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1. Introduction

Higgs boson production is nowadays a topic of central importance in hadron collider

physics [1, 2]. The Tevatron will be actively searching for a Higgs boson signal in the

near future. The discovery of the Higgs boson is also a primary physics goal of the LHC.

The main Higgs production mechanism at hadron colliders is the gluon fusion pro-

cess [3], an essentially strong-interaction process, that has attracted a large amount of

theoretical work in recent years. Indeed, limits on the Higgs mass will rely upon QCD

calculations of the cross sections. Conversely, if a Higgs boson is discovered, discrepancies
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of its measured cross section from QCD calculations may signal deviations of the Yukawa

couplings from the Standard Model (SM) predictions. It is thus important to provide an

accurate calculation of the Higgs production cross section, together with a reliable estimate

of the associated theoretical error.

The QCD computation of the gluon fusion production cross section was carried out at

next-to-leading order (NLO) in refs. [4, 5] in the heavy-top limit, and in ref. [6] with the

full dependence on the top-quark mass. Perturbative corrections at the NLO level were

found to be quite large (of the order of 100%), thus casting doubts upon the reliability of

the perturbative calculation.

Next-to-next-to-leading order (NNLO) corrections have been computed in the heavy-

top limit. The virtual contributions were evaluated in ref. [7]. The soft contributions

were computed in refs. [8, 9]. The remaining hard real contributions were included in

ref. [10], with a semi-numerical approach. More recently, fully analytical results for the

real contributions have been obtained [11, 12, 13].

Numerically, it is found that NNLO corrections are moderate in size. There is thus

good hope that the NNLO calculation gives a reasonable estimate of the cross section.

Nevertheless, a better understanding of the pattern of radiative corrections would prove

useful both to assess the reliability of the available calculations and to include higher-order

corrections.

In the present work, we include the dominant effect of the uncalculated higher-order

terms, by exploiting the resummation of soft-gluon emission. The possibility of performing

such an improvement relies upon the observation that an accurate use of the soft-gluon

approximation provides the bulk of the NLO term and a reliable estimate of the NNLO

effects [8]. Now that the NNLO corrections are fully known, and confirm that observa-

tion, it makes sense to add the higher-order terms that can be obtained in the soft-gluon

approximation, in order to give a more precise prediction. Since the soft approximation

proves reliable for the NLO and NNLO contributions, we make the reasonable assumption

that it maintains the same reliability for higher-order terms.

The paper is organized as follows. In section 2 we give our notation for the QCD cross

section and the fixed-order radiative corrections. In section 3 we present the formalism

of soft-gluon resummation to all logarithmic orders, and derive the explicit resummation

formulae up to the next-to-next-to-leading logarithmic (NNLL) level.

The resummation formalism correctly predicts the structure and the coefficients of the

singular terms in the exact NLO and NNLO calculations. The quantitative reliability of the

soft-gluon approximation can be tested by comparing the truncation of the resummation

formalism at the NLO and NNLO levels with the exact result. This comparison is performed

in section 4. Several variants of the soft-gluon approximation are considered there, in order

to justify the validity of our approach. Furthermore, in section 4.2, the order of magnitude

of the soft-gluon effects is studied, by simply considering the value of the short-distance

partonic cross section in N -moment space.

In section 5, full numerical predictions for the Higgs production cross section, including

soft-gluon resummation at NNLL accuracy and the exact NLO and NNLO contributions,

are given, both at the Tevatron and at the LHC. We also perform a study of the remain-
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ing theoretical uncertainty. Incidentally, we note that the calculation presented here is

the first calculation of a QCD cross section at such nominal theoretical accuracy, namely

NNLO+NNLL accuracy.

Finally, in section 6 we give our conclusions.

In appendix A we derive a simple prescription to evaluate the large-N Mellin moments

of the soft-gluon contributions at an arbitrary logarithmic accuracy. The method is a gen-

eralization of the prescription zN−1− 1→ −θ(1− z−N0/N). In appendix B, we present a

formal proof of the equivalence of two different formulations of the N -space resummation

formulae. This equivalence clarifies the distinction between the all-order logarithmic terms

in the soft-gluon resummation formalism and the large-order perturbative behaviour due

to infrared renormalons. In appendix C we show how to compute the logarithmic functions

that control soft-gluon resummation. In appendix D we check the numerical convergence

of the fixed-order soft-gluon expansion, and in appendix E we provide the soft-gluon ap-

proximation of the N3LO contribution to the partonic cross section.

Preliminary results of this work have been presented in ref. [14].

2. Notation and QCD cross section at fixed orders

We consider the collision of two hadrons h1 and h2 with centre-of-mass energy
√
s. The

inclusive cross section for the production of the SM Higgs boson can be written as

σ(s,M2
H) =

∑

a,b

∫ 1

0
dx1 dx2 fa/h1

(x1, µ
2
F ) fb/h2

(x2, µ
2
F )

∫ 1

0
dz δ

(
z − τH

x1x2

)
×

× σ(0)zGab

(
z;αS(µ

2
R),

M2
H

µ2R
;
M2

H

µ2F

)
, (2.1)

where MH is the Higgs boson mass, τH = M2
H/s, and µF and µR are factorization and

renormalization scales, respectively. The parton densities of the colliding hadrons are

denoted by fa/h(x, µ
2
F ) and the subscript a labels the type of massless partons (a = g, qf , q̄f ,

with Nf different flavours of light quarks). We use parton densities as defined in the MS

factorization scheme.

From eq. (2.1) the cross section σ̂ab for the partonic subprocess ab → H + X at the

centre-of-mass energy ŝ = x1x2s =M2
H/z is

σ̂ab(ŝ,M
2
H) =

1

ŝ
σ(0)M2

HGab(z) = σ(0)zGab(z) , (2.2)

where the term 1/ŝ corresponds to the flux factor and leads to an overall z factor. The

Born-level cross section σ(0) and the hard coefficient functionGab arise from the phase-space

integral of the matrix elements squared.

The incoming partons a, b couple to the Higgs boson through heavy-quark loops and,

therefore, σ(0) and Gab also depend on the masses MQ of the heavy quarks. The Born-level

contribution σ(0) is [3]

σ(0) =
GF

288π
√
2

∣∣∣∣∣∣

∑

Q

AQ

(
4M2

Q

M2
H

)∣∣∣∣∣∣

2

, (2.3)
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where GF = 1.16639×10−5 GeV−2 is the Fermi constant, and the amplitude AQ is given by

AQ(x) =
3

2
x
[
1 + (1− x)f(x)

]
,

f(x) =





arcsin2
1√
x
, x ≥ 1

−1

4

[
ln

1 +
√
1− x

1−
√
1− x − iπ

]2
, x < 1

. (2.4)

In the following, MQ =Mt orMb denotes the on-shell pole mass of the top quark or bottom

quark.

The coefficient function Gab in eq. (2.1) is computable in QCD perturbation theory

according to the expansion

Gab

(
z;αS(µ

2
R),

M2
H

µ2R
;
M2

H

µ2F

)
= α2

S(µ
2
R)

+∞∑

n=0

(
αS(µ

2
R)

π

)n
G

(n)
ab

(
z;
M2

H

µ2R
;
M2

H

µ2F

)
(2.5)

= α2
S(µ

2
R)G

(0)
ab (z) +

α3
S(µ

2
R)

π
G

(1)
ab

(
z;
M2

H

µ2R
;
M2

H

µ2F

)
+

+
α4
S(µ

2
R)

π2
G

(2)
ab

(
z;
M2

H

µ2R
;
M2

H

µ2F

)
+O(α5

S) , (2.6)

where the (scale-independent) LO contribution is

G
(0)
ab (z) = δag δbg δ(1 − z) . (2.7)

The terms G
(1)
ab and G

(2)
ab give the NLO and NNLO contributions, respectively.

The NLO coefficients G
(1)
ab are known. Their calculation with the exact dependence

on Mt (and Mb) was performed in ref. [6], where it was also observed that the NLO

Higgs boson cross section is well approximated by considering its limit Mt À MH [4, 5].

Therefore, throughout the paper we work in the framework of the large-Mt approximation:

we consider the case of a single heavy quark, the top quark, and Nf = 5 light-quark

flavours, and we neglect all the contributions to G
(n)
ab that vanish when MH/Mt → 0.

However, unless otherwise stated, we include in σ(0) the full dependence on Mt and Mb.

At NLO this approximation [6, 15] turns out to be very good when MH ≤ 2Mt, and it is

still accurate1 to better than 10% when MH . 1TeV.

The use of the large-Mt expansion considerably simplifies the calculation of the QCD

radiative corrections, since one can exploit the effective-lagrangian approach [17, 18, 15]

to embody the heavy-quark loop in an effective point-like vertex. The virtual [7] and

soft [19, 20, 21, 22] contributions (i.e. the contributions that are singular when z → 1) to

the NNLO coefficients G
(2)
ab (z) were independently computed in refs. [8] and [9]. The hard

contributions were considered in ref. [10], by expanding G
(2)
ab (z) in powers of (1 − z) and

1The accuracy of this approximation when MH . 2Mt is not accidental. In fact, as pointed out in

refs. [8, 16] and discussed below, the main part of the QCD corrections to direct Higgs production is due

to parton radiation at relatively low transverse momenta. Such radiation is weakly sensitive to the mass of

the heavy quark in the loop.
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evaluating the coefficients of the expansion explicitly up to order (1−z)16. An independent

NNLO calculation, which includes all the hard contributions in closed analytic form, was

carried out in ref. [11]. This result has recently been confirmed [13] by using a different

method of calculation. In the high-energy limit, the results of refs. [11, 13] agree with the

calculation of ref. [23], based on k⊥-factorization [24].

The NLO coefficient functions G
(1)
ab in the large-Mt limit (i.e. neglecting corrections

that vanish when MH/Mt → 0) are [4, 5]

G(1)
gg

(
z;
M2

H

µ2R
;
M2

H

µ2F

)
= δ(1 − z)

(
11

2
+ 6ζ(2) +

33− 2Nf

6
ln
µ2R
µ2F

)
+ 12D1(z)+ (2.8)

+ 6D0(z) ln
M2

H

µ2F
+ P reg

gg (z) ln
(1− z)2M2

H

zµ2F
− 6

ln z

1− z −
11

2

(1− z)3
z

,

G(1)
gq

(
z;
M2

H

µ2R
;
M2

H

µ2F

)
=

1

2
Pgq(z) ln

(1− z)2M2
H

zµ2F
+

2

3
z − (1− z)2

z
, (2.9)

G
(1)
qq̄

(
z;
M2

H

µ2R
;
M2

H

µ2F

)
=

32

27

(1− z)3
z

, (2.10)

G(1)
qq

(
z;
M2

H

µ2R
;
M2

H

µ2F

)
= 0 , (2.11)

where ζ(n) is the Riemann zeta-function (ζ(2) = π2/6 = 1.645 . . . , ζ(3) = 1.202 . . . ), and

we have defined

Di(z) ≡
[
lni(1− z)
1− z

]

+

. (2.12)

The kernels Pab(z) are the LO Altarelli-Parisi splitting functions for real emission,

Pgg(z) = 6

[
1

1− z +
1

z
− 2 + z(1− z)

]
, Pgq(z) =

4

3

1 + (1− z)2
z

, (2.13)

and P reg
gg (z) is the regular (when z → 1) part of Pgg(z):

P reg
gg (z) = Pgg(z)−

6

1− z . (2.14)

The analytic formulae for the NNLO coefficient functions G
(2)
ab are given in refs. [11, 13]

(η
(2)
ab (z) = zG

(2)
ab (z), according to the notation of ref. [11]).

For the purpose of the discussion in the following sections, we note that we can identify

three kinds of contributions in eqs. (2.8)–(2.10) and in the analytic formulae for G
(2)
ab :

• Soft and virtual corrections, which involve only the gg channel and give rise to the

Di and δ(1− z) terms (see eq. (2.8)). These are the most singular terms when z → 1.

• Purely collinear logarithmic contributions, which are controlled by the regular part

of the Altarelli-Parisi splitting kernels (see eqs. (2.8), (2.9)). The argument of the

collinear logarithm corresponds to the maximum value (q2T max ∼ (1 − z)2M2
H/z)

of the transverse momentum qT of the Higgs boson. These contributions give the

next-to-dominant singular terms when z → 1.
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• Hard contributions, which are present in all partonic channels and lead to finite

corrections in the limit z → 1 .

In this work we are mainly interested in studying the effect of soft-gluon contributions

to all perturbative orders. Soft-gluon resummation has to be carried out in the Mellin (or

N -moment) space [25, 26]. We thus introduce our notation in the N -space.

We consider the Mellin transform σN (M2
H) of the hadronic cross section σ(s,M 2

H).

The N -moments with respect to τH =M2
H/s at fixed MH are thus defined as follows:

σN (M2
H) ≡

∫ 1

0
dτH τN−1H σ(s,M2

H) . (2.15)

In N -moment space, eq. (2.1) takes a simple factorized form

σN−1(M
2
H) = σ(0)

∑

a,b

fa/h1,N (µ2F )fb/h2N (µ2F )Gab,N

(
αS(µ

2
R),

M2
H

µ2R
;
M2

H

µ2F

)
, (2.16)

where we have introduced the customary N -moments of the parton distributions (fa/h,N )

and of the hard coefficient function (Gab,N ):

fa/h,N (µ2F ) =

∫ 1

0
dxxN−1fa/h(x, µ

2
F ) , (2.17)

Gab, N =

∫ 1

0
dz zN−1Gab(z) . (2.18)

Once these N -moments are known, the physical cross section in x-space can be obtained

by Mellin inversion:

σ(s,M2
H) =σ(0)

∑

a,b

∫ CMP+i∞

CMP−i∞

dN

2πi

(
M2

H

s

)−N+1

fa/h1,N (µ2F )fb/h2N (µ2F )×

×Gab,N

(
αS(µ

2
R),

M2
H

µ2R
;
M2

H

µ2F

)
, (2.19)

where the constant CMP that defines the integration contour in the N -plane is on the right

of all the possible singularities of the N -moments.

Note that the evaluation of Gab(z) in the limit z → 1 corresponds to the evaluation

of its N -moments Gab,N in the limit N →∞. In particular, the soft, virtual and collinear

contributions to G
(n)
ab (z) lead to lnN -enhanced contributions in N -space according to the

following correspondence (see appendix A):

∫ 1

0
dz zN−1Dk(z) =

(−1)k+1

k + 1
lnk+1N +O(lnkN) , (2.20)

∫ 1

0
dz zN−1δ(1 − z) = 1 , (2.21)

∫ 1

0
dz zN−1 lnk(1− z) = (−1)k

N
lnkN +O

(
1

N
lnk−1N

)
. (2.22)
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3. Soft-gluon resummation

3.1 Summation to all logarithmic orders

In this section we consider the all-order perturbative summation of enhanced threshold

(soft and virtual) contributions to the partonic cross section for Higgs boson production.

The threshold region z → 1 corresponds to the limit N →∞ in N -moment space. We are

thus interested in evaluating the hard coefficient function Gab, N , by keeping all the terms

that are not vanishing when N →∞. To this purpose, we first note that in this limit only

the gg partonic channel is not suppressed. In other words, we have:

Gab, N

(
αS(µ

2
R),

M2
H

µ2R
;
M2

H

µ2F

)
= O

(
1

N

)
(ab 6= gg) , (3.1)

where the notation O(1/N) means that the right-hand side vanishes at least as a single

power of 1/N (modulo lnN corrections) when N → ∞. When the partonic channel is

ab 6= qq̄, eq. (3.1) simply follows from power counting: the final state X in the partonic

subprocess ab → H +X contains at least a fermion, and the corresponding cross section

thus vanishes in the soft limit. When ab = qq̄, the threshold limit selects the exclusive

subprocess qq̄ → H that vanishes since the gluon-mediated production of a spin 0 particle

through qq̄ annihilation is forbidden in the massless quark case. As a matter of fact,

gluonic interactions conserve helicity, so that the total spin projection along the incoming

qq̄ direction is ±1, which is incompatible with the production of a spin 0 state.

Observe that the large-N behaviour of the hadronic cross section σN (M2
H) also depends

upon the large-N behaviour of the parton densities, according to eq. (2.16). Thus, the

O(1/N) relative suppression of the partonic cross section in the qg channel relative to the

gg channel may be compensated by the enhancement of the quark with respect to the gluon

density. Under the typical assumption that the gluon density is softer than the (valence)

quark density at large x, it is possible to show (see section 2.4 in ref. [27]) that the two

parton channels contribute with the same power behaviour in N to the total hadronic

cross section. In the present work, however, we are not considering the large-N limit of

the hadronic cross section σN (M2
H) for Higgs boson production. We are rather using the

soft-gluon approximation to find a good approximation of the full partonic cross section,

to be convoluted with the parton densities and used in kinematical regimes2 that are far

from the hadronic large-N limit. In this context, eq. (3.1) implies that the gg channel

strongly prevails over the other channels in the evaluation of the cross section for Higgs

boson production.

We are thus led to consider the gg partonic channel. The formalism to systematically

perform soft-gluon resummation for hadronic processes, in which a colourless massive par-

ticle is produced by qq̄ annihilation or gg fusion, was set up in refs. [25, 26, 28]. In the case

of Higgs boson production, we have

Ggg,N = α2
S

{
1 +

+∞∑

n=1

αnS

2n∑

m=0

G
(n,m)
H lnmN

}
+O

(
1

N

)
= G

(res)
gg,N +O

(
1

N

)
, (3.2)

2More discussion about this point can be found in section 4.

– 7 –



J
H
E
P
0
7
(
2
0
0
3
)
0
2
8

where the non-vanishing (singular and constant) contributions in the large-N limit can be

organized in the following all-order resummation formula:

G
(res)
gg,N

(
αS(µ

2
R),

M2
H

µ2R
;
M2

H

µ2F

)
= α2

S(µ
2
R)Cgg

(
αS(µ

2
R),

M2
H

µ2R
;
M2

H

µ2F

)
×

× exp

{
GH
(
αS(µ

2
R), lnN ;

M2
H

µ2R
,
M2

H

µ2F

)}
. (3.3)

The function Cgg(αS) contains all the contributions that are constant in the large-

N limit. They are produced by the hard virtual contributions and non-logarithmic soft

corrections, and can be computed as a power series expansions in αS:

Cgg

(
αS(µ

2
R),

M2
H

µ2R
;
M2

H

µ2F

)
= 1 +

+∞∑

n=1

(
αS(µ

2
R)

π

)n
C(n)
gg

(
M2

H

µ2R
;
M2

H

µ2F

)
. (3.4)

All the large logarithmic terms αnS ln
mN (with 1 ≤ m ≤ 2n), which are due to soft-

gluon radiation, are included in the exponential factor expGH . It can be expanded as

GH
(
αS(µ

2
R), lnN ;

M2
H

µ2R
,
M2

H

µ2F

)
=

+∞∑

n=1

αnS

n+1∑

m=1

G(n,m)
H lnmN (3.5)

= lnNg
(1)
H (b0αS(µ

2
R) lnN)+

+ g
(2)
H

(
b0αS(µ

2
R) lnN,

M2
H

µ2R
;
M2

H

µ2F

)
+

+ αS(µ
2
R)g

(3)
H

(
b0αS(µ

2
R) lnN,

M2
H

µ2R
;
M2

H

µ2F

)
+ (3.6)

+

+∞∑

n=4

[
αS(µ

2
R)
]n−2

g
(n)
H

(
b0αS(µ

2
R) lnN,

M2
H

µ2R
;
M2

H

µ2F

)
,

where, for later convenience, we have introduced the first coefficient, b0, of the QCD β-

function. The functions g
(n)
H are defined such that g

(n)
H (b0αS lnN) = 0 when αS = 0.

Note that the exponentiation in eqs. (3.3) and (3.5) is not trivial [25, 26]. The sum

over m in eq. (3.2) extends up to m = 2n, while in eq. (3.5) the maximum value for m

is smaller, m ≤ n + 1. In particular, this means that all the double logarithmic (DL)

terms αnSG
(n,2n)
H ln2nN in eq. (3.2) are taken into account by simply exponentiating the

lowest-order contribution αSG
(1,2)
H ln2N . Then, the exponentiation allows us to define the

resummed perturbative expansion in eq. (3.6). The function lnN g
(1)
H resums all the lead-

ing logarithmic (LL) contributions αnS ln
n+1N , g

(2)
H contains the next-to-leading logarith-

mic (NLL) terms αnS ln
nN , αSg

(3)
H collects the next-to-next-to-leading logarithmic (NNLL)

terms αn+1
S lnnN , and so forth. Note that in the context of soft-gluon resummation, the

parameter αS lnN is formally considered as being of order unity. Thus, the ratio of two

successive terms in the expansion (3.6) is formally of O(αS) (with no lnN enhancement).

In this respect, the resummed logarithmic expansion in eq. (3.6) is as systematic as any

customary fixed-order expansion in powers of αS.
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The purpose of the soft-gluon resummation program is to explicitly evaluate the log-

arithmic functions g(n) of eq. (3.6) in terms of few coefficients that are perturbatively

computable. In the case of Higgs boson production, this goal is achieved by showing that

the all-order resummation formula (3.3) can be recast in the following form [8]:

G
(res)
gg,N

(
αS(µ

2
R),

M2
H

µ2R
;
M2

H

µ2F

)
= α2

S(µ
2
R)Cgg

(
αS(µ

2
R),

M2
H

µ2R
;
M2

H

µ2F

)
×

×∆H
N

(
αS(µ

2
R),

M2
H

µ2R
;
M2

H

µ2F

)
+O

(
1

N

)
. (3.7)

The factor Cgg(αS) in eq. (3.7) is completely analogous to the factor Cgg(αS) in eq. (3.3).

The difference between Cgg and Cgg is simply due to the fact that some constant terms

at large N have been moved from Cgg to ∆H
N . The Sudakov radiative factor ∆H

N has the

following integral representation:

∆H
N

(
αS(µ

2
R),

M2
H

µ2R
;
M2

H

µ2F

)
= exp

{∫ 1

0
dz

zN−1 − 1

1− z × (3.8)

×
[
2

∫ (1−z)2M2
H

µ2
F

dq2

q2
A(αS(q

2)) +D
(
αS((1−z)2M2

H)
)
]}
,

where A(αS) and D(αS) are perturbative functions

A(αS) =

+∞∑

n=1

(αs
π

)n
A(n) =

αs
π
A(1) +

(αs
π

)2
A(2) +

(αs
π

)3
A(3) +O(α4

S) , (3.9)

D(αS) =

+∞∑

n=2

(αs
π

)n
D(n) =

(αs
π

)2
D(2) +O(α3

S) . (3.10)

The coefficients A(n) and D(n) are perturbatively computable. For example, they can be

extracted from the calculation of Ggg,N at NnLO.

By inspection of z and q2 integrations in eq. (3.8), it is evident that the radiative factor

leads to the logarithmic structure of eq. (3.6), plus corrections of O(1/N) that vanish when

N → ∞. The functions g
(n)
H depend on the coefficients in eqs. (3.9) and (3.10), and the

functional dependence is completely specified by eq. (3.8). More precisely (see eqs. (3.18)–

(3.20)), the LL function g
(1)
H depends on A(1), the NLL function g

(2)
H depends also on A(2),

the NNLL function g
(3)
H depends also on A(3) and D(2), and so forth. In appendix A, we

describe in detail a method to obtain the functions g
(n)
H (for arbitrary values of n) from the

integral representation in eq. (3.8).

The structure of eq. (3.8) is completely analogous to that of the radiative factor of the

Drell–Yan (DY) process. The derivation of this result up to NLL accuracy (i.e. keeping

only the coefficients A(1) and A(2)) was discussed in refs. [25, 26, 29]. The discussion of

refs. [25, 26, 29] can be extended to any logarithmic accuracy by taking into account the

following two main points.

First, beyond O(α2
S) the Sudakov radiative factor acquires an additional contribu-

tion [30, 31, 32, 33] due to final-state soft partons emitted at large angles with respect to
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the direction of the colliding gluons (or of the colliding qq̄ pair, in the case of the DY pro-

cess). In eq. (3.8) this contribution3 is included in the term that depends on the function

D(αS((1 − z)2M2
H)).

Second, the term proportional to the function A(αS(q
2)) in eq. (3.8) embodies the

effect of soft-parton radiation emitted collinearly to the initial-state partons; it therefore

depends on both the factorization scheme and the factorization scale µF of the gluon parton

distributions in eq. (2.16). The invariance of the hadronic cross section with respect to

µF variations thus implies that the function A(αS) gets higher-order (n ≥ 3) contributions

(given by the coefficients A(n) in eq. (3.9)) to compensate the factorization-scale dependence

of the parton distributions, as given by the Altarelli-Parisi evolution equations

dfa/h,N (µ2F )

d lnµ2F
=
∑

b

γab,N (αS(µ
2
F ))fb/h,N (µ2F ) . (3.11)

It is straightforward to show that the function A(αS) in eqs. (3.8) and (3.9) coincides at

any perturbative order with the function that controls the large-N behaviour [34] of the

gluon anomalous dimensions γgg,N in the MS factorization scheme:

γgg,N (αS) = −A(αS) lnN +O(1) (N →∞) . (3.12)

The Sudakov radiative factor in eq. (3.8) can also be expressed by using an alternative

integral representation:

∆H
N

(
αS(µ

2
R),

M2
H

µ2R
;
M2

H

µ2F

)
=exp

{
−
∫ 1

N0/N

dy

y

[
2

∫ y2M2
H

µ2
F

dq2

q2
A(αS(q

2))+D̃
(
αS(y

2M2
H)
)
]}
×

× C̃gg
(
αS(µ

2
R),

M2
H

µ2R

)
+O

(
1

N

)
, (3.13)

where N0 = e−γE (γE = 0.5772 . . . is the Euler number), and the new perturbative func-

tions C̃gg(αS) and D̃(αS) are completely analogous to the functions Cgg(αS) and D(αS) in

eqs. (3.4) (unlike Cgg, C̃gg does not depend on µ2F ) and (3.10), respectively. Note that the

lnN dependence of ∆H
N is fully included in the exponential factor on the right-hand side of

eq. (3.13). The representation in eq. (3.13) was first introduced in ref. [26] up to NLL ac-

curacy. The equivalence between eq. (3.8) and (3.13) to any logarithmic accuracy is proved

in appendix B, where we also derive the formulae that explicitly relate the functions A(αS)

and D(αS) to the functions C̃gg(αS) and D̃(αS). Using eq. (3.13), it is straightforward to

carry out the z and q2 integrations and to obtain the logarithmic functions g
(n)
H in eq. (3.6)

(see section 3.2 and appendix C).

These results on soft-gluon resummation at any logarithmic accuracy deserve some

comments on the large-order perturbative behaviour. As is well known (see [35] and refer-

ences therein), any perturbative QCD expansion, such as eq. (2.5), has to be regarded as

an asymptotic rather than a convergent series. In fact, the perturbative coefficients (e.g.

G
(n)
ab ) are expected to diverge as n! when the perturbative order n becomes very large.

3This contribution is denoted by ∆
(int)
N in refs. [8, 30].

– 10 –



J
H
E
P
0
7
(
2
0
0
3
)
0
2
8

The ambiguities related to the definition of the asymptotic series are then interpreted as

perturbative evidence of non-perturbative power corrections. These features apply to the

fixed-order perturbative expansion in eq. (2.5) as well as to the resummed logarithmic ex-

pansion in eq. (3.6). In other words, the functions g
(n)
H are expected to diverge as n! at

large n.

Infrared renormalons [35] are a known source of factorially divergent terms in pertur-

bative QCD. They arise from the behaviour of the running coupling αS(q
2) in the infrared

region and, more precisely, from integrating the coupling down to momentum scales q be-

low the Landau pole, as set by the QCD scale ΛQCD. The representation in eq. (3.8) may

lead to infrared renormalons, since it involves z and q2 integrals that extend in the infrared

region independently of the value of N . In ref. [36], it was observed that the ensuing facto-

rially divergent behaviour corresponds to a power correction ΛQCD/MH , which is linear in

1/MH . This observation was based on the truncation of the perturbative function A(αS)

at a fixed perturbative order. However, as pointed out by Beneke and Braun [37], this sim-

plifying assumption is not sufficient to draw conclusions on power corrections. Factorial

divergences can arise both from the z and q2 integrals and from the large-order behaviour

of the functions A(αS) and D(αS): both effects have to be taken into account [37]. This fea-

ture is evident by comparing the integral representations in eqs. (3.8) and (3.13). The two

all-order representations are fully equivalent, but the integrals in eq. (3.13) are perfectly

convergent as long as N ≤ N0MH/ΛQCD ∼MH/ΛQCD. In eq. (3.13) factorial divergences

can appear only through the large-order behaviour of the functions A(αS) and D̃(αS) (see

also appendix B). The detailed study of ref. [37] shows that the functions D(αS) and

D̃(αS) (due to large-angle soft-gluon radiation) are indeed factorially divergent. In partic-

ular, D(αS) has a factorial divergence that corresponds to a linear power correction and

cancels the linear power correction found in ref. [36]. Renormalon calculations, based on

the explicit evaluation of the dominant terms at large Nf , lead to power corrections of the

type Λ2
QCD/M

2
H [37] (or, more generally, integer powers of N 2Λ2

QCD/M
2
H [38]).

Note that the z integral in eq. (3.13) is not regular when N > N0MH/ΛQCD ∼
MH/ΛQCD, but this does not lead to factorial divergences [39]. We postpone further

comments on this point to section 5.1.

The all-order resummation formulae presented in this section are valid for Higgs boson

production, independently of the use of the large-Mt approximation. In particular, the

exponential factor expGH in eq. (3.3) and the Sudakov radiative factor ∆H
N in eqs. (3.8)

and (3.13) do not depend on Mt. The full dependence on Mt of the resummation for-

mula (3.3) is embodied in the N -independent function Cgg(αS), namely, in its perturbative

coefficients C
(n)
gg (see eq. (3.4)). As shown below in eqs. (3.24)–(3.26), in the large-Mt

limit, the coefficient C
(1)
gg becomes independent of Mt, while C

(2)
gg depends logarithmically

on MH/Mt.

3.2 Soft-gluon resummation at NNLL accuracy

In the following we are interested in a quantitative study of soft-gluon resummation effects

up to NNLL accuracy. We thus need the Higgs bosons coefficients A(1), A(2), A(3) and D(2)
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in eqs. (3.9) and (3.10). Note that these coefficients are related4 to the analogous coefficients

of the DY process [26, 40, 41] by a simple overall factor Ca, which is proportional to the

colour charges of the colliding partons in the different processes. Therefore we explicitly

introduce in the following expressions the factor Ca, where Ca = CA = Nc = 3 in Higgs

boson production and Ca = CF = (N2
c − 1)/2Nc = 4/3 in DY production.

The LL and NLL coefficients A(1) and A(2) are well known [42, 43]:

A(1) = Ca , A(2) =
1

2
CaK , (3.14)

with

K = CA

(
67

18
− π2

6

)
− 5

9
Nf . (3.15)

The NNLL coefficient D(2) was evaluated in refs. [8, 9]:

D(2) = Ca

[
CA

(
−101

27
+

11

3
ζ(2) +

7

2
ζ(3)

)
+Nf

(
14

27
− 2

3
ζ(2)

)]
. (3.16)

The higher-order coefficients A(n) with n ≥ 3 are not fully known. However, the contribu-

tion to A(n) of the term proportional to Nn−1
f can be extracted from calculations [37, 44] in

the large-Nf limit. Moreover, by exploiting the relation (3.12) between the anomalous di-

mensions and A(αS), the available approximation [45] of the NNLO anomalous dimensions

can be used to obtain a corresponding numerical estimate [41] of the NNLL coefficient A(3):

A(3) =Ca

{
(13.81 ± 0.13) − 1

2

[
CF

(
55

48
− ζ(3)

)
+ CA

(
209

216
− 5π2

54
+

7ζ(3)

6

)]
Nf−

− 1

108
N2
f

}

= Ca

[
(13.81 ± 0.13) − 2.1467 . . . Nf −

1

108
N2
f

]
. (3.17)

where we have used the recent analytical computation [46, 47] of the term proportional to

Nf , which agrees with the approximate numerical calculation in ref. [45].

The LL, NLL and NNLL functions g
(1)
H , g

(2)
H and g

(3)
H in eq. (3.6) have the following

explicit expressions (see appendix C):

g
(1)
H (λ) = +

A(1)

πb0λ
[2λ+ (1− 2λ) ln(1− 2λ)] , (3.18)

g
(2)
H

(
λ,
M2

H

µ2R
;
M2

H

µ2F

)
= − A(2)

π2b20
[2λ+ ln(1− 2λ)]− 2A(1)γE

πb0
ln(1− 2λ)+

+
A(1)b1
πb30

[
2λ+ ln(1− 2λ) +

1

2
ln2(1− 2λ)

]
+

+
A(1)

πb0
[2λ+ ln(1− 2λ)] ln

M2
H

µ2R
− 2A(1)

πb0
λ ln

M2
H

µ2F
, (3.19)

4This relation follows from the general structure [20, 22] of the soft-gluon factorization formulae at

O(α2
S).
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g
(3)
H

(
λ,
M2

H

µ2R
;
M2

H

µ2F

)
= +

4A(1)

π
(ζ(2) + γ2E)

λ

1− 2λ
− 2A(1)γEb1
πb20(1− 2λ)

[2λ+ ln(1− 2λ)] +

+
A(1)b21

πb40(1− 2λ)

[
2λ2 + 2λ ln(1− 2λ) +

1

2
ln2(1− 2λ)

]
+

+
A(1)b2
πb30

[
2λ+ ln(1− 2λ) +

2λ2

1−2λ

]
+

2A(3)

π3b20

λ2

1−2λ −
D(2)

π2b0

λ

1−2λ+

+
4γEA

(2)

π2b0

λ

1− 2λ
− A(2)b1

π2b30

1

1− 2λ

[
2λ+ ln(1− 2λ) + 2λ2

]
−

− 2A(2)

π2b0
λ ln

M2
H

µ2F
− A(1)

π
λ ln2

M2
H

µ2F
+

2A(1)

π
λ ln

M2
H

µ2R
ln
M2

H

µ2F
+

+
1

1−2λ

(
A(1)b1
πb20

[2λ+ ln(1−2λ)]− 4A(1)γE
π

λ− 4A(2)

π2b0
λ2
)
ln
M2

H

µ2R
+

+
2A(1)

π

λ2

1− 2λ
ln2

M2
H

µ2R
, (3.20)

where

λ = b0αS(µ
2
R) lnN , (3.21)

and b0, b1, b2 are the first three coefficients of the QCD β-function [48]:

b0 =
1

12π
(11CA − 2Nf ) ,

b1 =
1

24π2
(
17C2

A − 5CANf − 3CFNf

)
, (3.22)

b2 =
1

(4π)3

(
2857

54
C3
A −

1415

54
C2
ANf −

205

18
CACFNf +C2

FNf +
79

54
CAN

2
f +

11

9
CFN

2
f

)
.

The functions g
(1)
H and g

(2)
H are well known (see e.g. ref. [30]). The NNLL function g

(3)
H was

first evaluated in ref. [41]. Our result in eq. (3.20) is obtained by using a different method,

and confirms the result of ref. [41].

To fully exploit the content of the resummation formula (3.3) up to NLL (and NNLL)

accuracy we need the constant coefficient C
(1)
gg (and C

(2)
gg ) in eq. (3.4). The coefficients C

(1)
gg

and C
(2)
gg read

C(1)
gg = δG(1)

gg + 6γ2E + π2 − 6γE ln
M2

H

µ2F
, (3.23)

C(2)
gg = δG(2)

gg + γE

(
101

3
− 14

9
Nf −

63

2
ζ(3)

)
+ γ2E

(
133

2
− 5Nf

3
+

21π2

2

)
+

+ γ3E

(
11− 2Nf

3

)
+ 18γ4E +

133π2

12
− 5Nfπ

2

18
+

29π4

20
+ 22ζ(3) − 4Nfζ(3)

3
+

+ ln2
M2

H

µ2F

(
−165

4
γE + 18γ2E +

5

2
NfγE + 3π2

)
+

+
3

2
γE(33− 2Nf ) ln

M2
H

µ2F
ln
M2

H

µ2R
− 1

4
(33− 2Nf )(6γ

2
E + π2) ln

M2
H

µ2R
+
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+ ln
M2

H

µ2F

[
−36γ3E + (33− 2Nf )γ

2
E + γE

(
−133

2
+

5Nf

3
− 21π2

2

)
+

+
11π2

2
− Nfπ

2

3
− 72ζ(3)

]
, (3.24)

where

δG(1)
gg =

11

2
+ 6ζ(2) +

33− 2Nf

6
ln
µ2R
µ2F

, (3.25)

δG(2)
gg =

11399

144
+

133

2
ζ(2)− 9

20
ζ(2)2 − 165

4
ζ(3)+

+

(
19

8
+

2

3
Nf

)
ln
M2

H

M2
t

+Nf

(
−1189

144
− 5

3
ζ(2) +

5

6
ζ(3)

)
+

+
(33− 2Nf )

2

48
ln2

µ2F
µ2R
− 18 ζ(2) ln2

M2
H

µ2F
+

+

(
169

4
+

171

2
ζ(3)− 19

6
Nf + (33− 2Nf ) ζ(2)

)
ln
M2

H

µ2F
+

+

(
−465

8
+

13

3
Nf −

3

2
(33− 2Nf ) ζ(2)

)
ln
M2

H

µ2R
. (3.26)

The terms δG
(1)
gg and δG

(2)
gg are the coefficients of the contribution proportional to δ(1− z)

in the coefficient functions G
(1)
gg (z) and G

(2)
gg (z), respectively. The NLO term δG

(1)
gg can be

read from eq. (2.8). The NNLO term δG
(2)
gg was computed in refs. [8, 9].

As pointed out in ref. [15], the dominant part of the corrections of O(1/N) in eq. (3.2)

is due to collinear-parton radiation, since it produces terms that are enhanced by powers

of lnN (or ln(1− z), as shown in eqs. (2.8) and (2.22)). These corrections can be included

in the soft-gluon resummation formula (3.3). In particular, by implementing the simple

modification

C(1)
gg → C(1)

gg + 2A(1) lnN

N
, (3.27)

to the coefficient C
(1)
gg , eq. (3.3) correctly resums [15, 8] all the leading collinear contribu-

tions to Ggg,N , i.e. all the terms of the type (αnS ln
2n−1N)/N that appear in the large-N

behaviour of G
(n)
gg,N . In the following sections we use the prescription in eq. (3.27) to

quantitatively estimate the dominant corrections to soft-gluon resummation.

4. Soft-virtual approximation

4.1 Soft-virtual approximation at NNLO

In section 3 we have discussed a method to resum soft-gluon effects to all perturbative

orders. The resummed formula is formally justified in the threshold limit z → 1, where

the expansion parameter lnN is really large, so that terms that are suppressed by powers

of 1/N are negligible. We wish, however, to use the resummed formulae also away from

the threshold region. Our justification for doing so is that we expect that the large-N

approximation is a good quantitative approximation to the exact result.
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The reasons for this expectation are discussed in detail in refs. [8, 16]. We briefly

summarize the main point of that discussion. In the evaluation of the hadronic cross section

in eq. (2.1), the partonic cross section σ̂ab(ŝ,M
2
H) has to be weighted (convoluted) with the

parton densities. Owing to the strong suppression of the parton densities fa/h(x, µ
2
F ) at

large x, the partonic centre-of-mass energy
√
ŝ is typically substantially smaller than

√
s

(〈ŝ〉 = 〈x1x2s〉 = 〈τH〉s), and the dominant values of the variable z = M 2
H/ŝ in the hard

coefficient function Gab(z) can be close to unity also when
√
s is not very close to MH [49].

At fixed MH , the reliability of the large-z (large-N) approximation of the hard coeffi-

cient function depends on the value of
√
s and on the actual value of the parton densities.

Therefore, the qualitative expectation of the relevance of the large-N approximation has

to be quantitatively tested at the level at which the exact result is known, that is up to the

NNLO level. Since in the rest of the paper we are interested in studying higher-order soft-

gluon effects within the N -space resummation formalism of section 3, in this subsection we

study the soft approximations to the fixed-order perturbative coefficients in N -space up to

NNLO. At the end of the subsection, we also discuss the soft approximations in x-space,

which were already considered in refs. [8, 16].

We begin by defining the N -space soft-virtual (SV-N) approximation of the hard

coefficient function. We write

G
(res)
gg,N = α2

S(µ
2
R)

[
1 +

αS(µ
2
R)

π
G

(1) SV-N
gg,N +

(
αS(µ

2
R)

π

)2

G
(2) SV-N
gg,N +O(α3

S)

]
. (4.1)

The coefficients G
(1,2) SV-N
gg,N can be obtained either by Mellin transformation of G

(1,2)
gg (z),

neglecting all terms formally suppressed by powers of N , or by expanding eq. (3.3) to the

fourth order in αS. We get

G
(1) SV-N
gg,N

(
M2

H

µ2R
;
M2

H

µ2F

)
= 6 ln2N + 12γE lnN − 6 lnN ln

M2
H

µ2F
+ C(1)

gg , (4.2)

G
(2) SV-N
gg,N

(
M2

H

µ2R
,
M2

H

µ2F

)
= 18 ln4N + ln3N

[
1

3
(33 − 2Nf ) + 72γE − 36 ln

M2
H

µ2F

]
+

+ ln2N

[
6C(1)

gg + (33− 2Nf )γE + 72γE
2 − 5

3
Nf +

67

2
− 3

2
π2+

+ 18ln2
M2

H

µ2F
− 72γE ln

M2
H

µ2F
− 1

2
(33 − 2Nf ) ln

M2
H

µ2R

]
+

+ lnN

[
(33− 2Nf )γ

2
E + 12γEC

(1)
gg + γE

(
67 − 10

3
Nf − 3π2

)
+

+
101

3
− 14

9
Nf −

63

2
ζ(3)− 1

4
(33 − 2Nf ) ln

2 M
2
H

µ2F
+

+
1

2
(33− 2Nf ) ln

M2
H

µ2F
ln
M2

H

µ2R
− (33− 2Nf )γE ln

M2
H

µ2R
+

+ ln
M2

H

µ2F

(
−67

2
+

5

3
Nf +

3

2
π2 − 6C(1)

gg

)]
+ C(2)

gg . (4.3)
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The N -space soft-virtual-collinear (SVC-N) approximation is defined as

G
(1) SVC-N
gg,N

(
M2

H

µ2R
;
M2

H

µ2F

)
= G

(1) SV-N
gg,N

(
M2

H

µ2R
;
M2

H

µ2F

)
+ 6

lnN

N
, (4.4)

G
(2) SVC-N
gg,N

(
M2

H

µ2R
;
M2

H

µ2F

)
= G

(2) SV-N
gg,N

(
M2

H

µ2R
;
M2

H

µ2F

)
+ 36

ln3N

N
+

+ 72γE
ln2N

N
− 36

ln2N

N
ln
M2

H

µ2F
. (4.5)

Note that we keep terms proportional to ln2N/N in the two-loop coefficient G
(2) SVC-N
gg,N .

These subleading collinear terms5 appear in the expansion of the (modified) resummed

formulae when the leading collinear terms are taken into account according to eq. (3.27).

We now want to compare the SV-N and SVC-N approximations to the exact results,

both at NLO and NNLO. To do this, at each order we define the quantity

∆A(µF , µR) =
σA(µF , µR)− σ(µF = µR =MH)

σ(µF = µR =MH)
, (4.6)

where the subscript A stands for SV, SVC, or nothing (in the case of no approximation)

at the given order. The approximated cross sections σSV and σSVC at NLO are defined by

eq. (2.19) with the replacements

Gab,N =⇒ 0 for ab 6= gg

Ggg,N =⇒ α2
S(µ

2
R)

[
1 +

αS(µ
2
R)

π
G

(1)A-N
gg,N

]
, (4.7)

where A stands for SV or SVC, and G
(1)A-N
gg,N is given in eq. (4.2) or (4.4), respectively. At

the NNLO level, the approximated cross sections σA are defined by the replacements

Gab,N =⇒ α2
S(µ

2
R)

αS(µ
2
R)

π
G

(1)
ab,N for ab 6= gg

Ggg,N =⇒ α2
S(µ

2
R)

[
1 +

αS(µ
2
R)

π
G

(1)
gg,N +

(
αS(µ

2
R)

π

)2

G
(2)A-N
gg,N

]
, (4.8)

where G
(2)A-N
gg,N is given in eqs. (4.3) and (4.5). Note that at NNLO, σSV and σSVC include

the complete (i.e. without any large-N approximation and including the qg and qq̄ channels)

hard coefficient function up to NLO.

The quantity ∆ is plotted in figures 1 and 2 for the LHC and for the Tevatron, respec-

tively. The central curves are obtained by fixing µF = µR =MH . The bands are obtained

by varying µF and µR simultaneously and independently in the range 0.5MH ≤ µF , µR ≤
2MH with the constraint 0.5 ≤ µF /µR ≤ 2.

Here and in the following, we use the MRST2002 [50] set of parton distributions, which

includes (approximated [45, 46, 51]) NNLO parton distributions. The parton densities and

5We recall that these terms are not the complete contribution proportional to ln2N/N in G
(2)
gg,N . We

also anticipate that the effect of including these terms in eq. (4.5) is numerically negligible.
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Figure 1: The SV (dotted lines) and SVC (dashed lines) approximations in N -space versus the

exact results (solid lines) at the LHC (
√
s = 14TeV).

Figure 2: The SV (dotted lines) and SVC (dashed lines) approximations in N -space versus the

exact results (solid lines) at the Tevatron (
√
s = 1.96TeV).

QCD coupling are evaluated at each corresponding order, by using 1-loop αS at LO, 2-loop

αS at NLO and 3-loop αS at NNLO. The corresponding values of αS(MZ) are 0.130, 0.1197,

0.1154, at 1-loop, 2-loop and 3-loop order, respectively.

As can be observed from figures 1 and 2, the SV and SVC approximations in N -space

agree very well with the exact NLO and NNLO calculations. Moreover, the differences

between the approximated and exact results are substantially smaller than the effects

produced by the scale variations in the exact results at each fixed order. A sizeable part

of these small differences can be understood from the fact that in the approximation only
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the gg channel contribution is included, thus neglecting the negative contribution from the

qg channel, which incidentally is also well approximated by its leading collinear behaviour

at large N . The very small numerical difference between the SV and SVC approximations

is consistent with the fact that they formally differ by 1/N suppressed terms, thus again

confirming the consistency of the approximation based on the large-N expansion.

The soft approximation, as well as the SV and SVC approximations, can also be defined

in x space. In this formulation, the large logarithm to be considered is ln(1−x), instead of

lnN . It is easy to go from one formulation to the other by Mellin transform. For example

(see e.g. eqs. (2.20)–(2.22) and appendix A), one goes from the x-space formulae to the N -

space ones by performing a Mellin transformation and discarding all 1/N suppressed terms,

and all terms that are subleading (in the large-N limit) with respect to the logarithmic

accuracy of the initial x-space formulae. Thus, x-space and N -space formulae generally

differ by terms that are formally subleading.

It has been shown in ref. [39] that large subleading terms arise in the x-space for-

mulation of the resummation program. These subleading terms grow factorially with the

order of the perturbative expansion. Their factorial growth is not related to renormalons

or Landau singularities. These terms are rather an artefact of the x-space approximation,

which mistreats the kinematical constraint of energy conservation, and they should not

be present in the exact theory. As a consequence of the factorial growth of these terms,

all-order resummation cannot systematically be defined (implemented) in x-space, since

the series of LL, NLL, NNLL, . . . terms are separately divergent. It is therefore interesting

to compare the x-space and N -space approximations for the first few exactly known orders.

At NLO, the x-space soft-virtual contribution (called SV-x approximation, here) to

the gluon coefficient function G
(1)
gg in eq. (2.8) is

G(1) SV-x
gg

(
z;
M2

H

µ2R
;
M2

H

µ2F

)
= δ(1 − z)

(
11

2
+ 6ζ(2) +

33− 2Nf

6
ln
µ2R
µ2F

)
+

+ 6D0(z) ln
M2

H

µ2F
+ 12D1(z) . (4.9)

The same approximation can be defined at NNLO, and the corresponding contribution to

the gluon coefficient function G
(2)
gg (z) has the form

G(2)SV-x
gg

(
z;
M2

H

µ2R
,
M2

H

µ2F

)
= δ(1 − z)δG(2) +D0G

(2)
0 +D1G

(2)
1 +D2G

(2)
2 +D3G

(2)
3 , (4.10)

where the coefficients δG(2), G
(2)
0 , G

(2)
1 and G

(2)
3 were computed in refs. [8, 9] (these coeffi-

cients can be found in eq. (2.13) of ref. [8]).

After including the leading collinear logarithmic contributions, the x-space soft-virtual-

collinear (SVC-x) approximation is defined [8] by

G(1) SVC-x
gg

(
z;
M2

H

µ2R
;
M2

H

µ2F

)
= G(1) SV-x

gg

(
z;
M2

H

µ2R
;
M2

H

µ2F

)
− 12 ln(1− z) , (4.11)

G(2) SVC-x
gg

(
z;
M2

H

µ2R
;
M2

H

µ2F

)
= G(2) SV-x

gg

(
z;
M2

H

µ2R
;
M2

H

µ2F

)
− 72 ln3(1− z) . (4.12)
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Figure 3: The SV-x (dotted lines) and SVC-x (dashed lines) approximations versus the exact

results (solid lines) at the LHC (
√
s = 14TeV).

Figure 4: The SV-x (dotted lines) and SVC-x (dashed lines) approximations versus the exact

results (solid lines) at the Tevatron (
√
s = 1.96TeV).

Figures 3 and 4 are obtained in the same way as figures 1 and 2, except for the use of the

SV-x and SVC-x approximations instead of the analogous N -space approximations. These

figures show that the bulk of the fixed-order radiative corrections is given by the SV-x and

SVC-x approximations, as observed in refs. [8, 16]. However, comparing figures 3 and 4 with

figures 1 and 2, we also see that the x-space approximations are worse than the N -space

ones. Furthermore, the difference between the SV-x and SVC-x approximations (which is

formally suppressed by a power of (1−z)) is considerably larger than the difference between

the SV-N and SVC-N approximations (which is formally suppressed by a power of 1/N).
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The lower quality of the x-space approximations at NLO and NNLO can have two dif-

ferent origins. First, the typical value 〈1 − z〉 of the distance from the partonic threshold,

which is the parameter that formally controls the large-x expansion, can be quantitatively

larger than the typical value 〈1/N〉 of the analogous expansion parameter in the N -space

approach. Second, the numerical coefficients in the x-space expansion formulae can be

larger than those in the N -space expansion formulae, as is the case at very high perturba-

tive orders, because of the presence of factorially-growing subleading terms in the x-space

approach. Of course, given the few orders available in the perturbative expansion, it is

very difficult to explicitly check for the presence or absence of these factorial terms. We

conclude, however, that these results provide no justification for estimating terms of still

higher order through the soft-gluon approximation in the x-space approach.

4.2 Numerical relevance of the resummation

Before moving to the phenomenological results for soft-gluon resummation in Higgs pro-

duction at the LHC and at the Tevatron, it is interesting to study the main features of the

resummed coefficient function. This is better done in N -space, since both the resummed

and fixed-order coefficient functions in x-space are distributions, and their numerical im-

pact is therefore more difficult to assess.

To directly observe the effect of the exponentiation, we fix the coupling constant at

αS = 0.1, the Higgs mass at MH = 150GeV, and the scales at µF = µR = MH . Figure 5

shows the N -moments, Ggg,N , of the resummed (left-hand side) and fixed-order (right-

hand side) gluon coefficient function. The fixed-order coefficient function (see eq. (2.6))

is evaluated at LO, NLO and NNLO. The resummed coefficient function (see eq. (3.3)) is

evaluated at LL (i.e. including the function g
(1)
H ), NLL (i.e. including also the function g

(2)
H

and the coefficient C
(1)
gg ) and NNLL (i.e. including also the function g

(3)
H and the coefficient

C
(2)
gg ) order. At large values of N , there is a noticeable improvement in the convergence of

the perturbative expansion once the resummation is performed. Indeed, the ratio between

NNLL and NLL results is considerably smaller than the one between NLL and LL results.

Figure 5: N -dependence of resummed (left-hand side) and fixed-order (right-hand side) gluon

coefficient functions for Higgs production (MH = 150GeV) with fixed coupling constant αS = 0.1.
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On the contrary, fixed-order results show an increasing ratio between two successive orders,

which is due to the appearance of new and large ln(i)N terms in the fixed-order expansion.

Note, however, that we do not anticipate very large resummation effects on Higgs boson

production at the LHC and the Tevatron. In fact, we know [8]–[13] that the ratio between

the NNLO and LO cross sections does not exceed a factor of about 3 at these hadron

colliders. From inspection of the right-hand side of figure 5, we thus expect that the Higgs

boson cross section at LHC and Tevatron energies is mainly sensitive to the gluon coefficient

function at moderate values of N .

5. Phenomenological results

5.1 Resummed cross section

We use soft-gluon resummation in N -space at the parton level (i.e. at the level of the

partonic coefficient function Gab) to introduce an improved (resummed) hadronic cross

section σ(res)(s,M2
H), which is obtained by inverse Mellin transformation (see eq. (2.19))

as follows:

σ(res)(s,M2
H) = σ(0)

∫ CMP +i∞

CMP−i∞

dN

2πi

(
M2

H

s

)−N+1

fg/h1,N (µ2F )fg/h2N (µ2F )×

×
[
G

(res)
gg,N

(
αS(µ

2
R),

M2
H

µ2R
;
M2

H

µ2F

)
−
(
G

(res)
gg,N

(
αS(µ

2
R),

M2
H

µ2R
;
M2

H

µ2F

))

(f.o.)

]
+

+ σ(f.o.)(s,M2
H) , (5.1)

where σ(f.o.)(s,M2
H) is the Higgs boson hadronic cross section at a given fixed order

(f.o. = LO, NLO, NNLO), G
(res)
gg,N is given in eq. (3.3), and

(
G

(res)
gg,N

)
(f.o.)

represents its per-

turbative truncation at the same fixed order in αS(µ
2
R). Thus, because of the subtraction

in the square bracket on the right-hand side, eq. (5.1) exactly reproduces the fixed-order

results and resums soft-gluon effects beyond those fixed orders up to a certain logarithmic

accuracy.

In the following subsections, we present numerical results for the resummed cross

section σ(res)(s,M2
H) at LL, NLL and NNLL accuracy. The resummed coefficient function

G
(res)
gg,N in eq. (5.1) is evaluated from the expressions in eqs. (3.3)–(3.6): at LL accuracy

we include the function g
(1)
H ; at NLL accuracy we include also the function g

(2)
H and the

coefficient C
(1)
gg ; at NNLL accuracy we include also g

(3)
H and C

(2)
gg . Although they are

briefly denoted as NkLL (k = 0, 1, 2), the resummed results are always matched to the

corresponding fixed order (f.o. = N kLO) according to eq. (5.1), i.e. LL is matched to LO,

NLL to NLO and NNLL to NNLO.

Unless otherwise stated, cross sections are computed using sets of parton distributions,

with densities and QCD coupling evaluated at each corresponding order, by using 1-loop

αS at LO (LL), 2-loop αS at NLO (NLL), and 3-loop αS at NNLO (NNLL).

We recall that the hard coefficient function Gab is evaluated in the large-Mt approxima-

tion, whereas the exact dependence on the masses Mt andMb of the top and bottom quark

is included in the Born-level cross section σ(0). We use Mt = 176GeV and Mb = 4.75GeV.
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The inverse Mellin transformation in eq. (5.1) involves an integral in the complex N

plane. When the N -moments Ggg,N are evaluated at a fixed perturbative order, they are

analytic functions in a right half-plane of the complex variable N . In this case, the constant

CMP that defines the integration contour has to be chosen in this half-plane, that is, on

the right of all the possible singularities of the N -moments.

When Ggg,N is evaluated in resummed perturbation theory, the resummed functions

g
(n)
H (λ) in eqs. (3.18)–(3.20) are singular at the point λ = 1/2, which corresponds to

N = NL = exp(1/2b0αS(µ
2
R)) (i.e. NL ∼ MH/ΛQCD). These singularities, which are

related to the divergent behaviour of the perturbative running coupling αS near the Lan-

dau pole, signal the onset of non-perturbative phenomena at very large values of N or,

equivalently, in the region very close to threshold. We deal with these singularities by

using the Minimal Prescription introduced in ref. [39]. In the evaluation of the inverse

Mellin transformation in eq. (5.1), the constant CMP is chosen in such a way that all

singularities in the integrand are to the left of the integration contour, except for the

Landau singularity at N = NL, that should lie to the far right. The results obtained

by using this prescription converge asymptotically to the perturbative series6 and do not

introduce (unjustified) power corrections7 of non-perturbative origin. These corrections

are certainly present in physical cross sections, but their effect is not expected to be size-

able, as long as MH is sufficiently perturbative and τH = M2
H/s is sufficiently far from

the hadronic threshold, as is the case in Higgs boson production at the Tevatron and the

LHC.

The resummed cross section in eq. (5.1) can equivalently be rewritten as

σ(res)(s,M2
H) = σ(SV)(s,M2

H) + σ(match.)(s,M2
H) , (5.2)

where σ(SV) denotes the contribution obtained by Mellin inversion of G
(res)
gg,N , while the

matching contribution σ(match.) denotes the fixed-order cross section minus the correspond-

ing fixed-order truncation of the soft-gluon resummed terms. As can easily be argued from

the numerical results in section 4.1, σ(SV) gives the bulk of the QCD radiative corrections

to the Higgs boson cross section at the Tevatron and the LHC. The order of magnitude of

the relative contribution from σ(match.) can be estimated from the size of the ratio ∆ (see

the definition in eq. (4.6)) in figures 1 and 2: it is of O(10%) and of O(1%) at NLO and

NNLO, respectively. Thus, the fixed-order cross section σ(match.) quantitatively behaves as

naively expected from a power series expansion whose expansion parameter is αS ∼ 0.1.

We expect that the currently unknown (beyond NNLO) corrections to σ (match.) have no

practical quantitative impact on the QCD predictions for Higgs boson production at the

Tevatron and the LHC.

We note that the predictions we are going to present regard the production of an on-

shell Higgs boson. Therefore they are directly applicable at low values of MH , where the

small-width approximation is valid. At high values of MH , corrections due to finite-width

effects have to be implemented.

6An explicit check of the numerical convergence is presented in appendix D.
7The only remaining asymptotic ambiguity is more suppressed than any power law [39].

– 22 –



J
H
E
P
0
7
(
2
0
0
3
)
0
2
8

Figure 6: Scale dependence of the Higgs production cross section at the LHC for MH = 115GeV

at a) (upper) LO, NLO, NNLO and b) (lower) LL, NLL, NNLL accuracy.

5.2 LHC

In this subsection we study the phenomenological impact of soft-gluon resummation on the

production of the SM Higgs boson at the LHC. The cross sections are computed using the

MRST2002 set of parton distributions [50], with densities and QCD coupling evaluated at

each corresponding order, as stated in section 5.1 and done in section 4.1.

We begin the presentation of our results by showing in figure 6 the scale dependence

of the cross section for the production of a Higgs boson with MH = 115GeV. The scale

dependence is analysed by varying the factorization and renormalization scales around the

default value MH . The plot on the left corresponds to the simultaneous variation of both

scales, µF = µR = χMH , whereas the plot in the centre (right) corresponds to the variation

of the factorization (renormalization) scale µF = χF MH (µR = χRMH) by fixing the other

scale at the default value MH .

As expected from the QCD running of αS, the cross sections typically decrease when

µR increases around the characteristic hard scale MH , at fixed µF = MH . In the case

of variations of µF at fixed µR = MH , we observe the opposite behaviour. In fact, when

MH = 115GeV, the cross sections are mainly sensitive to partons with momentum fraction
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Figure 7: Scale dependence of the Higgs production cross section at the LHC for MH = 400GeV

at a) (upper) LO, NLO, NNLO and b) (lower) LL, NLL, NNLL accuracy.

x ∼ 10−2, and in this x-range scaling violation of the parton densities is (moderately)

positive. Varying the two scales simultaneously (µF = µR) leads to a compensation of

the two different behaviours. As a result, the scale dependence is mostly driven by the

renormalization scale, because the lowest-order contribution to the process is proportional

to α2
S, a (relatively) high power of αS.

Figure 6a shows that the scale dependence is reduced when higher-order corrections

are included. When resummation effects are implemented (figure 6b), we typically observe

a further (slight) reduction of the scale dependence, with the exception of the factorization-

scale dependence at fixed µR = MH that is marginally stronger after resummation. This

suggests that the rather flat dependence on µF at NNLO can be an accidental effect, as

also suggested by the fact that the µF dependence is much weaker than the µR dependence

at each fixed order (LO, NLO, NNLO).

In figure 7, analogous results are plotted at a higher value, MH = 400GeV, of the

Higgs boson mass. The overall features of figures 6 and 7 are similar, although we notice

that the improvement in the scale dependence when higher-order contributions are included

is slightly better in figure 7 than in figure 6. An interesting difference between these two

figures regards the µF dependence at fixed µR. The LO, NLO, NNLO and LL results in
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Figure 8: Fixed-order and resummed K-factors for Higgs production at the LHC.

figure 7 show that the corresponding cross sections (very) slightly decrease as µF increases

aroundMH . This is because, when increasingMH fromMH = 115GeV toMH = 400GeV,

the cross section is sensitive to partons with higher values of the momentum fraction x, so

that scaling violation of the parton densities can become slightly negative. The fact that

the parton densities are evaluated in an x-range where scaling violation changes sign is also

suggested by the change in the slope of the µF dependence when going from LL to NLL

and NNLL order.

The impact of higher-order corrections is sometimes presented through the K-factors,

defined as the ratio of the cross section evaluated at each corresponding order over the

LO result. The K-factors are shown in figure 8, where the bands are obtained, as in

section 4.1, by varying the scales µR and µF (simultaneously and independently) in the

range 0.5MH ≤ µF , µR ≤ 2MH , with the constraint 0.5 ≤ µF/µR ≤ 2. The LO result that

normalizes the K-factors is computed at the default scale MH in all cases. We see that

the effect of the higher-order corrections increases with MH . We also see that the soft-

gluon resummation effects are more important at higher values of MH . This is expected,

since by increasing MH we are closer to the hadronic threshold, where soft-gluon effects

are larger. When MH increases, the scale dependence after resummation is smaller than

at the corresponding fixed orders. In the case of a light Higgs boson (MH . 200GeV),

the NNLO K-factor is about 2.1–2.2, which corresponds to an increase of about 20% with

respect to the NLO K-factor. In this low-mass range, the effects of resummation are also

moderate: at NNLL accuracy the central value of the cross section increases by about 6%

with respect to NNLO.

In figure 9 we plot the NNLO and NNLL cross sections, with the corresponding scale-

dependence bands (computed as in figure 8), in the range MH =100–300 GeV. The corre-

sponding numerical results are given in table 1, where σmin, σmax and σref correspond to

the minimum, maximum and central values in the bands.
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Figure 9: NNLL and NNLO cross sections at the LHC, using MRST2002 parton densities.

MH σNNLO
min σNNLO

ref σNNLO
max σNNLL

min σNNLL
ref σNNLL

max

100 47.71 53.30 59.02 51.22 56.36 61.28

110 41.08 45.77 50.55 44.12 48.41 52.47

120 35.81 39.80 43.85 38.46 42.10 45.52

130 31.52 34.96 38.45 33.87 37.00 39.92

140 27.99 30.99 34.02 30.09 32.80 35.32

150 25.05 27.69 30.34 26.94 29.31 31.51

160 22.56 24.90 27.25 24.28 26.37 28.31

170 20.45 22.54 24.64 22.02 23.88 25.59

180 18.65 20.52 22.40 20.08 21.74 23.27

190 17.09 18.79 20.48 18.39 19.90 21.27

200 15.74 17.28 18.83 16.96 18.32 19.55

210 14.57 15.98 17.39 15.70 16.94 18.07

220 13.55 14.85 16.14 14.60 15.74 16.78

230 12.65 13.86 15.05 13.65 14.70 15.65

240 11.87 12.99 14.10 12.81 13.78 14.67

250 11.19 12.24 13.28 12.08 12.99 13.81

260 10.60 11.58 12.55 11.45 12.30 13.06

270 10.09 11.01 11.93 10.90 11.70 12.42

280 9.648 10.53 11.39 10.42 11.18 11.86

290 9.270 10.11 10.94 10.02 10.74 11.39

300 8.960 9.773 10.57 9.696 10.38 11.00

Table 1: NNLO and NNLL cross sections (in pb) at the LHC, using MRST2002 parton densities.
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Figure 10: Scale dependence of the Higgs production cross section at the Tevatron for MH =

150GeV at a) (upper) LO, NLO, NNLO and b) (lower) LL, NLL, NNLL accuracy.

5.3 Tevatron

Here we study the phenomenological impact of soft-gluon resummation on the production

of the SM Higgs boson at the Tevatron Run II.

As in the previous subsection, we show in figure 10 the scale dependence of the fixed-

order and resummed results. We useMH = 150GeV. As in the LHC case, the cross sections

typically decrease when µR increases around the characteristic hard scale MH . Figure 10a

shows that the fixed-order cross section decreases when µF increases at fixed µR. This

is not unexpected: at the Tevatron, the cross section is mainly sensitive to partons with

x ∼ 0.05–0.1, where the scaling violation is slightly negative. As in the LHC case, the µF
dependence of the resummed results appears to be stronger than the µF dependence of the

fixed-order results. The slope of the µF dependence changes sign in going from LL to NLL

and NNLL order, as in the case of figure 7.

In figure 11 we plot the K-factor bands defined as in figure 8. We see that the impact

of higher-order corrections at fixed MH is larger at the Tevatron than at the LHC. This

is not unexpected: at the Tevatron, the Higgs boson is produced closer to the hadronic
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Figure 11: Fixed order and resummed K-factors for Higgs production at the Tevatron Run II

(
√
s = 1.96TeV).

Figure 12: NNLL and NNLO cross sections at the Tevatron (
√
s = 1.96TeV), using MRST2002

parton densities.

threshold and soft-gluon effects are therefore more sizeable. The NNLO K-factor is about

3–3.2, with an increase of about 40% with respect to NLO. Correspondingly, also the

resummation effects are larger: at NNLL they increase the NNLO cross section by about

12–15%. The scale dependence of the NNLL result is smaller than at NNLO.

In figure 12 we plot the NNLO and NNLL cross-section bands, obtained as in figures 8

and 11, in the mass range MH = 100–200 GeV. The corresponding numerical results are

given in table 2.
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MH σNNLO
min σNNLO

ref σNNLO
max σNNLL

min σNNLL
ref σNNLL

max

100 1.2946 1.4846 1.6783 1.5129 1.6568 1.8009

105 1.1335 1.3006 1.4701 1.3292 1.4535 1.5784

110 0.9970 1.1445 1.2936 1.1728 1.2808 1.3894

115 0.8804 1.0112 1.1429 1.0389 1.1331 1.2281

120 0.7803 0.8967 1.0135 0.9237 1.0062 1.0898

125 0.6939 0.7978 0.9017 0.8240 0.8965 0.9704

130 0.6190 0.7120 0.8048 0.7373 0.8013 0.8668

135 0.5537 0.6373 0.7204 0.6615 0.7182 0.7766

140 0.4967 0.5719 0.6465 0.5951 0.6455 0.6976

145 0.4466 0.5145 0.5817 0.5367 0.5815 0.6282

150 0.4025 0.4639 0.5246 0.4850 0.5251 0.5670

155 0.3635 0.4193 0.4742 0.4393 0.4752 0.5130

160 0.3290 0.3797 0.4295 0.3988 0.4310 0.4651

165 0.2984 0.3445 0.3898 0.3627 0.3917 0.4226

170 0.2712 0.3132 0.3544 0.3305 0.3566 0.3847

175 0.2469 0.2852 0.3228 0.3017 0.3253 0.3509

180 0.2251 0.2602 0.2946 0.2758 0.2972 0.3206

185 0.2056 0.2378 0.2693 0.2526 0.2720 0.2933

190 0.1881 0.2177 0.2465 0.2317 0.2493 0.2688

195 0.1724 0.1996 0.2261 0.2129 0.2289 0.2469

200 0.1582 0.1832 0.2076 0.1959 0.2105 0.2270

Table 2: NNLO and NNLL cross sections (in pb) at the Tevatron (
√
s = 1.96TeV), using

MRST2002 parton densities.

5.4 Uncertainties on Higgs production cross section

In this subsection we would like to discuss the various sources of QCD uncertainty that still

affect the Higgs production cross section, focusing on the low-MH region (MH . 200GeV).

The uncertainty basically has two origins: the one coming from still unknown perturbative

QCD contributions to the coefficient function Gab in eq. (2.1), and the one originating from

our limited knowledge of the parton distributions.

Uncalculated higher-order QCD radiative corrections are the most important source of

uncertainty on the coefficients Gab. A method, which is customarily used in perturbative

QCD calculations, to estimate their size is to vary the renormalization and factorization

scales around the hard scale MH . In general, this procedure can only give a lower limit

on the ‘true’ uncertainty. This is well demonstrated by figures 8 and 11, which show no

overlap between the LO and NLO (or, LL and NLL) bands. However, the NLO and NNLO

bands and, also, the NNLO and NNLL bands do overlap. Furthermore, the central value

of the NNLL bands lies inside the corresponding NNLO bands. This gives us confidence

in using scale variations to estimate the uncertainty at NNLO and at NNLL order.

Performing scale variations as in figures 8, 9, 11 and 12, from the numerical results in

tables 1 and 2, we find the following results. At the LHC, the NNLO scale dependence
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ranges from about ±10% when MH = 120GeV, to about ±9% when MH = 200GeV. At

NNLL order, it is about±8% whenMH . 200GeV. At the Tevatron, whenMH . 200GeV,

the NNLO scale dependence is about ±13%, whereas the NNLL scale dependence is about

±8%.

Another method to estimate the size of higher-order corrections is to compare the

results at the highest available order with those at the previous order. Considering the dif-

ferences between the NNLO and NNLL cross sections, we obtain results that are consistent

with the uncertainty estimated from scale variations.

We have also considered other possible sources of higher-order uncertainty. The NNLL

coefficient A(3) is not yet exactly known (see eq. (3.17) and the accompanying comment).

One can thus wonder which is the numerical impact of A(3) in the calculation. We have

investigated the numerical effect of A(3) by comparing the full NNLL result with the same

result obtained by setting A(3) = 0. The differences are below 1%, allowing us to conclude

that the uncertainty from A(3) can safely be neglected. Similar conclusions can be drawn

about the inclusion of the dominant collinear contributions (see eq. (3.27)) in the resummed

formula. At NNLL order, it gives an effect below 1%, in agreement with the fact that

collinear logarithmic contributions, which are formally suppressed by powers of 1/N , give

only a small correction to the dominant terms due to soft and virtual contributions (see

section 4).

A different and relevant source of perturbative QCD uncertainty comes from the use

of the large-Mt approximation in the computation of Gab beyond the LO. The compar-

ison [6, 15] between the exact NLO cross section and the one obtained in the large-Mt

approximation (but rescaled with the full Born result, including its exact dependence on

Mt and Mb) shows that the approximation works well also for MH & Mt. This is not

accidental. In fact, the higher-order contributions to the cross section are dominated by

soft radiation, which is weakly sensitive to the mass of the heavy quark in the loop at the

Born level. In other words, as for the size of the QCD radiative corrections, what matters is

that the heavy-quark mass, Mt is actually larger than the soft-gluon scale, MH/N , rather

than the Higgs boson scale MH . This feature, i.e. the dominance of soft-gluon effects,

persists at NNLO (see section 4) and it is thus natural to assume that, having normalized

our cross sections with the exact Born result, the uncertainty ensuing from the large-Mt

approximation should be of order of few per cent for MH . 200GeV, as it is at NLO.

Besides QCD radiative corrections, electroweak corrections also have to be considered.

For a light Higgs, the O(GFM
2
t ) dominant corrections in the large-Mt limit have been

computed and found to give a very small effect (well below 1%) [52].

The other independent and important source of theoretical uncertainty in the cross

section is the one coming from parton distributions.

We start our discussion by considering NLO results. We have compared the MRST2002

NLO cross sections with the ones computed with CTEQ6 [53] and Alekhin [54] distribu-

tions. All three sets include a study of the effect of the experimental uncertainties in

the extraction of the parton densities. At the LHC, we find that the CTEQ6M results

are slightly larger than the MRST2002 ones, the differences decreasing from about 2%

at MH = 100GeV to below 1% at MH = 200GeV. Alekhin’s results are instead slightly
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MH σNNLO σNNLL

100 57.52+0.93
−0.93 60.95+1.00

−1.00

110 48.97+0.77
−0.77 51.81+0.82

−0.82

120 42.29+0.64
−0.64 44.82+0.68

−0.69

130 36.99+0.54
−0.55 39.17+0.58

−0.59

140 32.59+0.46
−0.47 34.55+0.50

−0.50

150 28.94+0.40
−0.40 30.74+0.43

−0.43

160 25.91+0.35
−0.35 27.52+0.38

−0.38

MH σNNLO σNNLL

170 23.35+0.31
−0.31 24.75+0.34

−0.33

180 21.17+0.28
−0.28 22.42+0.30

−0.30

190 19.29+0.25
−0.25 20.44+0.27

−0.27

200 17.65+0.23
−0.23 18.76+0.25

−0.25

210 16.25+0.21
−0.21 17.28+0.23

−0.23

220 15.03+0.20
−0.20 15.98+0.21

−0.21

230 13.96+0.18
−0.18 14.84+0.19

−0.19

MH σNNLO σNNLL

240 13.04+0.17
−0.17 13.86+0.18

−0.18

250 12.23+0.16
−0.16 13.00+0.17

−0.17

260 11.53+0.16
−0.16 12.26+0.16

−0.16

270 10.92+0.15
−0.15 11.62+0.16

−0.16

280 10.39+0.15
−0.15 11.05+0.15

−0.15

290 9.939+0.14
−0.14 10.57+0.15

−0.15

300 9.562+0.14
−0.14 10.16+0.15

−0.15

Table 3: NNLO and NNLL cross sections (in pb) at the LHC (µF = µR = MH) using the parton

distributions of ref. [54].

smaller than the MSRT2002 ones, the difference being below 3% for MH . 200GeV. At

the Tevatron, CTEQ6 (Alekhin) cross sections are smaller than the MRST2002 ones, the

differences increasing from 6% (7%) to 10% (9%) when MH increases from 100GeV to

200GeV. These results are not unexpected, since in Higgs production at the Tevatron the

gluon distribution is probed at larger values of x, where its (experimental) uncertainty is

definitely larger. The cross section differences that we find at NLO are compatible with

the experimental uncertainty on the NLO gluon luminosity quoted by the three groups,

which is below about ±5% at the LHC and about ±10% at the Tevatron [50, 53, 54].

Throughout the paper we have used the MRST2002 set [50] as the reference set of

parton distributions. The main motivation for this choice is that this set includes (approx-

imated) NNLO densities, allowing a consistent study at NNLL (NNLO) accuracy. The

CTEQ collaboration does not provide a NNLO set, and a complete, consistent comparison

with MRST can therefore not be performed. In ref. [54], a NNLO set of parton distributions

(set A02 from here on) has been released. This set also includes an estimate of the corre-

sponding uncertainties. We can thus perform a comparison with the MRST2002 results.

In table 3 (table 4) we report the NNLO and NNLL cross sections (computed with µF =

µR = MH) obtained at the LHC (Tevatron) by using the set A02 of parton distributions.

We also report the corresponding errors, computed by using the dispersion array8 of the

A02 sets. Comparing tables 3 and 4 with the corresponding central results in tables 1 and 2,

we see that there are relatively large differences that cannot be accounted for by the errors

provided in the A02 set. At the LHC the cross section is larger than the one computed

with the MRST2002 set, and the difference goes from about 8% at low masses to about 2%

at MH = 200GeV. At the Tevatron the cross section is lower than that using MRST2002,

with a difference that ranges from about 7% at low MH to about 14% at MH = 200GeV.

8More precisely, 30 parton distributions are generated according to fi(x, k) = fi(x) ± ∆i(x, k), k =

1, . . . , 15, and the cross section for each k is evaluated. The positive (negative) deviations from the central

value are then summed in quadrature to obtain the upper (lower) error.
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MH σNNLO σNNLL

100 1.378+0.041
−0.041 1.548+0.043

−0.042

105 1.203+0.038
−0.038 1.347+0.039

−0.039

110 1.054+0.035
−0.035 1.181+0.037

−0.036

115 0.9280+0.033
−0.032 1.042+0.034

−0.034

120 0.8194+0.030
−0.030 0.9227+0.031

−0.032

125 0.7259+0.028
−0.028 0.8191+0.029

−0.029

130 0.6445+0.026
−0.026 0.7292+0.027

−0.027

MH σNNLO σNNLL

135 0.5740+0.024
−0.024 0.6503+0.026

−0.025

140 0.5135+0.023
−0.023 0.5816+0.024

−0.024

145 0.4604+0.021
−0.021 0.5210+0.023

−0.022

150 0.4136+0.020
−0.020 0.4686+0.021

−0.021

155 0.3723+0.019
−0.019 0.4231+0.020

−0.020

160 0.3357+0.018
−0.017 0.3831+0.019

−0.019

165 0.3032+0.017
−0.016 0.3471+0.018

−0.017

MH σNNLO σNNLL

170 0.2741+0.015
−0.015 0.3142+0.016

−0.016

175 0.2483+0.014
−0.014 0.2841+0.015

−0.015

180 0.2253+0.014
−0.014 0.2577+0.015

−0.015

185 0.2054+0.013
−0.013 0.2353+0.014

−0.014

190 0.1877+0.012
−0.012 0.2157+0.013

−0.013

195 0.1716+0.011
−0.011 0.1981+0.012

−0.012

200 0.1572+0.011
−0.011 0.1818+0.012

−0.012

Table 4: NNLO and NNLL cross sections (in pb) at the Tevatron (µF = µR = MH) using the

parton distributions of ref. [54].

Figure 13: Comparison of A02 and

MRST2002 gg luminosities at the LHC.

Figure 14: Comparison of A02 and

MRST2002 gg luminosities at the Tevatron.

These differences can be better understood by looking at figures 13 and 14, where a

comparison of Alekhin (with errors) and MSRT2002 luminosities is presented. Comparing

tables 1, 2, 3 and 4 with figures 13 and 14, we see that the differences in the cross sections

are basically due to differences in the NNLO gluon–gluon luminosity. Moreover, figures 13

and 14 show that the differences between the luminosities are typically larger than the

estimated uncertainty of experimental origin. In particular, the differences between the gg

luminosities appear to increase with the perturbative order (i.e. going from LO to NLO

and to NNLO).

We are not able to pin down the origin of these differences. References [50] and [54]

use the same (though approximated) NNLO evolution kernels, but the MRST2002 set is

based on a fit of deep-inelastic scattering (DIS), DY and Tevatron jet data, whereas the

A02 set is obtained through a fit to DIS data only.

From the above discussion, we conclude that the theoretical uncertainties of perturba-

tive origin in the calculation of the Higgs production cross section, after inclusion of both
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NNLO corrections and soft-gluon resummation at the NNLL level, are below 10% in the

low-mass range. However, it is also apparent that there are uncertainties in the (avail-

able) parton densities alone that can reach values larger than 10%, and that are not fully

understood at the moment. Improvements of these aspects may only come from better

understanding of parton density determinations, and are therefore totally unrelated to the

calculation presented in this work.

6. Conclusions

In this work we have presented a next-to-next-to-leading resummation of soft-gluon effects

in the gluon fusion cross section for Higgs production. Furthermore, we have supplemented

our resummed result with available fixed-order (up to NNLO) calculations. We have pre-

sented a phenomenological study of the Higgs cross sections at the LHC and the Tevatron,

and showed that, once problems with parton density determinations are overcome, a the-

oretical precision of about 10% in the predicted cross section can be attained.

The impact of the NNLL corrections included in this work was found to be modest in

the case of light-Higgs production at the LHC. The NNLL corrections are more significant

at the Tevatron, and allow us to reduce the theoretical error band at the same precision

level as at the LHC. We believe that our results add much confidence in the predicted cross

sections for the following reason. The pattern of radiative corrections from the NNLL

resummation, when truncated at fixed order, reproduces quite well the pattern from the

exact fixed-order calculations. This adds confidence that the higher-order (beyond the

NNLO level) radiative corrections arising from the NNLL treatment reflect the behaviour

of the exact theory.

As a side product of this work, we have shown that the N -space formulation of the

soft-gluon approximation is superior to the x-space one. In ref. [39] it was shown that theN -

space formulation of soft-gluon resummation should be used, since it avoids a gross violation

of momentum conservation, which in turn leads to an unphysically large asymptotic growth

of the coefficients of the perturbative expansion. In the present work, the better behaviour

of the N -space approach has also been shown to hold in practice, when comparing known

fixed-order results with the fixed-order expansion of the resummation formulae, up to the

NNLO level.

A. N-moments of soft-gluon contributions

In this appendix we present a simple method to evaluate N -moments of soft-gluon contri-

butions to arbitrary logarithmic accuracy.

We consider the N -moments In(N) of the singular distributions Dn(z) defined in

eq. (2.12):

In(N) ≡
∫ 1

0
dz zN−1Dn(z) =

∫ 1

0
dz

zN−1 − 1

1− z lnn(1− z) . (A.1)

These N -moments were computed in ref. [26]. It was shown that, in the large-N limit,

the leading and next-to-leading logarithmic terms (lnn+1N and lnnN) arising from the
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integration over z can straightforwardly be obtained by a very simple prescription. It is

indeed sufficient [26] to replace the integrand weight (zN−1 − 1) by the approximation

zN−1 − 1 ' −Θ
(
1− z − N0

N

)
, (A.2)

where N0 = e−γE . In the following we show how this NLL prescription can be generalized

to any logarithmic accuracy. The all-order generalization of eq. (A.2) is given in eq. (A.12)

or, equivalently, in eq. (A.13).

The N -moments in eq. (A.1) can be evaluated as described in ref. [26]. Using the

following identity

lnn(1− z) = lim
ε→0

(
∂

∂ε

)n
(1− z)ε (A.3)

to replace the logarithmic term in the integrand on the right-hand side of eq. (A.1), we

obtain

In(N) = lim
ε→0

(
∂

∂ε

)n{1

ε

[
Γ(N) Γ(1 + ε)

Γ(N + ε)
− 1

]}
, (A.4)

where Γ(x) is the Euler Γ-function. The expression (A.4) can be used to evaluate In(N)

for any given value of n without approximations of the dependence on N [26].

We are interested in the large-N behaviour of In(N). Neglecting terms that are sup-

pressed by powers of 1/N in the large-N limit, we can use the approximation

Γ(N)

Γ(N + ε)
= e−ε lnN

[
1 +O

(
1

N

)]
, (A.5)

and we can rewrite eq. (A.4) as

In(N) = lim
ε→0

(
∂

∂ε

)n{1

ε

[
e−ε lnNΓ(1 + ε)− 1

]}
+O

(
1

N

)
. (A.6)

Using the expression

Γ(1 + ε) = exp

{
−γE ε+

+∞∑

n=2

(−1)n ζ(n)
n

εn

}
, (A.7)

the term in the curly bracket of eq. (A.6) can easily be expanded in powers of ε. The result

for In(N) is thus a polynomial of degree n+ 1 in the large logarithm lnN :

In(N) =
(−1)n+1

n+ 1
(lnN + γE)

n+1 +
(−1)n−1

2
nζ(2)(lnN + γE)

n−1+

+

n−2∑

k=0

ank(lnN + γE)
k +O

(
1

N

)
, (A.8)

where the coefficients ank are combinations of powers of ζ(2), ζ(3), . . . , ζ(n + 1) (see e.g.

table 1 in ref. [26]).

As shown by eq. (A.8) and pointed out in ref. [26], the LL and NLL terms (lnn+1N

and lnnN) can straightforwardly be obtained from the definition of the N -moments in
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eq. (A.1) by simply implementing the prescription in eq. (A.2). To show how this NLL

prescription can be generalized to any logarithmic accuracy, we consider the right-hand

side of eq. (A.6) and use the following formal identity:

e−ε lnNΓ(1 + ε) = Γ

(
1− ∂

∂ lnN

)
e−ε lnN . (A.9)

Then we can perform the n-th derivative with respect to ε, and we obtain

In(N) = Γ

(
1− ∂

∂ lnN

)
(− lnN)n+1

n+ 1
+O

(
1

N

)
. (A.10)

This expression can be regarded as a replacement of eq. (A.6) to compute the polynomial

coefficients ank in eq. (A.8). Moreover, by noting that

(− lnN)n+1

n+ 1
= −

∫ 1−1/N

0
dz

lnn(1− z)
1− z , (A.11)

we shortly get the all-order generalization of eq. (A.2). It is:

zN−1 − 1 = −Γ
(
1− ∂

∂ lnN

)
Θ

(
1− z − 1

N

)
+O

(
1

N

)
(A.12)

= −Γ̃
(
1− ∂

∂ lnN

)
Θ

(
1− z − N0

N

)
+O

(
1

N

)
, (A.13)

where we have also introduced the function Γ̃ defined by

Γ̃(1 + ε) ≡ eγE ε Γ(1 + ε) = exp

{
+∞∑

n=2

(−1)n ζ(n)
n

εn

}
. (A.14)

Note that the equality between eqs. (A.12) and (A.13) simply follows from Γ =

Γ̃ exp[γEN∂/(∂N)] and from the fact that the exponential of the differential operator acts

as the rescaling N → exp[γE ]N = N/N0.

Although we have derived it by starting from eq. (A.1), it is straightforward to show

that the prescription (A.12) (or (A.13)) can be applied as follows

∫ 1

0
dz
zN−1−1
1−z F (αS, ln(1−z)) = −Γ

(
1− ∂

∂ lnN

)∫ 1−1/N

0

dz

1−z F (αS, ln(1−z)) +O
( 1

N

)

= −Γ̃
(
1− ∂

∂ lnN

)∫ 1−N0/N

0

dz

1−zF (αS, ln(1−z)) +O
( 1

N

)

to evaluate the lnN -contributions arising from the integration of any soft-gluon function

F that has a generic perturbative expansion of the type

F (αS, ln(1− z)) =
+∞∑

k=1

αkS

2k−1∑

n=0

Fkn lnn(1− z) . (A.15)

The all-order differential operator Γ (Γ̃) in eq. (A.12) (eq. (A.13)) is obviously defined

only in a formal sense through eq. (A.7) (eq. (A.14)). However, such a definition is sufficient
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for any formal manipulation to all logarithmic orders. Moreover, it is also sufficient for

any practical use at fixed and arbitrary logarithmic accuracy. Since each additional power

of ∂/(∂ lnN) leads to terms that are suppressed by a power of lnN , we can obtain all the

terms up to a given (and arbitrary) logarithmic order by simply truncating the power series

expansion of Γ at the corresponding order in the logarithmic derivative. For example, using

the truncation

Γ

(
1− ∂

∂ lnN

)
= 1 + γE

∂

∂ lnN
+

1

2

(
γ2E + ζ(2)

) ( ∂

∂ lnN

)2

+

+
1

6

(
γ3E + 3γEζ(2) + 2ζ(3)

) ( ∂

∂ lnN

)3

+ · · · , (A.16)

the first, second, third and fourth terms on the right-hand side lead to the LL, NLL, NNLL

and N3LL contributions, respectively.

B. Equivalence between resummation formulae

Here we prove the equivalence between the two all-order representations (3.8) and (3.13)

of the Sudakov radiative factor ∆H
N . In particular, we derive the relations between the

functions A(αS) and D(αS) in eq. (3.8) and the functions D̃(αS) and C̃gg(αS) in eq. (3.13).

These relations are:

D̃(αS) = D(αS) + 4∂αS
Γ2(∂αS

)

[
A(αS)−

1

4
∂αS

D(αS)

]
, (B.1)

C̃gg

(
αS(M

2
H),

M2
H

µ2R
= 1

)
= exp

{
−4Γ2(∂αS

)

[
A(αS)−

1

4
∂αS

D(αS)

]}
, (B.2)

where the differential operator ∂αS
is defined by

∂αS
≡ −2β(αS)αS

∂

∂αS
, (B.3)

β(αS) is the QCD β-function,

d lnαS(µ
2)

d lnµ2
= β(αS(µ

2)) = −
+∞∑

n=0

bnα
n+1
S , (B.4)

whose first three coefficients, b0, b1, b2, are given in eq. (3.22), and the function Γ2(ε) is

defined by its power series expansion in ε:

Γ2(ε) ≡
1

ε2
[
1− e−γEεΓ(1− ε)

]
=

1

ε2

{
1− exp

[
+∞∑

n=2

ζ(n)

n
εn

]}
. (B.5)

Note that eq. (B.2) gives C̃gg(αS(µ
2
R),M

2
H/µ

2
R) at the scale µ2R = M2

H as a function of

αS(M
2
H). The dependence on µ2R is simply recovered by using renormalization-group in-

variance, i.e. by expressing αS(M
2
H) as a function of αS(µ

2
R) and M2

H/µ
2
R through the

solution of the renormalization-group equation (B.4) (see also eq. (C.3)).
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Inserting the following expansion

Γ2(ε) = −
1

2
ζ(2)− 1

3
ζ(3)ε+O(ε2) , (B.6)

in eqs. (B.1) and (B.2), we can straightforwardly obtain the expansions of the functions D̃

and C̃gg up to NLL accuracy:

D̃(αS)−D(αS) = −
(αS

π

)2
4ζ(2)πb0A

(1) +O(α3
S) (B.7)

C̃gg

(
αS(µ

2
R),

M2
H

µ2R

)
= 1 +

αS(µ
2
R)

π
2ζ(2)A(1)+

+

(
αS(µ

2
R)

π

)2 [
2ζ(2)

(
A(2) − πb0A(1) ln

M2
H

µ2R

)
+

+2
(
ζ(2)A(1)

)2
+

8

3
ζ(3)πb0A

(1)

]
+O(α3

S) . (B.8)

To derive eqs. (B.1) and (B.2), we start from eq. (3.8), we replace the integrand weight

(zN−1 − 1) by the all-order logarithmic prescription in eq. (A.13), and we change the

integration variable z as z → y = 1− z. We obtain:

ln∆H
N

(
αS(µ

2
R),

M2
H

µ2R
;
M2

H

µ2F

)
= − Γ̃

(
1− ∂

∂ lnN

)∫ 1

N0/N

dy

y

[
2

∫ y2M2
H

µ2
F

dq2

q2
A(αS(q

2))+ (B.9)

+D(αS(y
2M2

H))

]
+O

(
1

N

)
.

Then we use the definitions in eqs. (A.14) and (B.5) to get

Γ̃

(
1− ∂

∂ lnN

)
= 1− Γ2

(
∂

∂ lnN

)(
∂

∂ lnN

)2

. (B.10)

Inserting eq. (B.10) in eq. (B.9) and comparing the latter with eq. (3.13), we get

∫ 1

N0/N

dy

y
D̃(αS(y

2M2
H))− ln C̃gg

(
αS(M

2
H),

M2
H

µ2R
= 1

)
=

=

∫ 1

N0/N

dy

y
D
(
αS(y

2M2
H)
)
−

− Γ2

(
∂

∂ lnN

)(
∂

∂ lnN

)2 ∫ 1

N0/N

dy

y

[
2

∫ y2M2
H

µ2
F

dq2

q2
A
(
αS(q

2)
)
+D

(
αS(y

2M2
H)
)]

(B.11)

=

∫ 1

N0/N

dy

y
D
(
αS(y

2M2
H)
)
−

− Γ2

(
∂

∂ lnN

)[
−4A

(
αS

(
N2

0M
2
H

N2

))
+

(
∂

∂ lnN

)
D

(
αS

(
N2

0M
2
H

N2

))]
, (B.12)
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where eq. (B.12) is obtained from eq. (B.11) by acting with the operator
(

∂
∂ lnN

)2
onto

the y-integral. Using the renormalization-group equation (B.4), we now observe that the

relation

(
∂

∂ lnN

)
f

(
αS

(
k2

N2

))
= −2

(
∂

∂ lnk2

)
f

(
αS

(
k2

N2

))
= ∂αS

f

(
αS

(
k2

N2

))
(B.13)

is valid for any arbitrary function f(αS) (the operator ∂αS
is defined in eq. (B.3)). Therefore,

we can perform the replacement ∂
∂ lnN → ∂αS

in eq. (B.12), and we obtain

∫ 1

N0/N

dy

y
D̃(αS(y

2M2
H))− ln C̃gg

(
αS(M

2
H),

M2
H

µ2R
= 1

)
= (B.14)

=

∫ 1

N0/N

dy

y
D(αS(y

2M2
H)) +

{
Γ2 (∂αS

)
[
4A(αS)− ∂αS

D(αS)
]}

αS=αS(N
2
0M

2
H/N2)

.

Note that this equation holds for any value of N . Thus, setting N = N0 the y-integrals

vanish, and we immediately get eq. (B.2). Moreover, we can apply the operator ∂
∂ lnN on

both sides of eq. (B.14) and, since C̃gg is N -independent, we obtain the relation

D̃

(
αS

(
N2

0M
2
H

N2

))
= D

(
αS

(
N2

0M
2
H

N2

))
+ (B.15)

+

(
∂

∂ lnN

){
Γ2 (∂αS

)
[
4A(αS)− ∂αS

D(αS)
]}

αS=αS(N
2
0M

2
H/N2)

,

which, owing to eq. (B.13), gives exactly eq. (B.1).

C. Resummation formulae at NNLL accuracy and beyond

In this appendix we sketch the calculation of the logarithmic functions g
(n)
H in eq. (3.6).

These functions originate from the Sudakov radiative factor ∆H
N in eq. (3.7). Thus we write

ln∆H
N

(
αS(µ

2
R),

M2
H

µ2R
;
M2

H

µ2F

)
= lnNg

(1)
H (b0αS(µ

2
R) lnN)+ (C.1)

+

+∞∑

n=2

[
αS(µ

2
R)
]n−2

g
(n)
H

(
b0αS(µ

2
R) lnN,

M2
H

µ2R
;
M2

H

µ2F

)
+O(1) ,

where the term O(1) stands for contributions that are constant in the large-N limit. This

N -independent term eventually contributes to the function Cgg(αS) in eq. (3.3).

The logarithmic expansion on the right-hand side of eq. (C.1) is most easily computed

by starting from the integral representation in eq. (3.13) and by using the method described

in refs. [26, 55]. We first use the renormalization group equation (B.4) to change the

integration variables {q2, y} in {αS(q
2) = α, αS(y

2M2
H) = α′}, so eq. (3.13) becomes

ln∆H
N

(
αS(µ

2
R),

M2
H

µ2R
;
M2

H

µ2F

)
= −

∫ αS(M
2
H)

αS(N
2
0M

2
H/N2)

dα′

α′
1

β(α′)
×
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×
[∫ α′

αS(µ
2
F )

dα

α

A(α)

β(α)
+

1

2
D̃(α)

]
+O(1) . (C.2)

Now, the integrand can be expanded (see eqs. (3.9), (3.10), (B.1) and (B.4)) in power series

of α and α′, and the expansion can be truncated to the required (and arbitrary) logarith-

mic accuracy. This procedure leads to simple (logarithmic and polynomial) integrals, and

the result is expressed in terms of elementary functions of the perturbative coefficients

A(n), D(n), bn and of αS(k
2) with k2 = N2

0M
2
H/N

2,M2
H or µ2F . To obtain the functions

g
(n)
H (b0αS(µ

2
R) lnN,M

2
H/µ

2
R;M

2
H/µ

2
F ), it is sufficient to express αS(k

2) in terms of αS(µ
2
R)

and ln(k2/µ2R) (i.e. lnN , ln(M 2
H/µ

2
R), ln(M

2
H/µ

2
F ), lnN0 = −γE) according to the per-

turbative solution of the renormalization group equation (B.4), and then to compare the

results with the right-hand side of eq. (C.1). For instance, to extract the LL, NLL and

NNLL functions g
(1)
H , g

(2)
H and g

(3)
H in eqs. (3.18), (3.19) and (3.20), it is sufficient to use the

NNLO solution of eq. (B.4):

αS(k
2) =

αS(µ
2
R)

`

{
1− αS(µ

2
R)

`

b1
b0

ln `+

(
αS(µ

2
R)

`

)2 [b21
b20
(ln2 `− ln `+ `− 1)− b2

b0
(`−1)

]
+

+O
(
α3
S(µ

2
R)

(
αS(µ

2
R) ln

(
k2

µ2R

))n)}
, (C.3)

where we have defined ` = 1 + b0αS(µ
2
R) ln(k

2/µ2R). The extension to arbitrarily higher

logarithmic accuracy is straightforward.

D. Convergence of the fixed-order soft-gluon expansion

We check here the numerical convergence of the fixed-order soft-gluon expansion toward

the resummed result obtained by using the Minimal Prescription.

The rapid convergence of the higher-order soft-gluon corrections is displayed in table 5,

for the case of Higgs production at the LHC and the Tevatron. All the entries reported

in table 5 are obtained by using the MRST2002 NNLO parton densities. The first three

columns show the contributions to the total cross section from the first three orders in

perturbation theory. The sum of the first three columns thus gives the exact NNLO result.

The next two columns show the contributions from the next two fixed-order terms, as

obtained by the (truncated) fixed-order expansion of our NNLL resummed formula. The

sum of all entries in each row corresponds to the full NNLL resummed result as obtained

α2
s α3

s α4
s α5

s α6
s α≥7s

LHC 11.67 14.72 8.61 1.65 0.30 0.08

Tevatron 0.228 0.291 0.194 0.065 0.017 0.007

Table 5: Contributions to the total cross sections (in pb) at the LHC and the Tevatron from higher

orders in the expansion of the NNLL resummed result, with µR = µF = MH , MH = 130GeV and

MRST2002 NNLO parton densities. The sum of the first three columns gives the exact NNLO

result.
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with the Minimal Prescription, while each fixed-order term has no ambiguity due to the

choice of the contour for the Mellin transformation in eq. (5.1). The results in table 5

support the validity of the Minimal Prescription, since the truncated resummed expansion

converges to it very rapidly.

E. Soft-gluon expansion at N3LO

In this final appendix we present the soft-gluon approximation, G
(3) SV-N
gg,N , in N space of the

N3LO contribution, G
(3)
gg,N , to the coefficient function in eq. (2.5). The analytic expression

of G
(3) SV-N
gg,N , obtained by performing the expansion of the all-order resummation formula

in eq. (3.3), is

G(3)SV-N
gg

(
M2

H

µ2
R

,
M2

H

µ2
F

)
=

4
(
A(1)

)3

3
ln6 N+

+ ln5 N

[
8
(
A(1)

)2
b0π

3
+ 8γE

(
A(1)

)3 − 4
(
A(1)

)3
ln
M2

H

µ2
F

]
+

+ ln4 N

[
4A(1)A(2) +

4A(1)b20π
2

3
+ 2

(
A(1)

)2
C(1)

gg +

+
40
(
A(1)

)2
b0πγE

3
+ 16

(
A(1)

)3
γ2

E − 4
(
A(1)

)2
b0π ln

M2
H

µ2
R

+

+ 4
(
A(1)

)3
ln2 M

2
H

µ2
F

− ln
M2

H

µ2
F

(
8
(
A(1)

)2
b0π

3
+ 16

(
A(1)

)3
γE

)]
+

+ ln3 N

[
8A(2)b0π

3
+

4A(1)b1π
2

3
+

4A(1)b0πC
(1)
gg

3
− 2A(1)D(2)+

+ 8
(
A(1)

)2
b0πζ(2) +

32
(
A(1)

)3
γ3

E

3
+ 24

(
A(1)

)2
b0πγ

2
E+

+ γE

(
16A(1)A(2) +

16A(1)b20π
2

3
+ 8

(
A(1)

)2
C(1)

gg

)
−

− 4
(
A(1)

)3

3
ln3 M

2
H

µ2
F

+ ln2 M
2
H

µ2
F

(
8
(
A(1)

)3
γE − 2

(
A(1)

)2
b0π

)
−

− ln
M2

H

µ2
R

(8A(1)b20π
2

3
+ 16

(
A(1)

)2
b0πγE

)

− ln
M2

H

µ2
F

(
8A(1)A(2) + 4

(
A(1)

)2
C(1)

gg + 8
(
A(1)

)2
b0πγE+

+ 16
(
A(1)

)3
γ2

E

)
+ 8

(
A(1)

)2
b0π ln

M2
H

µ2
F

ln
M2

H

µ2
R

]
+

+ ln2 N

[
2A(3) + 2A(2)C(1)

gg + 2A(1)C(2)
gg − 2b0πD

(2) + 8A(1)b20π
2ζ(2)+

+ 16
(
A(1)

)2
b0πγ

3
E+γ

2
E

(
8
(
A(1)

)2
C(1)

gg +16A(1)A(2)+8A(1)b20π
2
)
+

+ γE

(
8A(2)b0π + 4A(1)b1π

2 + 4A(1)b0πC
(1)
gg − 4A(1)D(2)+

– 40 –



J
H
E
P
0
7
(
2
0
0
3
)
0
2
8

+ 16
(
A(1)

)2
b0πζ(2)

)
+ 2A(1)b20π

2 ln2 M
2
H

µ2
R

−

− 4
(
A(1)

)2
b0π ln2 M

2
H

µ2
F

ln
M2

H

µ2
R

+16
(
A(1)

)2
b0πγE ln

M2
H

µ2
F

ln
M2

H

µ2
R

+

+ 2
(
A(1)

)2
b0π ln3 M

2
H

µ2
F

+ ln2 M
2
H

µ2
F

(
4A(1)A(2) + 2

(
A(1)

)2
C(1)

gg −

− 4
(
A(1)

)2
b0πγE

)
+

+ ln
M2

H

µ2
F

(
2A(1)D(2) − 16A(1)A(2)γE − 8

(
A(1)

)2
C(1)

gg γE−

− 8
(
A(1)

)2
b0πγ

2
E − 8

(
A(1)

)2
b0πζ(2)

)
−

− ln
M2

H

µ2
R

(
4A(2)b0π + 2A(1)b1π

2 + 2A(1)b0πC
(1)
gg +

+ 8A(1)b20π
2γE + 16

(
A(1)

)2
b0π

)]
+

+ lnN

[
−D(3) − C(1)

gg D
(2) +

32A(1)b20π
2ζ(3)

3
+ 8A(2)b0πζ(2)+

+ 4A(1)b1π
2ζ(2) + 4A(1)b0πC

(1)
gg ζ(2) +

16A(1)b20π
2γ3

E

3
+

+ γ2
E

(
8A(2)b0π + 4A(1)b1π

2 + 4A(1)C(1)
gg b0π

)
+

+ γE

(
4A(3) + 4A(2)C(1)

gg + 4A(1)C(2)
gg − 4b0πD

(2)+

+ 16A(1)b20π
2ζ(2)

)
− 2A(1)b20π

2

3
ln3 M

2
H

µ2
F

+

+ 2A(1)b20π
2 ln2 M

2
H

µ2
F

ln
M2

H

µ2
R

− 2A(1)b20π
2 ln

M2
H

µ2
F

ln2 M
2
H

µ2
R

+

+ 4A(1)b20π
2γE ln2 M

2
H

µ2
R

−

− ln2 M
2
H

µ2
F

(
2A(2)b0π +A(1)b1π

2 +A(1)b0πC
(1)
gg

)
−

− ln
M2

H

µ2
F

(
2A(3) + 2A(2)C(1)

gg + 2A(1)C(2)
gg

)
+

+ ln
M2

H

µ2
F

ln
M2

H

µ2
R

(
4A(2)b0π + 2A(1)b1π

2 + 2A(1)b0πC
(1)
gg

)
−

− ln
M2

H

µ2
R

(
8A(2)b0πγE + 4A(1)b1π

2γE + 4A(1)C(1)
gg b0πγE+

+ 8A(1)b20π
2γ2

E + 8A(1)b20π
2ζ(2)

)]
+ C(3)

gg . (E.1)

Note that with the present knowledge (see section 3.2) of the perturbative coefficients of

the functions A(αS), D(αS) and Cgg(αS), it is possible to predict the numerical values of

the coefficients in the expansion (E.1) only up to O(ln2N) terms. The term proportional

to lnN and the N -independent term depend on the unknown coefficients D (3) and C
(3)
gg ,
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respectively.9 The same results apply to the DY process, by simply replacing the gg-

channel coefficients A(n), D(n) and C
(n)
gg with the corresponding qq̄-channel coefficients.

The expression (E.1) can be used to check future perturbative calculations at N3LO.
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