higgs doublet VEVs, and (ii) cot α ≡ (v sin β cos β)/vs, which
is an indication of the splitting between the U(1)′ and electroweak breaking scales. For
convenience, we have also introduced the mass parameter

M2
0 =

hs|As|vs cos θ√
2 sin β cos β

, (26)

which corresponds to the mass parameter of the CP odd Higgs boson of the MSSM after
using the definition of the effective µ parameter in (11).

While the vanishing of the tadpoles along the CP odd directions ϕu,d,s led to (12) at tree
level, once the loop corrections are included they lead to the following conditions:

M2
0 sin β cos β tan θ =

1

vd

(
∂∆V

∂ϕu

)
0

(27)

M2
0 sin β cos β tan θ =

1

vu

(
∂∆V

∂ϕd

)
0

(28)

M2
0 cotα tan θ =

1

vs

(
∂∆V

∂ϕs

)
0

, (29)

demonstrating explicitly that the phase θ = θ+φAs associated with the phase θ of the singlet
VEV is indeed a radiatively induced quantity. Indeed, the derivatives of ∆V with respect to
ϕu,d,s are nonvanishing provided that there is a nontrivial phase difference between At and
As (i.e., if θt s 6= 0). In fact, (27)–(29) all lead to the same relation for θ:

sin θ = −βht

|At|
|As| sin θt s F(Q2, m2

t̃1
, m2

t̃2
) (30)

9



in which βht = 3h2
t/(32π2) is the beta function for the top Yukawa coupling, and the loop

function

F(Q2, m2
t̃1
, m2

t̃2
) = −2 + ln

m2
t̃1
m2

t̃2

Q4

+
m2

t̃1
+ m2

t̃2

m2
t̃1
−m2

t̃2

ln

m2
t̃1

m2
t̃2

 (31)

depends explicitly on the renormalization scale. In the above, θt s = φAt + θ = φAt − φAs up
to one loop accuracy determined by (30).

3.2 The Higgs Mass Calculation

We now turn to the Higgs mass calculation at one-loop in the presence of CP violation in
the stop LR mixing. The mass-squared matrix of the Higgs scalars is

M2
ij =

(
∂2

∂Φi∂Φj

V

)
0

, (32)

subject to the minimization constraints Eqs. 22-24 and (30). In the above, Φi = (φi, ϕi).
Clearly, two linearly independent combinations of the pseudoscalar components ϕu,d,s are the
Goldstone bosons GZ and GZ′, which are eaten by the Z and Z ′ gauge bosons when they
acquire their masses. These two modes are given by

GZ = − sin βϕu + cos βϕd , GZ′ = cos β cos αϕu + sin β cos αϕd − sin αϕs, (33)

and hence the orthogonal combination

A = cos β sin αϕu + sin β sin αϕd + cos αϕs (34)

is the physical pseudoscalar Higgs boson in the CP-conserving limit. In the decoupling limit,
vs � v, sin α → 1 and cos α → 0, in which case GZ and A reduce to their MSSM expressions.
In the basis of scalars B = {φu, φd, φs, A}, the Higgs mass-squared matrix M2 takes the form

M2
uu + M2

A cos2 β M2
ud −M2

A sin β cos β M2
us −M2

A cot α cos β M2
uA sin θt s

M2
ud −M2

A sin β cos β M2
dd + M2

A sin2 β M2
ds −M2

A cotα sin β M2
dA sin θt s

M2
us −M2

A cot α cos β M2
ds −M2

A cot α sin β M2
ss + M2

A cot2 α M2
sA sin θt s

M2
uA sin θt s M2

dA sin θt s M2
sA sin θt s M2

P


, (35)

in which our notation explicitly demonstrates that all of the entries M2
iA (i = u, d, s) iden-

tically vanish in the CP-conserving limit θt s → φ0. In the above,

M2
A = M2

0

(
1 + βht

|At|
|As|

cos θt s

cos θ
F
)

, (36)

10



which depends explicitly on the renormalization scale, and

M2
P =

M2
A

sin2 α
+ 4βht

m2
t |µeff |2|At|2(
m2

t̃1
−m2

t̃2

)2

sin2 θt s

sin2 α sin2 β
G (37)

is the one-loop pseudoscalar mass in the CP-conserving limit. The loop function G is inde-
pendent of the renormalization scale and has the functional form

G
(
m2

t̃1
, m2

t̃2

)
= 2−

m2
t̃1

+ m2
t̃2

m2
t̃1
−m2

t̃2

ln

m2
t̃1

m2
t̃2

 . (38)

We now turn to the mass parameters M2
ij (i, j = u, d, s) which appear in M2. These entries

may be represented as

M2
ij = vivj

{
λij +

3

(4π)2

[(
ρim̃

2
j + m̃2

i ρj

)
m2

t̃1
+ m2

t̃2

(2− G) +

(
ρiρj + ζiζj + δidδjs

h2
th

2
s

4

)
F

+

ρiρj +
m̃2

i m̃
2
j(

m2
t̃1
−m2

t̃2

)2

G − δiuδjuh
4
t ln

{
m4

t

Q4

}]}
, (39)

in which λij = λij for i 6= j, λij = 2λi for i = j. For notational purposes we have also
introduced the dimensionless quantities

ρu = h2
t − λu , ρd = (h2

s − λud)/2 , ρs = (h2
s − λus)/2 (40)

as well as the dimensionful ones,

m̃2
u = ζuδ + h2

t |At| (|At| − |µeff | cotβ cos θt s) (41)

m̃2
d = ζdδ + h2

t |µeff | (|µeff | − |At| tanβ cos θt s) (42)

m̃2
s = ζsδ +

v2
d

v2
s

h2
t |µeff | (|µeff | − |At| tanβ cos θt s) , (43)

with δ = M2
Q̃
−M2

Ũ
+ ζuv

2
u + ζdv

2
d + ζsv

2
s . The new dimensionless couplings appearing here

are pure D term contributions

ζu = −1

8
(g2

2 −
5

3
g2

Y ) +
1

2
(QQ −QU)Qug

2
Y ′ (44)

ζd =
1

8
(g2

2 −
5

3
g2

Y ) +
1

2
(QQ −QU)Qdg

2
Y ′ (45)

ζs = −(ζu + ζd). (46)

Finally, the scalar-pseudoscalar mixing entries M2
iA (i = u, d, s), which exist only if there are

sources of CP violation in the Lagrangian (as has been made explicit in M2 by factoring out
sin θt s), are given by

M2
iA = 2βht

vvi

sin α

|µeff ||At|
m2

t̃1
−m2

t̃2

2ρi

m2
t̃1
−m2

t̃2

m2
t̃1

+ m2
t̃2

+

 m̃2
i

m2
t̃1
−m2

t̃2

− ρi

m2
t̃1
−m2

t̃2

m2
t̃1

+ m2
t̃2

G
 , (47)

11



and are scale independent. These results agree with the tree level computations of [41].
After identifying (11) with the |µeff | parameter of the MSSM, the doublet sector of the
mass-squared matrix agrees with that of the MSSM [22]. Finally, the results also agree with
those of [45] in the CP-conserving limit (sin θt s = 0).

As previously stated, there are three CP even and one CP odd Higgs boson in the CP-
conserving limit. The mass of the CP odd Higgs boson A is given in (37), while the masses
of the CP even scalars arise from the diagonalization of the upper 3 × 3 subblock of (35).
The masses and mixings then differ from their tree level values by the inclusion of radiative
effects. In this limit, the only source of CP violation is the CKM matrix and one easily
evades constraints from the absence of permanent EDMs for leptons and hadrons. The
lightest Higgs boson has a larger mass than MZ even at tree level, and the radiative effects
modify it sizeably [45]. Once the radiative corrections are included a direct comparison
with experimental results is possible. In principle, one can constrain certain portions of the
parameter space using the post-LEP indications for a light scalar with mass >∼ 114 GeV.

In the presence of CP violation, there are four scalar bosons with no definite CP quantum
number. This results from the mixing between the CP even scalars φu,d,s with the CP
odd scalar A via the entries M2

iA sin θt s in (35). The main impact of the CP breaking
Higgs mixings on the collider phenomenlogy comes via the generation of novel couplings for
Higgs bosons which eventually modify the event rates and asymmetries. Indeed, a given
Higgs boson can couple to both scalar and pseudoscalar fermion densities depending on the
strength of CP violation [22]. Moreover, the coupling of the lightest Higgs to Z bosons can
be significantly suppressed, avoiding the existing bounds from the LEP data [24, 25]. The
CP-violating entries of M2 grow with |µeffAt| as in the MSSM. The mass-squared matrix
is diagonalized by a 4× 4 orthonormal matrix R

R ·M2
h · RT = diag.

(
M2

H1
, M2

H2
, M2

H3
, M2

H4

)
. (48)

To avoid discontinuities in the eigenvalues it is convenient to adopt an ordering: MH1 <
MH2 < MH3 < MH4 . The mass eigenstates Hi can then be expressed as

Hi = Riuφu +Ridφd +Risφs +RiAA (49)

in which e.g. |RiA|2 is a measure of the CP odd composition of Hi. The elements of R
determine the couplings of Higgs bosons to the MSSM fermions, scalars, and gauge bosons.

3.3 Comparison with MSSM

Before turning to the numerical analysis, it is instructive to compare the origin of Higgs
sector CP violation in the U(1)′ models to that within the MSSM. Let us first consider the
case of the MSSM, in which the Higgs sector consists of the two electroweak Higgs doublets
Hu,d. It is useful to start with the most general renormalizable Higgs potential for a two
Higgs doublet model (2HDM), which must be built out of the gauge invariant combinations
|Hu|2, |Hd|2, and Hu ·Hd as follows:

V 2HDM
ren = m2

u|Hu|2 + m2
d|Hd|2 +

(
m2

3Hu ·Hd + h.c.
)
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+ λ1|Hu|4 + λ2|Hd|4 + λ3|Hu|2|Hd|2 + λ4|Hu ·Hd|2
+

[
λ5(Hu ·Hd)

2 −
(
λ6|Hd|2 + λ7|Hu|2

)
Hu ·Hd + h.c.

]
, (50)

in which m2
3, λ5,6,7 can be complex. In a general 2HDM, the Higgs sector exhibits CP

violation if any two of these couplings have nontrivial relative phases. Spontaneous CP
violation can also occur for certain ranges of the parameters [50]. However, at tree level the
MSSM is a special 2HDM, with m2

3 = Bµ ≡ b, m2
u,d = m2

Hu,d
, and

λ1 = λ2 = G2/4; λ3 = (g2
2 − g2

Y )/4; λ4 = −g2
2/2; λ5 = λ6 = λ7 = 0. (51)

As previously discussed, there is only one complex coupling Bµ in the MSSM Higgs potential
at tree level, and hence its phase can always be eliminated by a suitable PQ rotation of the
Higgs fields. Although the Higgs sector is CP-conserving at tree level, CP violation occurs
at the loop level if θf and/or θa are nonzero, with the dominant contribution involving θt. If
θt 6= 0, a relative phase θ between the VEVs of Hu and Hd is generated [22].

Essentially, while the U(1)PQ symmetry of the MSSM forbids nonzero values of λ5,6,7 at
tree level, these couplings are generated by radiative corrections because U(1)PQ is softly
broken by the Bµ term. For example, the effective λ5 coupling which is generated at one-loop
is approximately

λ5 ∼ h2
t

16π2m4
SUSY

(µAt)
2; (52)

see [22] for the explicit expressions.12

Within the U(1)′ models, the tree level Higgs potential does not allow for explicit or
spontaneous CP violation. However, it is possible to make a stronger statement: unlike the
MSSM, the Higgs potential in this class of U(1)′ models does not allow for CP violation
at the renormalizable level at any order in perturbation theory. To see this more clearly,
consider the most general renormalizable Higgs potential for Hu, Hd, and S. The potential
can be expressed as a function of the gauge-invariant quantities |Hu|2, |Hd|2, |Hd ·Hu|2, and
SHu ·Hd:

Vren = m2
u|Hu|2 + m2

d|Hd|2 + m2
S|S|2 + (m12SHu ·Hd + h.c.)

+ λu|Hu|4 + λd|Hd|4 + λs|S|4
+ λud|Hu|2|Hd|2 + λus|Hu|2|S|2 + λds|Hd|2|S|2 + λ̃ud|Hu ·Hd|2, (53)

At tree level, the dimensionful parameters m2
u,d = m2

Hu,d
and m12 = hsAs, and the dimen-

sionless couplings have all been listed before except λ̃ud = 1
2
g2
2 − h2

s. Therefore, even in the
most general renormalizable Higgs potential there is only one coupling which can be complex
(m12); this is because the gauge-invariant operator SHu ·Hd is already dimension 3. Hence,
the global phases of the Higgs fields (more precisely of the combination SHuHd) can always

12Note that spontaneous CP violation (SCPV) requires m2
3 < λ5vuvd. As λ5 is loop suppressed in the

MSSM, SCPV would require a very small m2
3, leading to an unacceptably light pseudoscalar Higgs mass [50].
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be chosen such that the phase of m12 is absorbed. Note that this statement, while true for
the tree-level potential of (6), does not depend in any way on perturbation theory.13

As the Higgs potential conserves CP to all orders at the renormalizable level, CP violation
can enter the theory only through loop-induced nonrenormalizable operators. The form of
(17) demonstrates that the one-loop contributions to the Higgs potential include an infinite
series of terms involving powers of the Higgs fields. While these terms include contributions
to the potential at the renormalizable level, they also include a tower of nonrenormalizable
terms, such as

Vnr = . . . +

(
λ

m2
SUSY

(SHu ·Hd)
2 + h.c.

)
+ . . . , (54)

in which mSUSY denotes a typical sfermion mass. By U(1)R invariance, the coupling λ of
the (SHu ·Hd)

2 term is proportional to λ ∼ A2
t/(16π2m2

SUSY ). Such a term is generated by
the one-loop diagram formed from the Lagrangian interactions hsh

∗
tSH0

d ũ
∗
Lũc∗

L + h.c. (from
F terms) and the soft SUSY breaking interaction htAtũLũc

L + h.c.. For 〈S〉 � 〈Hu,d〉, (54)
effectively leads to the coupling 14

λeff
5

m2
SUSY

(Hu ·Hd)
2, (55)

with

λeff
5 ∼ (At〈S〉)2

16π2m2
SUSY

. (56)

In general, one can expand the one-loop potential in powers of the phase-sensitive gauge-
invariant operator SHu ·Hd:

δV = . . .− βhths F
(
Q2, m2

t̃1
, m2

t̃2

)
At SHu ·Hd

+ βhth
2
th

2
s G

(
m2

t̃1
, m2

t̃2

) A2
t(

m2
t̃1
−m2

t̃2

)2 (SHu ·Hd)
2 + h.c. + . . . , (57)

in which we have presented only the phase-sensitive corrections up to quadratic order (this
expansion can of course be continued to higher orders with no difficulty at all). The first term
renormalizes the hsAsSHu ·Hd operator in the tree level potential, while the second term is a
new higher-dimensional operator. Both terms violate CP through the phase of At〈S〉 (recall
this phase is irremovable if At and As have a nontrivial relative phase θt s). The effective
theory at scales below 〈S〉 is equivalent to the MSSM (with µ and Bµ parameters related to
the other soft parameters of the model). One concludes from (57) that the size of the CP
violation in the Higgs sector depends on the extent to which the U(1)′ breaking scale is split
from the electroweak scale. Indeed, below the scale 〈S〉, the coefficients of the CP-violating
effective operators in (50) grow with |At|vs (or equivalently |At||µeff |), in agreement with
the CP-violating M2

(u,d,s)A entries of the Higgs mass-squared matrix.

13Note that the structure of the potential is very different in the case of the NMSSM, in which the S is
a total gauge singlet. As gauge invariance then does not restrict the possible S couplings, the Higgs sector
generically violates CP at tree level [51].

14Note that SCPV is also not viable in this potential, for the same reason as in the MSSM.
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4 Phenomenological Implications

In this section we discuss the existing constraints on U(1)′ models as well as their phe-
nomenological implications with explicit CP violation.

4.1 Constraints from Z − Z ′ Mixing

In the previous section, we computed the radiatively corrected Higgs boson mass-squared
matrix (35). If the eigenvalues of the Higgs mass-squared are all positive definite, the pa-
rameter space under concern corresponds to a minimum of the potential. The parameter
space is of course also constrained by the fact that direct collider searches have yielded lower
bounds on the sparticle and Higgs masses. Within U(1)′ models, further constraints arise
from the nonobservation to date of a Z ′, both from direct searches [38] and indirect precision
tests from Z pole, LEP II and neutral weak current data [28, 39]. The strongest constraints
arise from the mixing mass term between the Z and the Z ′ induced by electroweak breaking:

MZ−Z′ =

 M2
Z ∆2

∆2 M2
Z′

 , (58)

in which

M2
Z = G2v2/4 (59)

M2
Z′ = g2

Y ′
(
Q2

uv
2
u + Q2

dv
2
d + Q2

sv
2
s

)
(60)

∆2 =
1

2
gY ′G

(
Quv

2
u −Qdv

2
d

)
. (61)

Current data requires ∆2 � M2
Z′, M2

Z , because the Z − Z ′ mixing angle

αZ−Z′ =
1

2
arctan

(
2∆2

M2
Z′ −M2

Z

)
. (62)

must not exceed a few × 10−3 in typical models.
Let us review the implications of this constraint, which was studied in [28, 41]. One

can see from (62) that unless MZ′ � MZ , the Z − Z ′ mixing angle is naturally of O(1).
Therefore, a small αZ−Z′ requires a cancellation in the mixing term ∆2 for a given value
of tan β. For models in which MZ′ ∼ O(MZ), this cancellation must be nearly exact; this
can be slightly alleviated if the Z ′ mass is near its natural upper limit of a few TeV. Hence,
tan2 β must be tuned around Qd/Qu with a precision determined by the size of αZ−Z′. In
our analysis, we will eliminate tanβ from (62) for a given value of αZ−Z′:

tan2 β =
η Qd − αZ−Z′

(
−1 + η2

(
Qd

2 + Qs
2 v2

s

v2

))
η Qu + αZ−Z′

(
−1 + η2

(
Qu

2 + Qs
2 v2

s

v2

)) , (63)

in which η = 2gY ′/G, and we used tan(2 αZ−Z′) ≈ 2 αZ−Z′. Having fixed tan β in this way,
a multitude of parameters remain which can be varied continuusly as long as all collider
constraints are satisfied. In [41], two phenomenologically viable scenarios were identified:

15



• Light Z ′ Scenario. Clearly, the U(1)′ symmetry can be broken along with the SM

gauge symmetries at the electroweak scale.15 In this case vs ∼ v, tanβ ∼
√
|Qd|/|Qu|,

and MZ′ is of order MZ (the precise factor depends on the size of gY ′|Qs|). However,
the collider constraints on such a light Z ′ are severe within typical models, and hence
it can be accommodated in the spectrum only if it is sufficiently leptophobic. Note
that within this framework, leptophobic U(1)′ couplings lead to a generic difficulty
related to lepton mass generation: as QHd

6= 0, if the electron mass is induced via the

Yukawa coupling heL̂1ĤdÊ
c
1, the leptons necessarily have nonvanishing U(1)′ charges.

The electron mass (and perhaps all light fermion masses) then must be generated via
nonrenormalizable interactions which guarantee the neutrality of L̂1 and Êc

1 under the
U(1)′. In practice, this would need to be investigated within specific models. 16

• Heavy Z ′ Scenario. In this scenario, the U(1)′ breaking is radiative (driven by the
running of m2

S to negative values in the infrared) and occurs at a hierarchically larger
scale than the electroweak scale. However, gauge invariance does not allow for the U(1)′

and electroweak breakings to decouple completely (as QHu,d
6= 0). The electroweak

scale is then achieved by a cancellation among the soft masses, which are typically of
O(MZ′), with a fine-tuning O(MZ′/MZ). As discussed in [41], excessive fine tuning
is avoided if MZ′ in units of the heavy scale is roughly bounded by the ratio of the
charges, Min[|Qs/Qd|, |Qs/Qd|]. There are several advantages of the heavy Z ′ scenario.
First, the Z − Z ′ mixing can be kept small enough with less fine-tuning of the ∆2

in (58); in particular, Qu = Qd is no longer a requirement. In addition, the collider
constraints are less severe for Z ′ bosons with TeV-scale masses in typical models; for
example, leptophobic couplings are not generically a phenomenological necessity.

4.2 Constraints from Dipole Moments

Let us now turn to dipole moment constraints. Recall in SUSY theories dipole moments
of the fundamental fermions are generated by gaugino/Higgsino exchanges accompanied by
sfermions of the appropriate flavor. The dipole moment under concern may (e.g. the electric
and chromoelectric dipole moments of the quarks) or may not (e.g. the anomalous magnetic
moment of muon) require explicit sources of CP violation.

15As shown in [41], at tree level a light Z ′ boson with a vanishing Z −Z ′ mixing (for Qu = Qd) naturally
arises when |As| is the dominant soft mass in the Higgs potential. Such trilinear coupling induced minima can
also accommodate a heavy Z ′ boson. This can happen in models in which there are several additional singlets
in a secluded sector coupled to the Higgs fields Hu,d and S via the gauge or gravitational interactions [44].
Furthermore, these large trilinear coupling scenarios (with light Z ′ bosons) also have interesting implications
for baryogenesis, due to the first order phase transition at tree level. If the phase transition remains first
order after radiative corrections are included, then θ̄ may be sufficient to generate the baryon asymmetry.
The electroweak phase transition in Z ′ models with a secluded sector is strongly first order (with a heavy
enough Z ′ without any fine-tuning), and electroweak baryogenesis in such models can be viable in a greater
region of parameter space than in the minimal model [52].

16However, the kinetic mixing between the hypercharge and Z ′ gauge bosons can be used to decouple
leptons from Z ′ though all leptons, with nonzero U(1)′ charges, acquire their masses from their Yukawa
couplings [48].
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In the MSSM, dipole moments can provide important constraints on the parameter space.
For example, the anomalous magnetic moment of the muon is in principle an important
observable either for discovering SUSY indirectly or constraining SUSY parameter space;
however, at present the theoretical uncertainties present in certain nonperturbative SM con-
tributions lead to difficulties in carrying out this procedure using recent data (see e.g. [53] for
a review of the basic physics and [54] for the most recent experimental results). At present,
the most stringent constraints arise from electric dipole moments (EDMs). As is well known,
the experimental upper bounds on the EDMs of the electron, neutron, and certain atoms
impose particularly severe constraints on the parameter space of general SUSY models. In
contrast to the SM, in which EDMs are generated only at three-loop order (as the only
source of CP violation is in the CKM matrix), the sources of explicit CP violation in SUSY
theories include phases in flavor-conserving couplings which, if present, lead to nonvanishing
one-loop contributions to the EDMs which can exceed the experimental bounds. As these
phases generically filter into the Higgs sector, it is important to include the parameter space
constraints provided by the EDM bounds.

Let us consider the dipole moments which arise within this class of U(1)′ models. After
replacing the µ parameter of the MSSM by µeff in (11), all one-loop dipole moments are
found to be identical to their MSSM counterparts except for an additional contribution
generated by the Z̃ ′–f̃ diagram in Fig.1. Here Z̃ ′ is the U(1)′ gaugino with mass M1′ . This
diagram generates the operator DffLσµνFµνfR, in which

Df(Z̃ ′) ∼ g2
Y ′Q2

f

16π2

mf |M1′ |
M4

f̃

[
|Af | ei(θ1′s−θfs) −Rf |µeff | ei(θ1′s+θ)

]
, (64)

in units of the electromagnetic or strong coupling. In the above Rf = (tanβ)−2I3
f , M

f̃
char-

acterizes the typical sfermion mass, and recall that the reparameterization invariant phases
are defined in (4). Clearly, the (chromo-)electric and (chromo-)magnetic dipole moments are
generated, respectively, by Im[Df ] and Re[Df ]. The expression above is approximate esti-
mate (valid in the limit that M

f̃
� M1′) of the exact amplitude; a more precise treatment

would take into account the mixing of all six neutral fermions. The amplitude (64) is similar
to the bino exchange contribution in the MSSM.

Within the aforementioned light Z ′ scenario, for phenomenologically viable models De(Z̃ ′)
vanishes because the lepton couplings to the Z ′ are necessarily leptophobic. Therefore, for
instance, the electron EDM is completely decoupled from the presence of an electroweak
scale U(1)′ symmetry. This conclusion extends to other leptons for family universal Z ′

models. This may also be relevant for the hadronic dipole moments depending on whether
or not the Z ′ boson is hadrophobic (assuming it is detected in present and/or forthcoming
colliders). As |µeff | � M

f̃
within the light Z ′ scenario, the dipole moments of both the

up-type and down-type fermions are largely controlled by the corresponding Af parameters.
In contrast, the U(1)′ charges are not necessarily suppressed for any fermion flavor in the
heavy Z ′ scenario and thus the Df (Z̃ ′) contribution to dipole moments can compete with the

MSSM amplitudes. In this scenario, |µeff | ∼ MZ′ � MZ , and hence both terms in Df(Z̃ ′)
are important. The dipole moments become sensitive to θ1′s + θ if the Af parameters are
sufficiently small compared to |µeff |.
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Figure 1: The Z̃ ′–sfermion diagram which contributes to the (chromo-)electric and (chromo-)magnetic
dipole moments of the fermion f . The photon (γ) or gluon (g) are to be attached in all possible ways.

As the dipole moments generically scale as mf/M
2

f̃
, (which is clear from the form of

(64)), when M
f̃
∼ O(MZ) the EDMs typically exceed the existing bounds by 2 to 3 orders of

magnitude if the phases are O(1). As discussed briefly in the Introduction, one possibility is
satisfying the experimental bounds while retaining O(1) phases is to raise M

f̃
to multi-TeV

values, which in effect requires the sfermions of first and second generations to be ultraheavy
[2, 4]. Another way of suppressing the EDMs is to invoke accidental cancellations between
different contributions, i.e. to find regions of parameter space in which the SUSY amplitudes
interfere destructively. In the MSSM with low values of tan β , this has been shown to occur
with almost no costraint on any of the invariant phases except |θχ̃±| = |φµ + φM2| <∼ π/10
[4, 5, 6, 7, 8]. This strong constraint follows from the fact that gY � g2, and thus the SU(2)
gauginos dominate the EDMs. Within the U(1)′ framework, the EDM constraints can have
varying implications depending on the size of (64).

• If gY ′ ∼ O(gY ) or (more generally) gY ′ � g2, the EDM constraints on the parameter
space are similar to that of the MSSM except for a slight folding of the cancellation
domain due to the inclusion of (64). Once again, the most strongly constrained phase
is θχ̃±, with |θχ̃± | <∼ π/10 in the low tanβ regime. As θχ̃± = θ2s + θ and θ is a
loop-suppressed angle (30), the EDMs provide a constraint on θ2s: |θ2s| <∼ π/10. Con-
sequently, the dynamical solution to the µ problem present in this class of U(1)′ models
also solves the SUSY CP hierarchy problem in specific models of the soft parameters
in which (at least) the SU(2) gaugino mass has the same phase as the As parameter
(then θ2s = 0 by definition).17

• If gY ′ >∼ g2, the dipole moment amplitude Df(Z̃ ′) becomes comparable to or larger than

17In this paper, we have not addressed the origin of the phases of the soft parameters in (3), and hence
we cannot make any claims about how one solves the SUSY CP hierarchy problem within this framework.
However, it is worthwhile to note that models of the soft parameters in which the gaugino masses and A
terms have the same phases are quite common within various classes of four-dimensional string models (at
least at tree level) under plausible assumptions [55].
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the SU(2) gaugino contribution, and the cancellation domain found in the MSSM will
be significantly folded. In this case, the EDMs will constrain a combination of the
phases in (64) and θχ̃± . Such a scenario, however, can have tension with the standard
picture of gauge coupling unification at a high fundamental scale (although in principle
it could be considered as a possibility in generic low scale realizations).

Until this point, we have only discussed one-loop EDMs. It was pointed out a while ago
[11] that in certain regions of MSSM parameter space certain two-loop contribution contri-
butions which exclusively depend on the third generation sfermions can be nonnegligible.
These contributions, which are particularly relevant if the one-loop EDMs are suppressed
solely by ultraheavy first and second generation sfermion masses, involve the same phases
which predominantly filter into the Higgs potential at one-loop (i.e. the phases present in
the stop mass-squared matrix). However, these two-loop EDMs become sizeable only at
large tan β. In this paper, we have restricted our attention to small tanβ values, which
is a well-motivated parameter regime (e.g., tan β = 1 is allowed within this framework, in
contrast to the MSSM). Hence, these contributions will not provide significant parameter
space constraints in our numerical analysis.

4.3 Numerical Estimates for Higgs Sector CP Violation

In this section, we present sample numerical calculations of the Higgs boson masses and
mixings derived in Section 3.2, taking into account the phenomenological constraints on the
parameter space discussed in Sections 4.1 and 4.2.

In the absence of CP violation, the scalar-pseudoscalar mixing terms of the Higgs mass-
squared matrix (35) vanish (sin θ̄ = 0), and hence (35) takes on a block diagonal form. The
structure of (35) demonstrates that in this limit there is one CP even scalar with mass ∝ vs

and a CP odd scalar with mass proportional to
√
|As|vs. In addition, there is a light CP even

scalar of mass ∼ MZ and a heavier CP even scalar with its mass controlled by a combination
of v and MA. However, in the presence of explicit CP violation, the Higgs bosons cease to
have definite CP parities. The strength of CP violation in the Higgs sector is parameterized
by the reparameterization invariant phase θt s, which induces a nonvanishing θ̄ through the
relation (30). The induced phase θ is a loop-induced and scale-dependent quantity which is
particularly enhanced in parameter regions with a low MA.

As discussed in Section 4.2, while the one-loop EDM constraints strongly constrain the
phase θ2s, this phase is not the dominant source of CP violation in the Higgs sector for
small values of tanβ and hence this constraint does not restrict the parameter space for our
analysis. The dominant corrections to the Higgs potential arise from top and stop loops,
and the dipole moments of the fermions in first two generations feel such effects only at two
loop level. In fact, in low tanβ limit (which is the domain in which our analysis of the Higgs
potential is valid), such effects are completely negligible [11]. Therefore, the EDM constraints
do not have a direct impact on our analysis of CP violation in the Higgs sector (we simply
assume that the dipole moment constraints have been saturated either via cancellations or
by choosing the first and second generation sfermion masses heavy enough; we could also
simply assume that all phases except θt s are small).
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We now turn to the analysis of the parameter space, including the nontrivial constraints
arising from Z−Z ′ mixing. The fundamental parameters relevant for the Higgs sector include
{vs, As, At, M

Q̃
, M

Ũ
,hs, Qu, Qd, gY ′ , θt s}. We fix a subset of these parameters as follows: (i)

αZ−Z′ = 10−3, which is well below the present bounds; (ii) g2
Y ′ = (5/3)G2 sin2 θW , as inspired

from one-step GUT breaking; (iii) hs = 1/
√

2, as motivated by the RGE analysis of [41]; (iv)
Qu = Qd = −1, such that tanβ remains close to unity (as can be seen from (63)); and finally
(v) M

Q̃
= M

Ũ
. The remaining parameters can be fixed on a case by case basis depending

on the range of values assumed for MZ′. A few notational comments are also in order.
Although (35) suggests that MA can be chosen to be a fundamental parameter and this is
what is traditionally done in the MSSM, we prefer to work instead with As for consistency
with previous discussions in this paper as well as the tree level analysis of [41]. In addition,
in our numerical results we fix the renormalization scale to be Q = (2mt + MZ′)/2. This
differs once again from the MSSM, where the renormalization scale is chosen to be Q = mt

in order to minimize the next-to-leading order corrections. Such higher order corrections are
beyond the scope of this paper; our choice for Q can be regarded as some nominal value in
between the electroweak and U(1)′ breaking scales.

We begin with an analysis of the light Z ′ scenario. For purposes of definiteness, we set
M

Q̃
= 2vs, vs = v/

√
2 ' mt, and |As| = vs, in which case MZ′ ' 2MZ and |µeff | ' MZ . The

SUSY phase θt s influences both the Higgs masses and their mixings, as shown in Figure 2. In
the left panel, the variation of the lightest Higgs mass with θt s is displayed for several values
of |At|/vs. For |At|/vs = 1/2, 1 and 2 MH1 grows gradually with θt s, peaking at θt s = π.
This behaviour is easy to understand: as the magnitude of the stop LR mixing depends
strongly on θt s, the variation of MH1 with respect to θt s simply displays the well-known fact
that the lightest Higgs mass depends strongly on the value of the stop mixing. Indeed,

|M2
LR|θt s=π

|M2
LR|θt s=0

=
|At|+ |µeff | cotβ

|At| − |µeff | cotβ
, (65)

which becomes large when |At| and |µeff | are of comparable size. The ratio (65) gets sat-
urated with further increase of |At|; however, in this case |At||µeff | also becomes large,
which affects both the M2

P and M2
iA entries of the Higgs mass-squared matrix. While the

former shifts the peak value of MH1 towards the point of maximal CP violation (see the
dot-dashed curve in the figure), the latter enhances the scalar-pseudoscalar mixings. The
generic strength of the scalar-pseudoscalar mixings can be determined e.g. by working out
the CP-odd composition of H3 (the would-be pseudoscalar Higgs). The result is shown in the
right panel of Figure 2. Clearly, the M2

iA sin θt s elements of the Higgs mass-squared matrix
are not large enough to enhance such mixings (|R3A|2 falls at most to 99.75% for |At| = 4vs).

The functional dependence of the heavier Higgs boson masses on θt s is opposite that
of MH1 in that the masses tend to decrease as θt s ranges from 0 to π; e.g. when |At| =
4vs, (MH4 , MH3 , MH2) fall from (245, 224, 191) to (234, 206, 182) GeV. In accord with the
analytical expression (30), θ grows with |At| until it arrives at the peak value of ∼ 30% for
|At| = 4vs for maximal CP violation. For low MZ′ minima, the scalar-pseudoscalar mixings
(which govern the novel CP violating effects in the Higgs couplings to fermions, gauge bosons
and other Higgs bosons) are typically small due to the low value of |µeff |.
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Figure 2: The θt s dependence of the lightest Higgs mass and the CP-odd composition of H3 in the light Z ′

scenario. The solid, dashed, dotted, and dot-dashed curves correspond to, respectively, |At|/vs = 1/2, 1, 2
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Figure 3: The θt s dependence of the lightest Higgs mass (left panel) and the CP-odd composition of H3

in the heavy Z ′ scenario. Here solid, dashed, dotted, and dot-dashed curves correspond, respectively, to
|As|/vs = 1/5, 1/2, 3/4 and 1 with vs = 1 TeV.
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We now discuss the heavy Z ′ scenario, setting vs = 1 TeV, M
Q̃

= 750 GeV, and |At| =

2M
Q̃
. Figure 3 depicts the variations of the lightest Higgs mass (left panel) and the CP-odd

composition of the would-be Higgs scalar as a function of θt s and |As|. In both figures,
the solid, dashed, dotted, and dot-dashed curves correspond, respectively, to |As|/vs =
1/5, 1/2, 3/4 and 1. In contrast to the light Z ′ scenario as shown in Figure 2, here we
illustrate the dependence on |As| (or equivalently MA), as this parameter remains largely
free in the heavy Z ′ limit [41]. As the left panel of the figure shows, the mass of the lightest
Higgs is typically larger than that in the light Z ′ scenario. The lightest Higgs mass is also a
steep function of |As|, which becomes increasingly smaller as MA increases due to decoupling.
Note also that the dependence of MH1 on θt s in this scenario is similar to the case within the
light Z ′ scenario; once again, this is because the radiative corrections to the lightest Higgs
mass strongly depend on the value of the stop mixing parameter.

However, in contrast to the light Z ′ scenario, the scalar-pseudoscalar mixings in the
heavy MZ′ limit are sizeable, as shown in the right panel of Figure 3. This feature is ex-
pected because the strength of the Higgs sector CP violation is governed by the size of the
singlet VEV, i.e. the effective µ parameter, and in this scenario |µeff | ∼ MZ′. In general,
the CP-violating mixings grow larger as As decreases, because in this case M2

iA sin θt s can be
comparable to MA, which facilitates scalar-pseudoscalar transitions. For |As| = vs/5, the CP-
odd composition of the would-be pseudoscalar Higgs falls down to 70% around θt s ∼ π/6.
However, as |As| increases (while keeping |µeff | and |At| fixed), the diagonal elements of
(35) also increase, with the result that the CP-violating effects become weaker. The large
variations in |R3A|2 depicted here are due to the mixings between H3 and H2. Indeed, for
|As|/vs = 1/5, 1/2, 3/4 and 1 the two masses are strongly degenerate, with (MH2 , MH3) start-
ing at (476, 477), (722, 726), (876, 881), (1013, 1007) and decreasing to (417, 418), (685, 688),
(846, 851), (987, 981) GeV as θt s varies from 0 to π. Note that the scalar-pseudoscalar
conversions are more efficient when the two masses are highly degenerate.

For the values of |As|/vs exhibited above, the Higgs sector is within the decoupling regime
(MA > 2MZ)18, in which the lightest Higgs resembles the SM Higgs boson, the heaviest Higgs
is singlet-dominated with a mass of order MZ′ , and the two intermediate mass Higgs (the
CP odd scalar and the second heaviest CP even scalar in the absence of CP violation)
are strongly degenerate. The lightest Higgs boson is essentially CP even (|R1A|2 � 0.1% for
|As|/vs ≥ 1/15) and hence is decoupled from CP-violating effects, although its mass depends
strongly on θts. However, there are phenomenologically interesting corners of parameter
space with sufficiently small values of |As|/vs in which the lightest Higgs boson can have
a significant mixing with the would-be pseudoscalar. As the lightest Higgs mass is a steep
function of |As|/vs, for a value of MH1 consistent with LEP bounds the CP-odd composition
of H1 cannot be larger than 20%. It is important to keep in mind though that the couplings
of the lightest Higgs boson to gauge bosons and fermions are modified when the lightest
Higgs has a significant mixing with the would-be pseudoscalar (the modifications grow with
the CP-odd composition of the lightest Higgs), such that the existing LEP bounds may not
be applicable (see e.g. [24, 25] for discussions within the MSSM).

18See [22, 23] for a more precise definition of the decoupling regime in the CP-violating MSSM.
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Our results demonstrate that the CP-violating effects in the Higgs sector, or more pre-
cisely, the mixing between the would-be scalars and pseudoscalars in the CP conserving
limit, are generically highly suppressed in the light Z ′ models but can be sizeable in the
heavy Z ′ scenario, even though the masses can vary strongly with θt s (which is of course a
CP-conserving effect). This behaviour is exactly in accordance with the general discussion
of Section 3.3, in which we demonstrated that the CP-violating terms in the Higgs potential
necessarily originate from nonrenormalizable terms present at one-loop (such terms are en-
coded within the full Coleman-Weinberg potential). The strength of such terms in e.g. the
doublet sector then scale according to the ratio of the singlet VEV vs ' |µeff | to the scale of
a typical soft mass. Hence, within the light Z ′ scenario (in which the effective µ parameter
is small) CP-violating effects are suppressed, while the large |µeff | present in the heavy Z ′

scenario can allow for spectacular effects of CP violation.
We close this section with a brief discussion of the implications for collider searches. In

general, at least a subset of the Higgs masses within this class of U(1)′ models can be observ-
able at forthcoming colliders and future colliders such as TESLA and NLC. next generation
of colliders such as TESLA and NLC. Within light Z ′ models, all of the Higgs bosons remain
light after including radiative corrections, but such models generically have very small CP-
violating Higgs couplings. In contrast, large Z ′ models can have large CP-violating Higgs
couplings. As the viable regions of space typically correspond to the decoupling limit in
which all of the Higgs bosons except the lightest Higgs are heavy, detecting the CP-violating
effects within this scenario is similar to that within the MSSM for a large µ parameter. Such
effects have been studied in [22, 24, 25], where it is known that Higgs sector CP violation
can introduce sizeable modifications in the couplings of the Higgs bosons to fermions and
vector bosons, and strongly affect the bounds inferred from the CP-conserving theory. Fur-
thermore, the CP purity of the Higgs bosons (assuming that the collider searches establish
their existence) can be tested by measuring CP violation in its decays into heavy quarks or
vector bosons [56].

5 Summary

In this paper, we have discussed the nature and implications of explicit CP violating phases
present in the soft breaking Lagrangian within supersymmetric models with an additional
U(1) gauge symmetry and an additional SM gauge singlet S. This class of models is worthy of
further study not only because such gauge extensions are ubiquitous within four-dimensional
string models (and other plausible extensions of the MSSM), but also they provide an elegant
framework in which the µ problem of the MSSM. The solution, which is to forbid the bare µ
term by U(1)′ gauge invariance and generate an effective µ parameter through the VEV of
the singlet S, is similar to that found within the NMSSM (but its generic cosmological and
CP problems). Our results can be summarized as follows:

• All reparameterization invariant phases can be expressed as linear combinations of
θf s ≡ φAf

− φAs and θa s ≡ φMa − φAs (and hence a “natural” basis can be obtained
by using U(1)R to set φAs = 0).
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• The Higgs sector is manifestly CP conserving at tree level (and indeed at renormalizable
level to all orders in perturbation theory). However, the CP-violating phases present
in the stop mass-squared matrix filter into the Higgs sector at the nonrenormizaliz-
able level at one-loop. The CP-violating effects are particularly enhanced when U(1)′

symmetry is broken near the sparticle thresholds.

• The spontaneous breakdown of the U(1)′ symmetry near the weak scale stabilizes not
only the modulus of µ but also its phase. The phase of µ itself is of course not a
basis-independent quantity; however, in the “natural” basis defined above, this phase
(θ̄ in this basis) arises only at the loop level and is typically 1–10%, depending on the
size of MA (the pseudoscalar Higgs boson mass in the CP conserving limit).

• The absence of permanent EDMs for leptons and hadrons (even assuming either can-
cellations and/or heavy first and second generation sfermions) strongly bound the
reparameterization invariant phase present in the chargino mass matrix (φµ + φM2) =
(θ̄ − φAs + φM2), while the other SUSY phases remain largely unconstrained. In spe-
cific models in which the phase difference between (at least the SU(2)) gaugino mass
parameters and As is vanishingly small, this “SUSY CP hierarchy problem” is resolved
because the radiative phase θ̄ is sufficiently small to be easily allowed by EDM bounds.

• The CP-violating effects in the Higgs sector are quite distinct for the two phenomeno-
logically viable scenarios with acceptably small Z − Z ′ mixing, because these effects
are proprotional to the size of the effective µ term. In scenarios with a light Z ′,
CP-violating effects are suppressed, while heavy Z ′ models can exhibit significant CP-
violating scalar-pseudoscalar mixings, with phenomenological implications similar to
that of the MSSM with large µ parameter.
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