112

THE "XOP PROCESSOR IN FASTBUS"

ABSTRACT

Dans le cadre de L'expérience LEP 3, un interface FASTBUS Maitre a été

congu pour &tre associé au microprocesseur XOP.

Cet article décrit Lla philosophie de L'interface, son fonctionnement
interne et la programmation de FASTBUS par XOP. Quelques exemples sont
donnés dans les différents modes de fonctionnement ainsi que les perfor-

mances de l'ensemble.

A FASTBUS MASTER interface has been designed for the XOP microprocessor

used in the L3 experiment.
This paper describes its design philosophy, its internal sequences and

the related FASTBUS XOP software. Examples are given in the different

modes and the corresponding performances are quoted.

% CERN - DIV.DD.



XOP is a fast microprogrammable processor developped at CERN. (1)
Its reliability and its modularity allow special user extension.
To implement XOP as a trigger processor in the L3 experiment we
have designed a fastbus master interface which operates as an in-

ternal XOP module, running in parallel with the other modules.

This module is an XOP dedicated interface designed as an XOP exten-—
sion. It consists of an XOP card linked to one Fastbus card per master

(Maximum : 2 masters per interface). (2)

The Fastbus instruction is an horizontal extension of the XOP mi-

cro~instruction which is increased from 160 to 190 bits.

This new field is as independant as possible of the old ones to allow

simultaneous processings.

Fast execution is obtained by the use of two internal sequencers.
One is used to share the 4 typical fastbus operation on a single XOP
microinstruction (i.e. arbitrate, primary address, secondary address,

data cycle).

The other is used to manage a complete pipe line transfer at a pro-

grammable speed (up to 125 ns/32 bit word).

ALl these operating modes, timings and busses source/destination are

defined in the 29 bits of the microcode described below.

Fastbus addresses, data, Control and Status are pipelined into 12
16-bits registers to allow a good synchronization between XOP and

Fastbus.

Two extra registers are used to programm the word count and the

speed of transfers executed in pipe line mode.

Synchronous and asynchronous modes are both available to avoid the dead
time due to cycle by cycle synchronization. The synchronization of

the module on XOP master clock is accessible by software via a special
bit in the fastbus field. (hold)

113



114

A flag, named fastbus flag has been added to the old ones (carry, zero,
overflow, siagn, counter zero). This flag, testable during any other XOP

action, allows a constant check of the fastbus operations.

FASTBUS OPERATIONS AND SEQUENCES

The module is activated on the fastbus side by a non zero confi-
guration on its "Do Something" field.( Cf table 1 micro instruction XOP,

fastbus field.) Fastbus operation is then executed at the fastbus speed.
On the XOP side, it is activated by a non zero configuration on

its XOP connection field,(bits 28, 29) Data transfer is then executed

at the XOP speed ( 50 ns/ 16 bit data).

Possible Fastbus actions are :

Arbitrate, Do primary address cycle, Do secondary address cycle, Do

data cycle, Do release AS/AK, Do release master ship.

They can be activated one by one or in thesame XOP instruction and

then shared by the sequencer.
Because Fastbus and XOP CPU are running at the same speed and

simultaneously, DMA mode is not implemented, i.e. each transfer is to

be programmed.

The error checking is managed via the control and the status

registers . (cf. table 2).

PROGRAMMATION OF THE INTERFACE

In the XOP microinstruction, the programmation of fastbus
is independant of the other XOP fields.

In the example given, the programmation of the non fastbus XOP

field will be ignored to simplify the corresponding instructions.

ARBITRATION : the 'Do arbitrate" order can be given at any time, if

the sequencer is not busy.



If Master is enabled and Running (CSR @)
and Arbitration not inhibited (CSR 8, A 1), the arbitration

sequence is started.

XOP Program : Do Arbitrate, hold % wait to the end of ARB

JMP Error if FBFLAG Set

Note that as arbitrate is a '"slow' fastbus action, it is recommended to

execute it in the asynchronous mode ( no hold).

PRIMARY ADDRESS CONNECTION

This sequence is started by the corresponding bit in the sequencer.

If it is possible (mastership thrue and primary address connection

false),it generates the effective sequence at the address contained in

the primary address registers FBPAH and FBPAL.

XOP PROGRAM IS :

LD, FBPAH load primary address registers (high and Low)
LD, FBPAL

DO PAC, HOLD Do primary address cycle

CJMP , FBFLAG Jump error if fastbus flag set.

As the fastbus flag test can be done in parallel with the next

instruction, the execution time can be estimated at 250 ns.

As the arbitrate cycle and the memory management of XOP are inde-
pendant they can be executed at the same time. For example : a pipelined

concatenation of the two previous examples can be executed in only

3 XOP instructions.

SECONDARY ADDRESS CYCLE

If possible, this sequence generates the corresponding fastbus
signals according to the contents of the secondary address registers

FBSAH - FB SAL. Ap error generates fastbus flag.

115



116

Possible errors are :

. No primary address connection,
. time-out,
. parity error,

. S.S. response # O.

In case of error the corresponding bits are set in the status

register FBS.

The programming sequence is :

- Load secondary address registers
- Start the cycle (DO SAC) with hold
- Test the fastbus flag.

This sequence can be pipelined with the two sequences seen above

to spend only one instruction more.

DATA CYCLE

The sequence is similar.

The data registers are to be loagded before a write operation or
read after a read cycle.

A sequence error, a time-out, a parity error, or an S.S. response

# 0 will set the flag and the corresponding status.

ALl these sequences can be started at the same time. In this case
only one hold is necessary to resynchronize the interface and all the
parameters can be fetched in XOP memory during the arbitration and the

other fastbus sequences.

In an example of a random data read we can perform the complete

programm in 4 XOP instructions.

This program 1includes :

- The loading of the four address registers with value fetched in XOP

data memory,

- The execution of arbitration - primary address cycle secondary

address cycle - data cycle,



- The storage of the 32 bits data read,

- The check of error.

The corresponding execution time can be estimated at only

200 ns more than the fastbus execution time itself,

In block transfer mode the software loop can be reduce to one
single instruction including the two memory cycle to load or store the

32 bits data and the word count management.
The execution time is then reduced up to 150 ns/data.

In pipe line mode the transfer speed and the word count are both

managed by hardware.

These parameters are programmed via two registers from 100 ns to
800 ns for the data rate, up to 64 K for the word count register. In
this way the maximal fastbus speed is possible, only depending on the

slave speed.

In the L3 experiment this interface will be used with the multiport
multievent buffer designed at L.A.P.P. (3).

This slave module uses the fastbus state data transfer protocol
chip "DATPRO" designed at L.A.P.P.(4) and now running.

With this fast coupler associated with fast ECL memories we hope to
obtain transfert speed in pipe line mode up to 125 ns/word.

117



118

N = O

v e W
—

o)}

10
11
12

13

14
15

16
17
18
19

20
21
22
23
24

25

MICRO INSTRUCTION XOP

Fastbus Instruction

Ms code : Primary address

Ms code : Data cycle

R/W Secondary address cycle

R/W Data cycle

Hold

Do arbitrate

Do primary address
Do secondary address
Do data

Do release AS/AK

Release Mastership code

Source destination register-busses

Register code during first 50 ns

Register code during past 50 ns

R/W first 50 ns

R/W past 50 ns

Bus code first 50 ns

00 No connection
Bus code past 50 ns 01 RD bus

10 WR bus

11 No connection

TABLE 1



XOP Status Register XOP Control Register

? SS code or arbitration 0 Master 1/2
2 status or sequence status 1 Reset Master Interface
4 Sequence error 2 Reset Bus
5 Time out error 3 Parity enable
6 Time out wait state 4 non stop on parity error on
, data cycle
7 Parity error 5 non stop if ss=2 on.data cycle
6 ” ”" SS=3 " "
8 1 7 n 11 SS=6 n n -
9 Seguencer state 8 v ss=7 " "
10 )
9 Set EG
1 SR
12 RE
13 BUZY
14 ERRCR
PIPELINE Counter Register PIPELINE Transfer Speed Register
16 bits ::% 65 K words 5 bits =—) 100 ns to 800 ns in 25 ns
steps.

TABLE 2

119



REFERENCES

=0-0-0-0-0-0—0-0-0-

1 - Tor LINGJAERDE, C.LJUSLIN = XOP, main documentation internal
report - 1983,

2 - J.LECOQ, M.MOYNOT, G.PERROT - XOP - Fastbus master interface F 682 C
internal report - 1985,

3 - J.LECOQ, M.MOYNOT, G.PERROT - Multiport Multievent Buffer - F 682 B
internal report - 1985,

4 - H.BONNEFON, M.MOYNOT, G.PERROT, JM.THENARD - An ECL Fastbus slave

coupler - internal report

January 1985.

=0=0=0=0=0=0=0=

120



