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Can noncommutativity resolve the Big-Bang

singularity?
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Abstract

A possible way to resolve the singularities of general relativity is proposed based
on the assumption that the description of space-time using commuting coordinates is
not valid above a certain fundamental scale. Beyond that scale it is assumed that
the space-time has noncommutative structure leading in turn to a resolution of the
singularity. As a first attempt towards realizing the above programme a modification
of the Kasner metric is constructed which is commutative only at large time scales.
At small time scales, near the singularity, the commutation relations among the space
coordinates diverge. We interpret this result as meaning that the singularity has been
completely delocalized.
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1 Motivation

It is folk wisdom that singularities and divergences are not really physical but rather
technical artifacts indicating the limitations of the theory in which they appear. Most
theories do contain singularities as an essential element and these are generally con-
sidered to contain important information on possible extensions. Among elementary
particle physicists for example it is widely believed that infinities in renormalizable
field theories not only are not problematic since they can be treated by the renormal-
ization procedure but instead can be considered as signals of a nearby new-physics
threshold. A possible way to resolve field-theory singularities, that is, infinities related
to the field-theoretical description of particle physics is to introduce still another scale
this time related to the possible unification scale of the non-gravitational interactions.
Grand Unified Theories (GUTs) with N = 1 supersymmetry have been constructed
which can be made finite even to all-loops, including the soft supersymmetry breaking
sector [1, 2, 3, 4]. There exist a method to construct GUTs with reduced independent
parameters which consists of searching for renormalization-group invariant (RGI) re-
lations valid below the Planck scale and which in turn are preserved down to the GUT
scale [4, 5]. Of particular interest is the possibility of finding RGI relations among
couplings which guarantee finiteness to all-orders in perturbation theory. In order to
reach this goal it is sufficient to study the uniqueness of the solutions to the one-loop
finiteness conditions [1, 2]. The Finite Unified N = 1 supersymmetric SU(5) GUTs
constructed in this way have predicted correctly the top-quark mass, for example, from
the dimensionless sector (Gauge-Yukawa unification) [1, 3]. The search for RGI rela-
tions has been extended to the soft supersymmetry breaking sector (SSB) of these
theories, which involves parameters of dimensions one and two. In the SSB sector,
besides the constraints imposed by finiteness there are further restrictions imposed by
phenomenology. This in turn has led to a weakening of the universality of soft scalar
masses at the unification point and to the introduction of a sum rule instead. In case
the lightest supersymmetric particle (LSP) is a neutralino the usual Higgs mass is
predicted to be in the range 115 - 130 GeV [4].

Here we should like to continue the above point of view and consider the singu-
larities of general relativity as signaling a new structure of space-time and in turn
as a problem whose solution can eventually be offered by noncommutative geometry.
The ultimate aim is the construction of a noncommutative generalization of the theory
of general relativity, which becomes essentially noncommutative in regions where the
commutative limit would be singular. The physical idea we have in mind is that the de-
scription of space-time using a set of commuting coordinates is only valid at curvature
scales smaller than some fundamental one. At higher scales it is impossible to localize
a point and a new geometry should be used. We can think of the ordinary Minkowski
coordinates as macroscopic order parameters obtained by “course-graining” over re-
gions whose size is determined by a fundamental area scale k̄, which is presumably,
but not necessarily, of the order of the Planck area G~. They break down and must
be replaced by elements of a noncommutative algebra when one considers phenomena
at higher scales.

As a first concrete example we construct a modification of the Kasner metric which
is nonsingular whose singularity is resolved into an essentially noncommutative struc-
ture. We recall that the singularity of the Friedmann-Robertson-Walker isotropic cos-
mological models, which constitute a basis for comparison of theoretical predictions
with observation is not sufficiently general [6]. On the other hand the anisotropic
Kasner metric connected with the description of the oscillatory approach to the cos-
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mological singularity is considered sufficiently general [6]. In addition we recall that
Heckmann-Schucking type of metrics [7] can bridge the Kasner with the Friedmann-
Robertson-Walker models which are suitable for describing the later stages of the cos-
mological evolution.

It has been argued [9] from simple examples that a differential calculus over a
noncommutative algebra uniquely determines a gravitational field in the commutative
limit. Some examples have been given of metrics which resulted from a given algebra
and given differential calculus [10, 11]. Here we aboard the inverse problem, that of
constructing the algebra and the differential calculus from the commutative metric. As
an example in which the above conjectures can be tested we choose the Kasner-like
metric which exhibits the most general singularity.

In the following Greek indices take values from 0 to 3; the first half of the alphabet
is used to index (moving) frames and the second half to index generators. Latin indices
a, b, etc. take values from 0 to n− 1 and the indices i, j, etc. values from 1 to 3. More
details can be found in ref. [10].

2 The general formalism

According to the general idea outlined above a singularity in the metric is due to the use
of commuting coordinates beyond their natural domain of definition into a region where
they are physically inappropriate. From this point of view the space-time V should be
more properly described “near the singularity” by a noncommutative algebra A over
the complex numbers with four hermitian generators xλ. We suppose also that there
is a set of n(= 4) antihermitian “momentum generators” pα and a “Fourier transform”

F : xµ −→ pα = Fα(xµ),

which takes the position generators to the momentum generators. If the metric which
we introduce is the flat metric then we shall see that [pα, xµ] = δµ

α and in this case the
“Fourier transform” is the simple linear transformation

pα =
1

ik̄
θ−1
αµxµ

for some symplectic structure θαµ, that is an antisymmetric non-degenerate matrix. As
a measure of noncommmutativity, and to recall the many parallelisms with quantum
mechanics, we use the symbol k̄, which will designate the square of a real number whose
value could lie somewhere between the Planck length and the proton radius. If the
matrix is not invertible then it is no longer evident that the algebra can be generated
by either the position generators or the momentum generators alone. In such cases we
define the algebra A to be the one generated by both sets.

We assume that A has a commutative limit which is an algebra C(V ) of smooth
functions on a space-time V endowed with a globally defined moving frame θα which
commutes with the elements of A, that is, for all f ∈ A

fθα = θαf. (2.1)

We shall see that it implies that the metric components must be constants, a condition
usually imposed on a moving frame. Following strictly what one does in ordinary
geometry, we shall chose the set of derivations

eα = ad pα, eαf = [pα, f ] (2.2)
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to be dual to the frame θα, that is with

θα(eβ) = δα
β . (2.3)

We define the differential exactly as in the commutative case. If eα is a derivation of
A then for every element f ∈ A we define df by the constraint df(eα) = eαf .

It is evident that in the presence of curvature the 1-forms cease to anticommute. On
the other hand it is possible for flat “space” to be described by “coordinates” which do
not commute. The correspondence principle between the classical and noncommutative
geometries can be also described as the map

θ̃α 7→ θα (2.4)

with the product satisfying the condition

θ̃αθ̃β 7→ Pαβ
γδθ

γθδ.

The tilde on the left is to indicate that it is the classical form. The condition can be
written also as

C̃α
βγ 7→ Cα

ηζP
ηζ

βγ (2.5)

or as
lim
k̄→0

Cα
βγ = C̃α

βγ . (2.6)

We write Pαβ
γδ in the form

Pαβ
γδ =

1

2
δ[α
γ δ

β]
δ + ik̄µ2Qαβ

γδ . (2.7)

Flat noncommutative space is a solution to the problem of constructing a noncommu-
tative metric, given by the choice

eµ
α = δµ

α, Kαβ = − 1

ik̄
θ−1
αβ ∈ Z(A). (2.8)

We have introduced the inverse matrix θ−1
αβ of θαβ; we must suppose the Poisson struc-

ture to be non-degenerate: det θαβ 6= 0. The relations can be written in the form

pα = −Kαµxµ,

[pα, pβ] = Kαβ . (2.9)

This structure is flat according to our definitions. Here is manifest one of the essential
points of a Fourier transform. In the limit when the θαβ tend to zero, the points
become well defined and in the opposite limit, when the θαβ tend to infinity, the
momenta become well defined. In general Equation (2.9) will be of the form

2Pαβ
γδpαpβ = Kγδ. (2.10)

The corresponding rotation coefficients are given by

Cα
γδ = −4Pαβ

γδpβ. (2.11)

We shall find it convenient to consider a curved geometry as a perturbation of a
noncommutative flat geometry. The measure of noncommutativity is the parameter k̄;
the measure of curvature is a quantity µ2. We assume that k̄µ2 is small and that in
the the flat-space limit we have commutation relations of the form

[xµ, xν ] = ik̄Jµν , Jµν = θµν(1 + O(ik̄µ2)).
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3 The commutative Kasner metric

A major problem is the choice of an appropriate frame. Given a symmetric matrix
Q = (Qa

b ) of real numbers, one possibility for the Kasner metric is given by

θ̃0 = dt̃, θ̃a = dx̃a − Qa
b x̃

bt̃−1dt̃. (3.1)

The 1-forms θ̃α are dual to the derivations

ẽ0 = ∂̃0 + Qi
jx̃

j t̃−1∂̃i, ẽa = ∂̃a

of the algebra A. The Lie-algebra structure of the derivations is given by the commu-
tation relations

[ẽa, ẽ0] = C̃b
a0ẽb, [ẽa, ẽb] = 0 (3.2)

with
C̃b

a0 = Qb
at̃

−1.

We have written the frame in coordinates which are adapted to the asymptotic condi-
tion. There is a second set which is also convenient, with space coordinates x′a given
in matrix notation by

x′a = (t−Qx)a. (3.3)

The frame can be then written, again in matrix notation, with space components in
the form

θa = (tQd(t−Qx))a = (tQdx′)a.

The expression for C̃b
a0 contains no parameters with dimension but it has the

correct physical dimensions. Let GN be Newton’s constant and µ a mass such that
GNµ is a length scale of cosmological order of magnitude. As a first guess we would like
to identify the length scale determined by k̄ with the Planck scale: ~GN ∼ k̄ and so we
have k̄ ∼ 10−87sec2 and since µ−1 is the age of the universe we have µ ∼ 10−17sec−1.
The dimensionless quantity k̄µ2 is given by k̄µ2 ∼ 10−120. In the Kasner case the role
of µ is played by t̃−1 at a given epoch t̃0.

We shall see below that the spectrum of the commutator of two momenta is the
sum of a constant term of order k̄−1 and a “gravitational” term of order µt̃−1 =
k̄−1×(k̄µ)t̃−1. So the gravitational term in the units we are using is relatively important
for t̃ . k̄µ. The existence of the constant term implies that the gravitational field is
not to be identified with the noncommutativity per se but rather with its variation in
space and time.

The components of the curvature form are given by

Ω̃a
0 = (Q2 − Q)ab t̃

−2θ̃0θ̃b, (3.4)

Ω̃a
b = −1

2Qa
[cQd]bt̃

−2θ̃cθ̃d. (3.5)

The curvature form is invariant under a uniform scaling of all coordinates. The Rie-
mann tensor has components

R̃a
0c0 = (Q2 − Q)ab t̃

−2, R̃a
bcd = Qa

[cQd]bt̃
−2.

The vacuum field equations reduce to the equations

Tr (Q) = 1, Tr (Q2) = 1.
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If qa are the eigenvalues of the matrix Qa
b there is a 1-parameter family of solutions

given by

qa =
1

1 + ω + ω2
(1 + ω, ω(1 + ω), −ω) . (3.6)

The most interesting value is ω = 1 in which case

qa = 1
3(2, 2, −1).

The curvature invariants are proportional to t̃−2; they are singular at t̃ = 0 and vanish
as t̃ → ∞.

The values qa = c for the three parameters are also of interest. The Einstein tensor
is given by

G̃0
0 = −3c2t̃−2, G̃a

b = −c(3c − 2)δa
b t̃−2.

For the value c = 2/3 the space is a flat FRW with a dust source given by

T̃00 = − 1

8πGN
G̃00 =

1

6πGN
.

For c = 1/3 the space is Einstein with a time-dependent cosmological “constant”.

4 The algebra of the noncommutative Kasner

metric

We are now in a position to write the algebra of the noncommutative Kasner metric.
From the structure of the frame we obtain commutation relations between the posi-
tion and momentum generators. Using these and Jacobi identities we determine the
momentum-momentum or the position-position commutation relations.

4.1 The position-momentum relations

From the correspondence with the commutative limit of frame it is easy to see that
the position-momentum commutation relations are

[p0, t] = 1, [p0, x
b] = Qb

cτxc,

[pa, t] = 0, [pa, x
b] = δb

a.
(4.1)

Note that we have introduced the element τ of the subalgebra of A generated by t
which must tend to a constant multiple of t−1 in the commutative limit. In fact the
derivations defined by Equation (2.2) satisfy Equation (2.3).

4.2 The momentum-momentum relations

We write the commutation relations (2.10) satisfied by the momentum generators pα

using Equation (2.7) and the Ansatz

Qcd
a0 = 1

8k(cQ
d)
a , Qcd

ab = 1
4kckdKab.
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We obtain then the relations

[pa, pb] = Kab + Lab(τ), (4.2)

[p0, pa] = K0a + L0a(τ). (4.3)

To be consistent with the commutative limit the L0a must be given by

L0a(τ) = Qb
aτpb. (4.4)

The element τ tends to a multiple of t−1 of the commutative algebra. We choose ka to
be an eigenvector of Qb

a with eigenvalue q, that is Qb
ak

a = qkb. This choice simplifies the
calculations to be performed. To further simplify we choose ka = (0, 0, 1), K0a = − 1

ik̄ la,
la = (0, 0, l). Then Equation (4.3) can be written as

[p0, p3] = K03 − qτp3 = − 1

ik̄
l, (4.5)

[p0, p1] = K01 = 0,

[p0, p2] = K02 = 0.

The space derivations of the element τ must vanish; that is [pa, τ ] = 0. To find
an explicit form of τ we multiply Equation (4.5) by −ik̄µ2q (where µ2 is a scale of
curvature as explained in section (2)) then we see that by introducing τ = −ik̄µ2qp3

and setting m2 = −ik̄µ2qK03 we determine an element of the algebra that has the
property [pa, τ ] = 0 and obeys the differential equation

τ̇ − qτ2 + m2 = 0, m2 = µ2ql. (4.6)

Let us first note an interesting duality of Equation (4.6), namely

τ → 1/τ, m2 → q. (4.7)

The generic solution of this equation has the form

τ = −1

q

c1|m|√qe+|m|√qt + c2(−|m|√q)e−|m|√qt

c1e
+|m|√qt + c2e

−|m|√qt
, (4.8)

which e.g. when c1 = c2 becomes

τ = − 1√
q
|m| tanh(

√
q|m|t). (4.9)

A general class of solutions of Equation (4.8) are non-singular. A representative ex-
ample is given in fig. 1 Depending on the value of q we may obtain another general
class of periodic but singular solutions (like τ ∼ cot(t) ) and a representative example
is drawn in fig. 2. The function τ enters the curvature invariants [10] and in case it is
smooth, the singularity problem is avoided.

From the Jacobi identities we find that Lab must be of the form

Lab =
q

m2
Kabτ

2 (4.10)

as well as the algebraic condition

2qKab = Qc
[aKb]c,
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Figure 1: A non-singular solution for τ . (Horizontal axis t in units of (m
√

|q|)−1, τ in units

of m

√

|q|).
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Figure 2: A singular solution for τ . (Horizontal axis t in units of (m
√

|q|)−1, τ in units of

m

√

|q|).

which reduces to
TrQ = −3q, q1 + q2 + q = −3q.

In the following we think of Q as the matrix Q = diag(q1, q2, q). We have determined
the lowest order correction to Lab, while the series does not seem to sum to a simple
known function.

The momentum algebra of Equation (2.7) takes in the present case the form

[p0, pa] = K0a + Qb
aτpb, (4.11)

[pa, pb] = Kab(1 +
qτ2

µ2
). (4.12)

The above form of the momentum algebra can be derived from the following choice for
Qab

cd and Qab
0c,

Qab
cd = −ik̄

m2

2ql
kakbKcd

and

Qab
0c =

m2

2l
Qa

ck
c.
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The commutation relations are then

[pa, pb] = (ik̄)−1ǫabck
c + 1

2pcC
c
ab

= (ik̄)−1ǫabck
c − 2ik̄pcpdQ

cd
ab

= (ik̄)−1ǫabck
c(1 +

qτ2

m2
), (4.13)

[p0, pa] = (ik̄)−1la + 1
2pcC

c
0a

= (ik̄)−1la − 2ik̄pbpcQ
bc

0a

= (ik̄)−1la + τQd
apd. (4.14)

To simplify the commutation relations we have chosen ka = (0, 0, 1) and la =
(0, 0, l), then we have

[p2, p3] = 0, [p3, p1] = 0,

[p1, p2] = (ik̄)−1(1 + qτ2

m2 ), [p0, p1] = q1p1τ,

[p0, p2] = q2p2τ, [p0, p3] = (ik̄)−1l + qp3τ.

(4.15)

It is possible to represent A as a tensor product of two Heisenberg algebras, i.e.

A12 ⊗A30 ⊂ A
We denote the generators of A12 by µ1, µ2 and the generators of A30 by µ0, µ3. Being
in the system (0, 0, 1) the relation between τ and p3 becomes

p3 = − 1

ik̄µ2q
τ, (4.16)

e.g. using Equation (4.9) we obtain

p3 =
|m|

ik̄µ2q3/2
tanh(|m|√qt). (4.17)

Then we define µ0 = p0 and µ3 = 1
ik̄ t and we define µ1 and µ2 in such a way that

[µ0, µ1] = 0, [µ3, µ1] = 0,

[µ0, µ2] = 0, [µ3, µ2] = 0. (4.18)

But
[µ0, µ3] 6= 0, [µ1, µ2] 6= 0. (4.19)

To achieve this we set p1 = µ1U1, p2 = µ2U2 where U1,2 = U1,2(t) and calculate the
commutation relations [µ0, p1,2]. We find that the U ’s must satisfy the equation

U̇ = QτU (4.20)

in order our commutation relations for µα to have the desired form. We denote a
solution of Equation (4.20) depending on the parameter Q as U(Q), i.e. U1 ≡ U(q1), U2 ≡
U(q2). Next calculating [p1, p2] we find that

[µ1, µ2] =
1

ik̄U1U2
(1 +

qτ2

m2
). (4.21)

Similarly calculating [µ0, p3] we find

[µ0, µ3] =
1

ik̄
. (4.22)
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4.3 The position-position relations

In the simplified momentum basis we make an ansatz for the Fourier transform relating
the coordinates x, y, z, t to momenta µ1, µ2, µ0, µ3

x = ik̄µ1f1,

y = ik̄µ2f2,

z = ik̄µ0f3,

t = ik̄µ3, (4.1)

where f1,2,3 are functions of t to be determined from the momentum-position commu-
tation relations. Putting eqs. (4.1) to eqs. (4.1) we find that

f1 = U(q1),

f2 = U(q2),

f3 = U(q),

where the functions U were defined above and depend on the parameter indicated in the
subscript. We can now calculate the commutation relations between the coordinates
and find

[x, y] = ik̄ρ, [x, z] = −ik̄q1τxU(q)

[y, z] = −ik̄q2τyU(q), [t, z] = ik̄U(q).
(4.2)

where

ρ = (1 +
qτ2

m2
).

Then the Jµν tensor is given by

Jµν = U−1
(q)













0 ρU(q) −q1τx 0

−ρU(q) 0 −q2τy 0

q1τx q2τy 0 −1

0 0 1 0













.

This can be written in the form

Jµν = Sµν + x[µP ν]

with

Sµν =













0 ρ 0 0

−ρ 0 0 0

0 0 0 −1

0 0 1 0













,

and
Pµ = U−1

(q) τ(0, 0, 0, −q1).

We see then from the behaviour of τ that the commutation relations diverge at the
origin. Indeed the orbital term x[µP ν] vanishes exponentially and the spin term diverges
as t−2.
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5 Conclusions

In conclusion we propose to resolve the singularities of general relativity by assuming
that space-time becomes fuzzy beyond a certain scale. In the specific example we
have given here the Kasner manifold has been replaced by a noncommutative algebra,
whose Jacobi identities force a modification of the time dependence of the metric.
All curvature invariants depend smoothly on a element τ , which replaces the time
coordinate. We have seen that particular choices of parameters in Equation (4.8)
lead to nonsingular solution such as Equation (4.9) which is a desirable result for the
programme we have put forward.

We note that the above nonsingular solution has the interesting property of extrap-
olating between two flat solutions of different (constant) commutation relations, that
is in the notation of section 2

θαβ
− = lim

t→−∞
Jαβ

and
θαβ
+ = lim

t→+∞
Jαβ

are not equal and can be arbitrary. In particular one of them can vanish. In this way we
have a smooth extrapolation between a noncommutative flat space and a commutative
one. On the other hand the general solution given by Equation (4.8) (depending on
the value of q) contains periodic solutions which are singular. The duality (4.7) of
Equation (4.6) connects the singular points with the regular points.

It should be stressed though that no use is made of field equations. The restrictions
on the solutions find their origin in the requirement that the noncommutative algebra
be an associative one and appear as Jacobi identities on the commutation relations.
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