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Abstract

It has been suggested to project out a number of low-lying eigenvalues of the four-
dimensional Wilson–Dirac operator that generates the transfer matrix of domain-wall
fermions in order to improve simulations with domain-wall fermions. We investigate how
this projection method reduces the residual chiral symmetry-breaking effects for a finite
extent of the extra dimension. We use the standard Wilson as well as the renormalization–
group–improved gauge action. In both cases we find a substantially reduced residual
mass when the projection method is employed. In addition, the large fluctuations in this
quantity disappear.



1. Introduction

Domain-wall fermions (DWF) preserve chiral symmetry [1, 2, 3] when the lattice size in the
5th direction, Ns, is taken to infinity. The approach to the chiral limit is exponential in Ns,
with a rate given by the eigenvalues of the transfer matrix along the 5th direction, which is
a local operator in 4 dimensions [4, 5]. A measure of chiral symmetry breaking, taking place
for finite Ns, is the residual mass, mres, derived from the axial Ward–Takahashi identity.

Even if the restoration of chiral symmetry is expected to be exponentially fast in Ns, in
practice mres can decrease very slowly as first shown by the CP–PACS collaboration [6, 7].
The slow convergence of the residual mass is due to the existence of very small eigenvalues
of the four-dimensional operator defining the transfer matrix along the 5th direction. In
particular, at large Ns these low-lying modes dominate the convergence rate [7] and render
the recovery of chiral symmetry difficult. Even if the residual mass is very small, it is then not
clear whether and what distortions of chiral symmetry are still present. Since large numerical
simulations with DWF are being performed (see e.g. refs. [6, 8] and the reviews [9, 10]) it
becomes important to find ways around this obstacle. Such solutions for improving the chiral
properties of DWF then have to come from eliminating these low-lying modes.

One idea to reduce these small eigenvalues is the improvement of the gauge actions [6, 7,
8, 11] such as Iwasaki [12] or DBW2 [13]. However, besides the potential difficulties with
unitarity violations [14] and the sampling problems of topological charge sectors [15], this
method does not solve the problem completely. For example, with the Iwasaki gauge action,
the convergence rate also becomes slow at large Ns [7]. The reason is that again very small
eigenvalues of the transfer matrix appear in this case, though less frequently than for the
Wilson gauge action. Using the DBW2 gauge action seems to be much better in this respect
[8, 15], but it is unclear whether these small eigenvalues could eventually appear there, too,
leading to similar problems. A perturbative analysis [16] suggests a modification of the four-
dimensional component of the domain wall operator to tackle the problem. This is, however,
not yet tested in simulations.

Another method to eliminate the disturbing effect of the small eigenvalues and the corre-
sponding set of eigenstates of the transfer matrix is to project them out and lift them in a
way that does not change the Ns → ∞ limit of the DWF operators [17, 18]. In this paper,
we investigate the projection method based on ref. [17], where the projection is performed
in the transfer matrix itself. In ref. [18], an alternative projection is implemented through a
modification of the boundary terms. The philosophy of both approaches is the same as the
one using the transfer matrix. The aim of this article is to investigate the effects of the pro-
jection method on the residual mass in quenched simulations. As we will see, the projection
method works very well, leading to a substantial improvement in the residual mass.
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2. Domain-wall fermions and Ward–Takahashi identity

In this section, we establish our notation and give the Ward–Takahashi identity in order to
define the residual mass. For completeness, we give here the definition of the domain-wall
operator and its relation to the 4D operator satisfying the Ginsparg–Wilson equation [19].
We follow the presentation of [17]. Derivations of this formulae can be found in [2, 3, 5, 20].
The 5D domain-wall operator is defined as

D =
1
2
{γ5 (∂∗s + ∂s)− as∂

∗
s∂s}+M , (2.1)

where s denotes a lattice site in the 5th direction (1 ≤ s ≤ Ns), as is the corresponding lattice
spacing, and ∂∗s and ∂s are the free forward and backward derivatives.

The operator M is obtained from the standard 4D Wilson–Dirac operator by

M = DW −m0 (2.2)

with
DW =

1
2

{
γµ

(
∇∗

µ +∇µ

)
− a∇∗

µ∇µ

}
. (2.3)

Here ∇∗
µ and ∇µ are the gauge covariant forward and backward derivatives and a is the lattice

spacing in the four physical dimensions µ = 1, . . . , 4. The domain-wall parameter m0 obeys

0 < asm0 < 2 , 0 < am0 < 2 . (2.4)

Note that the lattice spacings as and a can be different in general. The boundary conditions
in the DWF formulation in the 5th direction is

P+ψ(0, x) = P−ψ(Ns + 1, x) = 0 , (2.5)

where P± ≡ 1
2(1 ± γ5). In these settings, the chiral modes with opposite chiralities are

localized on 4D boundary planes at s = 1 and s = Ns.
The 4D quark fields are constructed from the left and right boundary (chiral) modes, as

follows:

q(x) = P−ψ(1, x) + P+ψ(Ns, x) , q̄(x) = ψ̄(1, x)P+ + ψ̄(Ns, x)P− . (2.6)

A bare quark mass term is introduced by adding to eq. (2.1) the term

mf

{
ψ̄(1, x)P+ψ(Ns, x) + ψ̄(Ns, x)P−ψ(1, x)

}
= mf q̄(x)q(x) . (2.7)

The propagator of the quark fields is related to an effective 4D operator DNs [5, 20]

〈q(x)q̄(x)〉 =
2− aDNs

aDNs,mf

, (2.8)
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with
DNs,mf

= (1− amf )DNs + 2mf . (2.9)

In terms of the operators K±,

K± ≡ 1
2
± 1

2
γ5

asM
2 + asM , (2.10)

DNs is given by

aDNs = 1 + γ5
KNs

+ −KNs−
KNs

+ +KNs−
. (2.11)

From this equation, it is easy to show that

aD ≡ lim
Ns→∞

aDNs = 1 + γ5 sign (K+ −K−) , (2.12)

which is written as
aD = 1− A√

A†A
, (2.13)

A = − asM
2 + asM . (2.14)

The operator D in eq. (2.13) satisfies the Ginsparg–Wilson relation. The only difference to
Neuberger’s operator [21] is the definition of A. Neuberger’s operator is obtained from eqs.
(2.13) and (2.14) by taking the limit as → 0.

In the limit Ns →∞, the 5D formulation of DWF is completely equivalent to a 4D lattice
formulation of Ginsparg–Wilson fermions satisfying an exact chiral symmetry. However, in
a realistic simulation Ns is kept finite, of course. In this situation, the chiral symmetry is
explicitly broken by the residual terms δD ≡ DNs − D. A measurement of the effects of
this chiral symmetry breaking is the so-called residual mass mres, derived from the axial
Ward–Takahashi identity. The chiral transformation of DWF is defined as

δψ(s, x) = iQ(s)εψ(s, x) , δψ̄(s, x) = −iψ̄(s, x)Q(s)ε , (2.15)

where Q(s) = sign(Ns − 2s + 1) and ε is an infinitesimal transformation parameter. Under
this transformation, the quark fields are transformed as the usual chiral transformation:
δq(x) = iγ5εq(x) , δq̄(x) = iq̄(x)γ5ε . Therefore the axial Ward–Takahashi identity is

∑
µ

〈∇µAµ(x)P (0)〉 = 2mf 〈P (x)P (0)〉 + 2〈J5q(x)P (0)〉 , (2.16)

where Aµ(x) is the axial-vector current and P (x) is the pseudo-scalar density; Aµ(x) and
P (x) are given as

Aµ(x) =
∑
s

Q(s)Jµ(s, x) , P (x) = q̄(x)γ5q(x) , (2.17)
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where

Jµ(x) =
1
2

[
ψ̄(s, x)(1 − γµ)Uµ(x)ψ(s, x + µ)− ψ̄(s, x+ µ)(1 + γµ)U †µ(x)ψ(s, x)

]
. (2.18)

The additional term J5q represents the explicit breaking of chiral symmetry,

J5q = −ψ̄
(
Ns

2
, x

)
P−ψ

(
Ns

2
+ 1, x

)
+ ψ̄

(
Ns

2
+ 1, x

)
P+ψ

(
Ns

2
, x

)
. (2.19)

For a smooth gauge field background, the term 〈J5qP 〉 vanishes exponentially fast [3, 4, 22]
as Ns is increased. In realistic simulations, however, the gauge fields can be rough and it may
happen that the rate of convergence in Ns is rather poor. The breaking of chiral symmetry
can be quantified by the values of mres. Let us define the ratio R(t):

R(t) =
∑

x〈J5q(t,x)P (0,x)〉∑
x〈P (t,x)P (0,x)〉 . (2.20)

The usual definition of mres is the average of the quantity R(t) at large time separations. A
necessary but, maybe, not sufficient condition to recover on-shell chiral symmetry is that this
quantity be negligible.

3. Eigenvalues of A†A

For gauge configurations with a restricted value of the plaquette (so-called admissible config-
urations) [4, 22], the operator A†A has been shown to have a spectral gap, 0 < u ≤ A†A ≤ v,
ensuring the exponential suppression of the residual mass in Ns. However, in realistic simu-
lations as performed today, the plaquette bound is not satisfied and it is important to study
the distribution of the eigenvalues of A†A in numerical simulations.

The eigenvalues of A†A can be obtained through the generalized 4D eigenvalue equation
[23]

a2
sM†Mψ = λ (2 + asM)†(2 + asM)ψ . (3.1)

The low-lying (maximal) eigenvalues can be computed by minimizing (maximizing) the gen-
eralized Ritz functional1

〈ψ|a2
sM†M|ψ〉

〈ψ|(2 + asM)†(2 + asM)|ψ〉 (3.2)

using a straightforward generalization of the algorithm described in ref. [24]. Notice that in
this method no inversion of the matrix (2 + asM)†(2 + asM) is needed. Higher eigenvalues
can be calculated by modifying the operator M†M in the numerator in eq. (3.2), so that
the already computed eigenvalues are shifted to larger values. This can be achieved [17] by
substituting

M†M→M†M+
∑

i

(
1− λi

λi

)
M†M|ψi〉〈ψi|(2 + asM)†(2 + asM) , (3.3)

1The interested reader may obtain more details on request.
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λi, ψi being the already computed (lower) eigenvalues and eigenvectors.
Figure 1 shows the eleven lowest eigenvalues of the operator A†A as a function of the Monte

Carlo time (tMC). Here and throughout the paper we use the quenched approximation and
set as = 1. The data in Fig. 1 are obtained with the Wilson gauge action at β = 6.0 on a
123 × 24 lattice, setting m0 = 1.8. As expected, very small eigenvalues appear frequently.
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10
−2

10
−1

λ

Figure 1: The 11 lowest eigenvalues of the operator A†A as a function of Monte Carlo time
tMC at β = 6.0 and m0 = 1.8 on a 123 × 24 lattice. The open diamonds denote the lowest
eigenvalue.

The minimum rate of convergence in Ns of the operator DNs is given by

ω = min
i

[ωi] , ωi ≡ ln
1 +

√
λi

|1−√λi|
, (3.4)

where λi are the eigenvalues of A†A [17]. Figure 2 shows the inverse convergence rate com-
puted from the eigenvalues in Fig. 1. Clearly, the low-lying eigenvalues of A†A lead to a slow
convergence, causing the simulation to become expensive.

We also explored the eigenvalues for other gauge actions such as the Iwasaki [12] and
DBW2 [13] ones. An example for these eigenvalues is plotted in Fig. 3. In that figure we
average over 20 gauge configurations. The parameters of the gauge actions were chosen such
that in each case the value of the lattice spacing is a = 0.093 fm, leading to setting β = 6.0
for the Wilson action, β = 2.6 for the Iwasaki one and β = 1.04 for the DBW2 one. Since
also the lattice size was fixed to be 123 × 24 we have for the different gauge actions the same
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Figure 2: The inverse convergence rate ω−1
i computed from the eigenvalues plotted in Fig 1.

physical situation. For the Wilson action we observe small values for the lowest-lying modes.
This is improved substantially by employing the Iwasaki action and even more when using
the DBW2 action. Note that the 11th low-lying eigenvalue of the Wilson action corresponds
to the lowest eigenvalue of the Iwasaki action. We checked for the Wilson and the Iwasaki
action that this picture does not change when we decrease the value of the lattice spacing
down to a = 0.05 fm. This confirms that the convergence in Ns is faster when the gauge
action is improved [6, 8, 11]. As we will see below a conclusion that improved gauge actions
by themselves would completely cure the problem of a slow convergence rate is premature,
however.

4. Improvement of domain-wall fermion

The decay rate of the residual mass in Ns is controlled by the small eigenvalues of A†A.
For the Wilson gauge action very small eigenvalues occur, leading to a slow convergence.
Although the situation is improved for the Iwasaki gauge action, as we saw above, it was
observed that even in this case for large values of Ns the convergence turned to become very
slow [6, 7]. It thus seems to be necessary to test methods as proposed in [17] that modify
the fermionic part of the DWF action by projecting out the small eigenvalues of A†A. These
methods can be used alternatively –or even in addition– to employing improved gauge actions.
The key observation in [17] is that the relations in eqs. (2.13) and (2.14) hold true for any
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Figure 3: Averaged eigenvalues for the Wilson, Iwasaki and DBW2 gauge actions as a function
of the eigenvalue number. The lattice spacing a = 0.093 fm used is the same for all gauge
actions.

choice of M as long as

M† = γ5Mγ5 , det(2 + asM) 6= 0 . (4.1)

This fact may be used to construct an improved M for which the very low eigenvalues of
A†A disappear.

Let us, for completeness, repeat the construction of the improved operator here again
following [17]. The basic idea is to find the new operator M̂ satisfying the following relation;

Â = − asM̂
2 + asM̂

= A+
r∑

k=1

(α̂k − αk)γ5vk ⊗ v†k , (4.2)

where vk is the eigenvector of the following equation

γ5Avk = αkvk , k = 1, . . . , r , (vk, vl) = δkl . (4.3)

Therefore an improved DWF operator,Dimp
dwf , can be obtained from eq. (2.1) after substituting
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M with M̂ defined as

asM̂ = asM−
r∑

k,l=1

Xklwk ⊗ w†l γ5 , (4.4)

where
wk = (2 + asM)γ5vk (4.5)

and
(X−1)kl = 2δkl(α̂k − αk)−1 + (vk, wl) . (4.6)

It is easy to see that γ5Â has the same eigenvectors as γ5A; however, all eigenvalues αk,
k = 1, . . . , r, are replaced by α̂k. The limit Ns → ∞ of DNs is of course unchanged by this
modification, provided

sign(α̂k) = sign(αk) . (4.7)

The choice of |α̂k| is not unique. We will choose here

α̂k = 2 sign(αk)|αl| , 1 ≤ k ≤ r ≡ kmax , (4.8)

where kmax is the number of eigenvalues projected out and l can be chosen freely. A natural
choice is l = kmax such that all low-lying eigenvalues are moved to be twice higher than the
largest eigenvalue projected out. We also tried, however, different values of l and found that
the improvement is not very sensitive to the precise choice of α̂k, provided it is larger than
αkmax .

Our statistics is typically 60 configurations for the Wilson gauge action and 20 config-
urations for the Iwasaki action. We did not explore the DBW2 action extensively. The
parameters of the gauge actions were chosen as before such that a−1 = 2 GeV, which means
a choice of β = 6.0 for the Wilson gauge action and β = 2.6 for the Iwasaki one. The lattice
sizes were 123×24×Ns and 163×24×Ns for the two actions, respectively. The domain-wall
mass was m0 = 1.8 and we worked at a quark mass of mf = 0.02.

We have measured the residual mass from R(t) in eq. (2.20) as the average of R(t) for t
typically in the interval 4 ≤ t ≤ 20 for a time extent of the lattice of T = 24. R(t) is shown
in Fig. 4 for the case when no projection is performed. For each value of Ns we have the
same statistics. Although, with increasing Ns, the residual mass mres decreases, it does so
rather slowly; furthermore, as Ns increases, large fluctuations in R(t) occur, rendering the
determination of the residual mass difficult. These large fluctuations also suggest that the
residual chirality-breaking effects in other quantities might be very hard to estimate, taking
only mres as a measure of these effects.

In Fig. 5 we show R(t) when we project out a number of eigenvalues. As expected, the
projection of the low eigenvalues decreases the residual mass significantly with respect to
Fig. 4.

The more eigenvalues are projected the smaller the residual mass is. Another important
feature is that the fluctuations in R(t) become much smaller when a sufficiently large number
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Figure 4: The ratio R(t) = 〈J5qP 〉
〈PP 〉 as a function of euclidean time. The Wilson gauge action

is chosen with simulation parameters as given in the text. No projection of eigenvalues is
performed.

of eigenvalues is projected out; in this case 10 seems to be a good choice. This is very clearly
seen in Fig. 6, where we show the value of the ratio R̂(t),

R̂(t) =
∑

x J5q(x, t)P (x, 0)∑
x P (x, t)P (x, 0)

, (4.9)

computed on single configurations at t = 12 as a function of Monte Carlo time. The spikes
are substantially damped with the projection. Finally, when the projection is implemented,
the decrease of the residual mass with Ns is much faster.

In summary, it is clear that the projection method has a drastic effect on the value and dis-
persion of the residual mass. However a sufficient (O(10) in our setup) number of eigenvalues
have to be projected out.

5. DWF with improved gauge actions

In our simulations with the Iwasaki gauge action we found, even in our small sample of only
20 configurations, very low-lying eigenvalues of A†A. In order to see the effect of these modes
we plot, in Fig. 7, the ratio R̂(t) of eq. (4.9), for two of these configurations (note that no
averaging is involved here). The figures indicate that we will find, also for the Iwasaki gauge
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Figure 5: Same as Fig. 4 but now with the projection of eigenvalues employed.
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Figure 6: The quantity R̂(t) − 〈R̂(t)〉 at t = 12, see eq. (4.9), as a function of Monte Carlo
time for the Wilson gauge action, with and without projection.
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action, the same problem as for the Wilson gauge action. When no projection is performed,
the correlation function shows a spiky behaviour, which may lead to large fluctuations in
R̂(t) and hence to a very difficult determination of the residual mass. This is also confirmed
in the ratio of averaged values, R(t), as shown in Fig. 8. The pattern resembles the case of
the Wilson gauge action. For small values of Ns the effect of the projection is not noticeable.
For larger values of Ns, we see that R(t) is lowered when the eigenvalues are projected out
and that the fluctuations of this quantity are strongly damped.
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Figure 7: R̂(t) as a function of time in the Iwasaki action. The circles show the results for
the no-projection case and the diamonds for the case when 3 eigenvalues are projected out.

We also made an attempt to see how the projection method affects R(t) for the DBW2
action. For the simulations we chose β = 1.04, which corresponds again to a−1 = 2 GeV.
Thus we study the same physical situation with the Wilson and Iwasaki gauge actions. The
lattice size was chosen to be 163 × 32×Ns and m0 = 1.7. The fermion mass was taken to be
mf = 0.02.

We observe in Fig. 9 that the residual mass is not changed very much by the projection.
We attribute this to the fact that in our small statistical sample no very low-lying eigenvalues
of A†A could be detected. We see, however, from the same figure that the statistical error is
substantially reduced for certain values of t when the projection of eigenvalues is employed.

The fact that R(t) shows large fluctuations, even though there are no very small low-lying
eigenvalues, points toward the suspicion that also the eigenvectors may play an important role.
In particular the localization properties of these eigenmodes may lead to large fluctuations
as discussed in [25]. Although this point deserves further investigation, we did not perform
such a study here. To conclude, from a negligible average value of the residual mass, that
chiral symmetry is restored is certainly questionable when the dispersion of the residual mass
is large and not gaussian. A much safer situation would be to ensure that the residual mass
is bounded from above for all configurations. The projection method ensures that this is the
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Figure 8: 〈J5qP 〉
〈PP 〉 without and with projection for the Iwasaki gauge action.

0 4 8 12 16 20 24 28 32
t

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

<
J 5q

P
>

/<
P

P
>

Ns=16, no projection
Ns=16, kmax=6, l=6
Ns=32, no projection
Ns=32, kmax=6, l=6

Figure 9: 〈J5qP 〉
〈PP 〉 without and with projection at Ns = 16 and 32, for the DBW2 gauge action.
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case.
To summarize, in Fig. 10 we show the comparison of the behaviour of the residual mass as

a function of Ns for different gauge actions and for different numbers of projected eigenvalues.
For a fixed gauge action, we find that at smallNs there is almost no effect from the projection
method.

This can be explained by a simple qualitative argument, as first suggested in [7, 25]. It
was predicted there that the behaviour of the residual mass as a function of Ns is given by

mres ∼
∑
k

e−αkNs ∼
∫
dαρ(α)e−αNs , (5.1)

where ρ(α) is the eigenvalue density in the continuum. For small values of Ns, not only
do the low-lying modes contribute to the sum in eq. (5.1), but also the bulk modes. When
Ns is chosen to be large, the bulk mode contributions to the sum in eq. (5.1) will die out
and only the small eigenvalue contributions will survive. This should hence lead to a large
improvement of the residual mass when the projection method is active. As Fig. 10 clearly
shows, this is indeed the case. For the Wilson gauge action at Ns = 48, the value of the
residual mass is decreased by several orders of magnitude when 10 eigenvalues are projected
out. We made a rough check for the Iwasaki gauge action that also in this case the residual
mass decreases substantially, choosing Ns = 40. Thus the very slow decrease of the residual
mass as a function of Ns in the original DWF formulation with no projection is cured by
projecting out a few O(10) eigenvalues.

6. Conclusion

We have studied the effect of modifying the fermion action of DWF by projecting out a few
low-lying eigenvalues of the underlying transfer matrix [17]. By measuring the correlation
function leading to a determination of the residual mass and the residual mass itself as a
function of Ns, we find a significant improvement in the restoration of chiral symmetry for
quenched DWF at large Ns.

The reason is that in the large-Ns limit the low-lying eigenvalues of A†A are responsible for
the exponential convergence rate of DWF in Ns to its chiral invariant limit. These eigenvalues
then dominate the behaviour of the residual mass and whenever very small low-lying modes
appear they lead to a very slow decrease of the residual mass as Ns is increased. Projecting
out a small number of these modes can therefore help considerably to lower the values of the
residual mass. We have confirmed this picture in practical simulations, using the Wilson and
the Iwasaki gauge actions. We observe that when a sufficient number, i.e. O(10), eigenvalues
are projected out, the residual mass vanishes rapidly with increasing Ns.

Let us end our discussion with three remarks.
(i) Projecting out a number of low-lying eigenvalues shows a strong effect not only on the
value but also on the fluctuations of the correlation function R(t) in eq. (2.20) and hence

13



0 8 16 24 32 40 48 56 64 72
Ns

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

m
re

s

Wilson; no−projection
Wilson; kmax=3
Wilson; kmax=10
CP−PACS (Wilson)
RBC (Wilson)
CP−PACS (Iwasaki)
RBC (DBW2)

Figure 10: A compilation of the residual mass as a function of Ns for various gauge actions
and various choices of projecting eigenvalues. The filled symbols correspond to our own
results. The data of the DBW2 action are taken from [8] and the ones for the Iwasaki action
from [6, 7]. The lines are just to guide the eye.

of the residual mass. The damping of the fluctuations takes place even when no very small
eigenvalues occur in the simulation, as in the case of the DBW2 action. It thus seems that
also the eigenvectors in particular their location properties play an important role. It is
unclear to us, and we did not investigate this here, how far also other correlation functions
are affected by this phenomenon. One possible explanation [25] relies on the relation of the
eigenvalues and eigenvectors of DW and DNs,mf

. The study of this correspondence clearly
deserves further efforts using non-perturbative methods.
(ii) The method of projecting out eigenvalues as studied here can be used on top of other
improvements such as using improved gauge actions or improved fermion actions. The pro-
jection method is not very costly and produces only a small numerical overhead. Thus we
advocate to employ the projection method in any simulation done with DWF.
(iii) We expect that the projection of the low-lying eigenvalues should play an even more
important role in the case of dynamical simulations with DWF as the behaviour of the 5D
fermionic kernel will be affected by the problems discussed in (i), too. We envisage that such
a dynamical computation with the projection of low-lying eigenvalues can be performed along
the lines of refs. [20, 27, 28] by estimating the full DWF operator stochastically. In this case
the projection can be done easily.
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