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A bstract

It has been suggested to project out a num ber oflow-lying eigenvalues ofthe four-

dim ensionalW ilson{Dirac operator that generates the transfer m atrix ofdom ain-wall

ferm ionsin orderto im provesim ulationswith dom ain-wallferm ions.W einvestigatehow

thisprojection m ethod reducesthe residualchiralsym m etry-breaking e�ectsfora �nite

extentoftheextradim ension.W eusethestandard W ilson aswellastherenorm alization{

group{im proved gauge action. In both cases we �nd a substantially reduced residual

m asswhen theprojection m ethod isem ployed.In addition,thelargeuctuationsin this

quantity disappear.
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1. Introduction

Dom ain-wallferm ions(DW F)preserve chiralsym m etry [1,2,3]when the lattice size in the

5th direction,N s,istaken to in�nity.Theapproach to the chirallim itisexponentialin N s,

with a rate given by the eigenvaluesofthe transferm atrix along the 5th direction,which is

a localoperatorin 4 dim ensions[4,5,6,7].A m easure ofchiralsym m etry breaking,taking

placefor�niteN s,istheresidualm ass,m res,derived from theaxialW ard{Takahashiidentity.

Even ifthe restoration ofchiralsym m etry is expected to be exponentially fast in N s,in

practice m res can decrease very slowly as�rstshown by the CP{PACS collaboration [8,9].

The slow convergence ofthe residualm assisdue to the existence ofvery sm alleigenvalues

ofthe four-dim ensionaloperator de�ning the transfer m atrix along the 5th direction. In

particular,atlarge N s these low-lying m odesdom inate the convergence rate [9]and render

therecovery ofchiralsym m etry di�cult.Even iftheresidualm assisvery sm all,itisthen not

clearwhetherand whatdistortionsofchiralsym m etry arestillpresent.Sincelargenum erical

sim ulationswith DW F arebeing perform ed (see e.g.refs.[8,10]and thereviews[11,12])it

becom esim portantto �nd waysaround thisobstacle.Such solutionsforim proving thechiral

propertiesofDW F then have to com e from elim inating these low-lying m odes.

O ne idea to reduce these sm alleigenvaluesisthe im provem entofthe gauge actions[8,9,

10,13]such as Iwasaki[14]or DBW 2 [15]. However,besidesthe potentialdi�culties with

unitarity violations [16]and the sam pling problem s oftopologicalcharge sectors [17],this

m ethod doesnotsolve theproblem com pletely.Forexam ple,with theIwasakigauge action,

the convergence rate also becom esslow atlarge N s [9]. The reason isthatagain very sm all

eigenvalues ofthe transfer m atrix appear in this case,though less frequently than for the

W ilson gaugeaction.Using theDBW 2 gaugeaction seem sto bem uch betterin thisrespect

[10,17],butitisunclearwhetherthesesm alleigenvaluescould eventually appearthere,too,

leading to sim ilarproblem s.A perturbativeanalysis[18]suggestsa m odi�cation ofthefour-

dim ensionalcom ponentofthedom ain walloperatorto tackletheproblem .Thisis,however,

notyettested in sim ulations.

Anotherm ethod to elim inate the disturbing e�ectofthe sm alleigenvaluesand the corre-

sponding setofeigenstates ofthe transferm atrix isto projectthem outand liftthem in a

way thatdoesnotchange the N s ! 1 lim itofthe DW F operators[19,20]. In thispaper,

we investigate the projection m ethod based on ref. [19],where the projection is perform ed

in thetransferm atrix itself.In ref.[20],an alternative projection isim plem ented through a

m odi�cation ofthe boundary term s. The philosophy ofboth approachesisthe sam e asthe

one using thetransferm atrix.Theaim ofthisarticle isto investigate the e�ectsofthe pro-

jection m ethod on theresidualm assin quenched sim ulations.Aswe willsee,the projection

m ethod worksvery well,leading to a substantialim provem entin the residualm ass.

Letusem phasize thatsim ulationswith DW F can be considered undertwo aspects. The

\purist’s" approach dem ands exact chiralsym m etry at non-zero lattice spacing. Here any

violation ofchiralsym m etry (in practice up to m achine precision) is not tolerable. Hence
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the value ofN s is to be taken as large as possible and the additive m ass renorm alization

m res 6= 0 hasto be elim inated. Thusthe projection m ethod discussed here,orany m ethod

leading to thesam eim provem ent,becom esan unavoidablenecessity in thiscase.A di�erent,

m ore practicalpointofview isto considerDW F at�nite,and even sm all,valuesofN s asa

highly im proved W ilson ferm ion.Also in thiscase,theprojection m ethod willaccelerate the

num ericalsim ulation considerably and should therefore beem ployed.

2. D om ain-w allferm ions and W ard{Takahashiidentity

In thissection,we establish ournotation and give the W ard{Takahashiidentity in orderto

de�ne the residualm ass. For com pleteness,we give here the de�nition ofthe dom ain-wall

operator and its relation to the 4D operator satisfying the G insparg{W ilson equation [21].

W efollow thepresentation of[19].Derivationsofthisform ulaecan befound in [2,3,4,5,7].

The5D dom ain-walloperatorisde�ned as

D =
1

2
f5(@

�
s + @s)� as@

�
s@sg+ M ; (2.1)

wheresdenotesalatticesitein the5th direction (1 � s� N s),as isthecorrespondinglattice

spacing,and @�s and @s are thefree forward and backward derivatives.

TheoperatorM isobtained from the standard 4D W ilson{Dirac operatorby

M = D W � m 0 (2.2)

with

D W =
1

2

n

�

�

r
�
� + r �

�

� ar
�
�r �

o

: (2.3)

Herer �
� and r � arethegaugecovariantforward and backward derivativesand a isthelattice

spacing in thefourphysicaldim ensions� = 1;:::;4.Thedom ain-wallparam eterm 0 obeys

0 < asm 0 < 2 ; 0 < am 0 < 2 : (2.4)

Notethatthelattice spacingsas and a can bedi�erentin general.Theboundary conditions

in the DW F form ulation in the5th direction is

P+  (0;x)= P�  (N s + 1;x)= 0 ; (2.5)

where P� � 1

2
(1 � 5). In these settings, the chiralm odes with opposite chiralities are

localized on 4D boundary planesats= 1 and s= N s.

The 4D quark �eldsare constructed from the left and rightboundary (chiral) m odes,as

follows:

q(x)= P�  (1;x)+ P+  (N s;x) ; �q(x)= � (1;x)P+ + � (N s;x)P� : (2.6)
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A bare quark m assterm isintroduced by adding to eq.(2.1)theterm

m f

�
� (1;x)P+  (N s;x)+ � (N s;x)P�  (1;x)

	

= m f�q(x)q(x) : (2.7)

Thepropagatorofthe quark �eldsisrelated to an e�ective 4D operatorD N s
[4,5,7]

hq(x)�q(x)i=
2� aD N s

aD N s;m f

; (2.8)

with

D N s;m f
= (1� am f)D N s

+ 2m f : (2.9)

In term softhe operatorsK � ,

K � �
1

2
�
1

2
5

asM

2+ asM
; (2.10)

D N s
isgiven by

aD N s
= 1+ 5

K
N s

+ � K
N s

�

K
N s

+ + K
N s

�

: (2.11)

From thisequation,itiseasy to show that

aD � lim
N s! 1

aD N s
= 1+ 5sign(K + � K � ) ; (2.12)

which iswritten as

aD = 1�
A

p
A yA

; (2.13)

A = �
asM

2+ asM
: (2.14)

The operatorD in eq.(2.13)satis�esthe G insparg{W ilson relation. The only di�erence to

Neuberger’soperator[22]isthe de�nition ofA. Neuberger’soperatorisobtained from eqs.

(2.13)and (2.14)by taking thelim itas ! 0.

In thelim itN s ! 1 ,the5D form ulation ofDW F iscom pletely equivalentto a 4D lattice

form ulation ofG insparg{W ilson ferm ionssatisfying an exact chiralsym m etry. However,in

a realistic sim ulation N s is kept �nite,ofcourse. In this situation,the chiralsym m etry is

explicitly broken by the residualterm s �D � D N s
� D . A m easurem ent ofthe e�ects of

this chiralsym m etry breaking is the so-called residualm ass m res,derived from the axial

W ard{Takahashiidentity.Thechiraltransform ation ofDW F isde�ned as

� (s;x)= iQ (s)� (s;x); �� (s;x)= � i� (s;x)Q (s)�; (2.15)

where Q (s)= sign(N s � 2s+ 1)and � isan in�nitesim altransform ation param eter. Under

this transform ation, the quark �elds are transform ed as the usualchiral transform ation:

�q(x)= i5�q(x);��q(x)= i�q(x)5� .Thereforethe axialW ard{Takahashiidentity is

X

�

hr �A �(x)P (0)i= 2m fhP (x)P (0)i+ 2hJ5q(x)P (0)i ; (2.16)
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where A �(x) is the axial-vector current and P (x) is the pseudo-scalar density;A �(x) and

P (x)are given as

A �(x)=
X

s

Q (s)J�(s;x) ; P (x)= �q(x)5q(x) ; (2.17)

where

J�(x)=
1

2

h

� (s;x)(1� �)U�(x) (s;x + �)� � (s;x + �)(1+ �)U
y
�(x) (s;x)

i

: (2.18)

Theadditionalterm J5q representstheexplicitbreaking ofchiralsym m etry,

J5q = � � 

�
N s

2
;x

�

P�  

�
N s

2
+ 1;x

�

+ � 

�
N s

2
+ 1;x

�

P+  

�
N s

2
;x

�

: (2.19)

Fora sm ooth gauge �eld background,the term hJ5qP ivanishesexponentially fast[3,6,23]

asN s isincreased.In realisticsim ulations,however,thegauge�eldscan berough and itm ay

happen thatthe rate ofconvergence in N s isratherpoor.The breaking ofchiralsym m etry

can bequanti�ed by thevaluesofm res.Letusde�nethe ratio R(t):

R(t)=

P

x
hJ5q(x;t)P (0;0)i

P

x
hP (x;t)P (0;0)i

: (2.20)

Theusualde�nition ofm res isthe average ofthe quantity R(t)atlarge tim e separations.A

necessary but,m aybe,notsu�cientcondition to recoverfully on-shellchiralsym m etry ata

non-vanishing value ofthe lattice spacing isthatthisquantity benegligible.

3. Eigenvalues ofA y
A

Forgaugecon�gurationswith a restricted valueoftheplaquette(so-called adm issiblecon�g-

urations)[6,23],theoperatorA yA hasbeen shown to havea spectralgap,0 < u � A yA � v,

ensuring the exponentialsuppression ofthe residualm assin N s.However,in realistic sim u-

lationsasperform ed today,theplaquette bound isnotsatis�ed and itisim portantto study

the distribution oftheeigenvaluesofA yA in num ericalsim ulations.

The eigenvalues ofA yA can be obtained through the generalized 4D eigenvalue equation

[24]

a
2
sM

y
M  = � (2+ asM )y(2+ asM ) : (3.1)

Thelow-lying (m axim al)eigenvaluescan becom puted by m inim izing (m axim izing)thegen-

eralized Ritz functional1

h ja2sM
yM j i

h j(2+ asM )y(2+ asM )j i
(3.2)

1
The interested readerm ay obtain m ore detailson request.
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using a straightforward generalization ofthe algorithm described in ref.[25].Notice thatin

thism ethod no inversion ofthe m atrix (2+ asM )y(2+ asM )isneeded.Highereigenvalues

can be calculated by m odifying the operator M yM in the num erator in eq.(3.2),so that

the already com puted eigenvalues are shifted to largervalues. Thiscan be achieved [19]by

substituting

M
y
M ! M

y
M +

X

i

�
1� �i

�i

�

M
y
M j iih ij(2+ asM )y(2+ asM ); (3.3)

�i, i being the already com puted (lower)eigenvaluesand eigenvectors.

Figure1showstheeleven lowesteigenvaluesoftheoperatorA yA asafunction oftheM onte

Carlo tim e (tM C). Here and throughoutthe paperwe use the quenched approxim ation and

setas = 1. The data in Fig.1 are obtained with the W ilson gauge action at� = 6:0 on a

123 � 24 lattice,setting m 0 = 1:8.Asexpected,very sm alleigenvaluesappearfrequently.

0 10 20 30 40 50 60
tMC

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

λ

Figure 1: The11 lowesteigenvaluesoftheoperatorA yA asa function ofM onte Carlo tim e

tM C at� = 6:0 and m 0 = 1:8 on a 123 � 24 lattice. The open diam ondsdenote the lowest

eigenvalue.

Them inim um rate ofconvergence in N s ofthe operatorD N s
isgiven by

! = m in
i
[!i] ; !i� ln

1+
p
�i

j1�
p
�ij

; (3.4)

where �i are the eigenvaluesofA
yA [19]. Figure 2 showsthe inverse convergence rate com -

puted from theeigenvaluesin Fig.1.Clearly,thelow-lying eigenvaluesofA yA lead to a slow
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convergence,causing thesim ulation to becom e expensive.

0 10 20 30 40 50 60
tMC

10
0

10
1

10
2

10
3

ωi

−1

Figure2: Theinverseconvergencerate!� 1i com puted from theeigenvaluesplotted in Fig 1.

W e also explored the eigenvalues for other gauge actions such as the Iwasaki[14]and

DBW 2 [15]ones. An exam ple for these eigenvalues is plotted in Fig.3. In that �gure we

average over20 gaugecon�gurations.Theparam etersofthegaugeactionswerechosen such

thatin each case the value ofthe lattice spacing isa = 0:093 fm ,leading to setting � = 6:0

forthe W ilson action,� = 2:6 forthe Iwasakione and � = 1:04 forthe DBW 2 one. Since

also thelattice sizewas�xed to be123 � 24 wehaveforthedi�erentgaugeactionsthesam e

physicalsituation.FortheW ilson action weobservesm allvaluesforthelowest-lying m odes.

Thisis im proved substantially by em ploying the Iwasakiaction and even m ore when using

theDBW 2 action.Note thatthe11th low-lying eigenvalueoftheW ilson action corresponds

to the lowest eigenvalue ofthe Iwasakiaction. W e checked forthe W ilson and the Iwasaki

action that this picture does not change when we decrease the value ofthe lattice spacing

down to a = 0:05 fm . This con�rm s that the convergence in N s is faster when the gauge

action isim proved [8,10,13].Aswewillseebelow a conclusion thatim proved gaugeactions

by them selves would com pletely cure the problem ofa slow convergence rate is prem ature,

however.
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Figure3:Averaged eigenvaluesfortheW ilson,Iwasakiand DBW 2gaugeactionsasafunction

ofthe eigenvalue num ber. The lattice spacing a = 0:093 fm used is the sam e for allgauge

actions.

4. Im provem ent ofdom ain-w allferm ion

The decay rate ofthe residualm ass in N s is controlled by the sm alleigenvalues ofA yA.

For the W ilson gauge action very sm alleigenvalues occur,leading to a slow convergence.

Although the situation is im proved for the Iwasakigauge action,as we saw above,it was

observed thateven in thiscaseforlargevaluesofN s theconvergence turned to becom every

slow [8,9]. It thus seem s to be necessary to test m ethods as proposed in [19]that m odify

theferm ionicpartoftheDW F action by projecting outthesm alleigenvaluesofA yA.These

m ethodscan beused alternatively {oreven in addition{toem ployingim proved gaugeactions.

The key observation in [19]is thatthe relations in eqs.(2.13)and (2.14)hold true forany

choice ofM aslong as

M
y = 5M 5 ; det(2+ asM )6= 0 : (4.1)

This fact m ay be used to construct an im proved M for which the very low eigenvalues of

A yA disappear.
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Let us, for com pleteness, repeat the construction of the im proved operator here again

following [19].Thebasicidea isto �nd thenew operator cM satisfying thefollowing relation;

bA = �
as

cM

2+ as
cM

= A +

rX

k= 1

(b�k � �k)5vk 
 v
y

k
; (4.2)

wherevk isthe eigenvectorofthefollowing equation

5Avk = �kvk ; k = 1;:::;r ; (vk;vl)= �kl : (4.3)

Thereforean im proved DW F operator,D
im p

dwf
,can beobtained from eq.(2.1)aftersubstituting

M with cM de�ned as

as
cM = asM �

rX

k;l= 1

X klwk 
 w
y

l
5 ; (4.4)

where

wk = (2+ asM )5vk (4.5)

and

(X � 1)kl= 2�kl(b�k � �k)
� 1 + (vk;wl) : (4.6)

It is easy to see that 5
bA has the sam e eigenvectors as 5A;however,alleigenvalues �k,

k = 1;:::;r,are replaced by b�k. The lim itN s ! 1 ofD N s
isofcourse unchanged by this

m odi�cation,provided

sign(b�k)= sign(�k): (4.7)

Thechoice ofjb�kjisnotunique.W e willchoose here

b�k = 2 sign(�k)j�lj; 1 � k � r� km ax ; (4.8)

wherekm ax isthenum berofeigenvaluesprojected outand lcan bechosen freely.A natural

choice isl= km ax such thatalllow-lying eigenvaluesare m oved to be twice higherthan the

largesteigenvalue projected out.W ealso tried,however,di�erentvaluesofland found that

the im provem entisnotvery sensitive to the precise choice of b�k,provided itislarger than

�km ax
.

O ur statistics is typically 60 con�gurations for the W ilson gauge action and 20 con�g-

urations for the Iwasakiaction. W e did not explore the DBW 2 action extensively. The

param etersofthe gauge actionswerechosen asbeforesuch thata� 1 = 2 G eV,which m eans

a choice of� = 6:0 fortheW ilson gauge action and � = 2:6 fortheIwasakione.Thelattice

sizeswere123� 24� N s and 16
3� 24� N s forthetwo actions,respectively.Thedom ain-wall

m asswasm 0 = 1:8 and we worked ata quark m assofm f = 0:02.

W e have m easured the residualm ass from R(t)in eq.(2.20)as the average ofR(t)for t

typically in the interval4 � t� 20 fora tim e extentofthe lattice ofT = 24.R(t)isshown

in Fig.4 for the case when no projection is perform ed. For each value ofN s we have the
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0 4 8 12 16 20 24
t

10
−5

10
−4

10
−3

10
−2

10
−1

<
J 5q

P
>

/<
P

P
>

Ns=8
Ns=12
Ns=32

Figure 4:Theratio R(t)=
hJ5qP i

hP P i
asa function ofEuclidean tim e.TheW ilson gauge action

is chosen with sim ulation param eters as given in the text. No projection ofeigenvalues is

perform ed.

sam e statistics. Although,with increasing N s,the residualm ass m res decreases,it does so

rather slowly;furtherm ore,as N s increases,large uctuations in R(t) occur,rendering the

determ ination ofthe residualm ass di�cult. These large uctuations also suggest that the

residualchirality-breaking e�ectsin otherquantitiesm ightbe very hard to estim ate,taking

only m res asa m easureofthesee�ects.

In Fig.5 we show R(t) when we project out a num ber ofeigenvalues. As expected,the

projection ofthe low eigenvalues decreases the residualm ass signi�cantly with respect to

Fig.4.

The m ore eigenvalues are projected the sm aller the residualm ass is. Anotherim portant

featureisthattheuctuationsin R(t)becom em uch sm allerwhen a su�ciently largenum ber

ofeigenvaluesisprojected out;in thiscase10 seem sto bea good choice.Thisisvery clearly

seen in Fig.6,wherewe show the value ofthe ratio bR(t),

bR(t)=

P

x
J5q(x;t)P (0;0)

P

x
P (x;t)P (0;0)

; (4.9)

com puted on single con�gurationsatt= 12 asa function ofM onte Carlo tim e. The spikes

are substantially dam ped with the projection. Finally,when the projection isim plem ented,

the decrease ofthe residualm asswith N s ism uch faster.
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0 4 8 12 16 20 24
t

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

<
J 5q

P
>

/<
P

P
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Ns=32, kmax=3, l=3
Ns=32, kmax=10, l=10
Ns=48, kmax=10, l=10

Figure 5:Sam easFig.4 butnow with the projection ofeigenvaluesem ployed.

0 10 20 30 40 50 60
−0.005

0

0.005

0.01

0.015

0.02

Ns=16, no−projection
Ns=16, kmax=10, l=10

0 10 20 30 40 50 60
i=tMC

−0.005

0

0.005

0.01

0.015

0.02

Ns=32, no−projection
Ns=32, kmax=10, l=10

Figure 6: The quantity bR(t)� hbR(t)iatt= 12,see eq.(4.9),asa function ofM onte Carlo

tim e forthe W ilson gauge action,with and withoutprojection.
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In sum m ary,itisclearthattheprojection m ethod hasa drastice�ecton thevalueand dis-

persion oftheresidualm ass.Howevera su�cient(O (10)in oursetup)num berofeigenvalues

have to beprojected out.

5. D W F w ith im proved gauge actions

In oursim ulationswith theIwasakigaugeaction wefound,even in oursm allsam pleofonly

20 con�gurations,very low-lying eigenvaluesofA yA.In orderto seethee�ectofthesem odes

we plot,in Fig.7,the ratio bR(t) ofeq.(4.9),for two ofthese con�gurations (note thatno

averaging isinvolved here).The�guresindicatethatwewill�nd,also fortheIwasakigauge

action,the sam e problem asforthe W ilson gauge action.W hen no projection isperform ed,

the correlation function shows a spiky behaviour,which m ay lead to large uctuations in

bR(t)and henceto a very di�cultdeterm ination oftheresidualm ass.Thisisalso con�rm ed

in the ratio ofaveraged values,R(t),asshown in Fig.8. The pattern resem blesthe case of

theW ilson gaugeaction.Forsm allvaluesofN s thee�ectoftheprojection isnotnoticeable.

ForlargervaluesofN s,we see thatR(t)islowered when the eigenvalues are projected out

and thattheuctuationsofthisquantity are strongly dam ped.

0 4 8 12 16 20 24
t

10
−10

10
−8

10
−6

10
−4

10
−2

Ns=40, no projection
Ns=40, kmax=3, l=3

0 4 8 12 16 20 24
t

10
−10

10
−8

10
−6

10
−4

10
−2

Ns=40, no projection
Ns=40, kmax=3, l=3

Figure 7: bR(t)asa function oftim e in the Iwasakiaction. The circlesshow the resultsfor

the no-projection case and the diam ondsforthe case when 3 eigenvaluesareprojected out.

W e also m ade an attem pt to see how the projection m ethod a�ects R(t) for the DBW 2

action. For the sim ulations we chose � = 1:04,which corresponds again to a� 1 = 2 G eV.

Thuswe study the sam e physicalsituation with the W ilson and Iwasakigauge actions.The

lattice sizewaschosen to be163 � 32� N s and m 0 = 1:7.Theferm ion m asswastaken to be

m f = 0:02.

W e observe in Fig.9 thatthe residualm assisnotchanged very m uch by the projection.

W eattributethisto thefactthatin oursm allstatisticalsam plenovery low-lying eigenvalues
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0 4 8 12 16 20 24
t

10
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−7

10
−6

10
−5

10
−4

10
−3

<
J 5q

P
>

/<
P

P
>

Ns=24, no projection
Ns=24, kmax=10, l=10
Ns=40, no projection
Ns=40, kmax=3, l=3

Figure 8:
hJ5qP i

hP P i
withoutand with projection fortheIwasakigauge action.

ofA yA could bedetected.W esee,however,from thesam e�gurethatthestatisticalerroris

substantially reduced forcertain valuesoftwhen the projection ofeigenvaluesisem ployed.

ThefactthatR(t)showslargeuctuations,even though thereareno very sm alllow-lying

eigenvalues,pointstoward thesuspicion thatalsotheeigenvectorsm ayplayan im portantrole.

In particular the localization properties ofthese eigenm odes m ay lead to large uctuations

asdiscussed in [26]. Although thispointdeservesfurtherinvestigation,we did notperform

such a study here. To conclude,from a negligible average value ofthe residualm ass,that

chiralsym m etry isrestored iscertainly questionablewhen thedispersion oftheresidualm ass

islarge and notgaussian.A m uch safersituation would beto ensurethatthe residualm ass

isbounded from aboveforallcon�gurations.Theprojection m ethod ensuresthatthisisthe

case.

To sum m arize,in Fig.10 weshow thecom parison ofthebehaviouroftheresidualm assas

afunction ofN s fordi�erentgaugeactionsand fordi�erentnum bersofprojected eigenvalues.

Fora�xed gaugeaction,we�nd thatatsm allN s thereisalm ostnoe�ectfrom theprojection

m ethod.

This can be explained by a sim ple qualitative argum ent with the form ula suggested in

[18,9,26];

m res �
X

k

e
� �kN s �

Z

d��(�)e� �N s ; (5.1)

where �(�)isthe eigenvalue density in the continuum . This(qualitative) form ula describes
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the behaviourofm res asa function ofN s.The form ula containstwo factors,the eigenvalue

density and theexponentialsupression factore� �N s.Forsm allvaluesofN s,notonly do the

low-lying m odescontribute to the sum in eq.(5.1),butalso the bulk m odessince they are

notsupressed su�ciently. W hen projecting outa few num beroflow-lying eigenm odes,the

eigenvalue density and the exponentialfactor rem ain alm ostunchanged and hence also the

residualm assis nota�ected very m uch forsm allvaluesofN s. In such a case,itwould be

necessary to projectouta large num berofeigenm odesto m ake m res decrease. W hen N s is

chosen to be large,on the otherhand,the bulk m ode contributionsto the sum in eq.(5.1)

willdie outand only the sm alleigenvalue contributionswillsurvive. Asa consequence,the

factore� �N s becom esm uch sm allerafterprojecting outeven only a few low-lying (isolated)

eigenm odes. This should hence lead to a large im provem ent,i.e. a substantialdecrease of

the residualm ass when the projection m ethod is active. As Fig.10 clearly shows,this is

indeed the case. For the W ilson gauge action atN s = 48,the value ofthe residualm assis

decreased by severalordersofm agnitude when 10 eigenvalues are projected out. W e m ade

a rough check fortheIwasakigauge action thatalso in thiscase theresidualm assdecreases

substantially, choosing N s = 40. Thus the very slow decrease of the residualm ass as a

function ofN s in theoriginalDW F form ulation with no projection iscured by projecting out

a few O (10)eigenvalues.
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6. C onclusion

W e have studied the e�ectofm odifying the ferm ion action ofDW F by projecting outa few

low-lying eigenvalues ofthe underlying transfer m atrix [19]. By m easuring the correlation

function leading to a determ ination ofthe residualm ass and the residualm ass itselfas a

function ofN s,we �nd a signi�cantim provem ent in the restoration ofchiralsym m etry for

quenched DW F atlarge N s.

Thereason isthatin thelarge-N s lim itthelow-lying eigenvaluesofA
yA areresponsiblefor

theexponentialconvergencerateofDW F in N s toitschiralinvariantlim it.Theseeigenvalues

then dom inate the behaviouroftheresidualm assand wheneververy sm alllow-lying m odes

appearthey lead to a very slow decrease ofthe residualm assasN s isincreased.Projecting

outa sm allnum berofthesem odescan thereforehelp considerably to lowerthevaluesofthe

residualm ass.W ehavecon�rm ed thispicturein practicalsim ulations,using theW ilson and

theIwasakigaugeactions.W eobservethatwhen a su�cientnum ber,i.e.O (10),eigenvalues

are projected out,the residualm assvanishesrapidly with increasing N s.

Letusend ourdiscussion with threerem arks.

(i) Projecting out a num ber oflow-lying eigenvalues shows a strong e�ect not only on the

value but also on the uctuations ofthe correlation function R(t) in eq.(2.20) and hence
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ofthe residualm ass. The dam ping ofthe uctuationstakesplace even when no very sm all

eigenvalues occurin the sim ulation,asin the case ofthe DBW 2 action. Itthusseem sthat

also theeigenvectorsand in particulartheirlocalization propertiesplay an im portantrole.It

isunclearto us,and wedid notinvestigatethishere,how faralso othercorrelation functions

are a�ected by thisphenom enon.O ne possible explanation [26]relieson the relation ofthe

eigenvalues and eigenvectors ofD W and D N s;m f
. The study ofthis correspondence clearly

deservesfurthere�ortsusing non-perturbativem ethods.

(ii) The m ethod ofprojecting out eigenvalues as studied here can be used on top ofother

im provem entssuch asusing im proved gauge actionsorim proved ferm ion actions. The pro-

jection m ethod is not very costly and produces only a sm allnum ericaloverhead. Thus we

advocate to em ploy theprojection m ethod in any sim ulation donewith DW F.

(iii) W e expect that the projection ofthe low-lying eigenvalues should play an even m ore

im portantrole in the case ofdynam icalsim ulations with DW F asthe behaviourofthe 5D

ferm ionic kernelwillbe a�ected by the problem s discussed in (i),too. W e envisage that

such a dynam icalcom putation with theprojection oflow-lying eigenvaluescan beperform ed

along thelinesofrefs.[27,28,29,30]by estim ating thefullDW F operatorstochastically.In

thiscase theprojection can bedoneeasily.
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