
CERN-TH/2003-114
WIS/5/03/May-DPP

TAUP–2733-03

Meson-Baryon Scattering in QCD2
for any Coupling

John Ellis∗

Theory Division, CERN, Geneva, Switzerland

and

Yitzhak Frishman†

Department of Particle Physics
Weizmann Institute of Science, 76100 Rehovot, Israel

and

Marek Karliner‡

School of Physics and Astronomy
Raymond and Beverly Sackler Faculty of Exact Sciences

Tel Aviv University, Tel Aviv, Israel

Abstract

Extending earlier work on strong-coupling meson-baryon scatter-
ing in QCD2, we derive the effective meson-baryon action for any
value of the coupling constant, in the large-Nc limit. Colour degrees
of freedom play an important role, and we show that meson-baryon
scattering can be formulated as a relativistic potential problem. We
distinguish two cases that are non-trivial for unequal quark masses,
and present the resulting equations for meson-baryon scattering am-
plitudes.
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1 Introduction

The problem of deriving resonances from QCD is clearly of importance, both
as a fundamental test of QCD and of specific non-perturbative methods. Ex-
perimentally, this field continues to bring surprises, including enhancements
near p̄p thresholds [1, 2, 3], an exotic K+N resonance [4, 5, 6], and two new
mesons containing c and s̄ quarks [7, 8]. These discoveries demonstrate that
non-perturbative QCD is not yet fully ‘solved’ [9], and underline the interest
in developing new non-perturbative methods. The dynamics governing the
formation of resonances in QCD is still imperfectly understood, especially the
relation between the spectrum and chiral symmetry breaking (χSB), possible
‘exotic’ non-q̄q mesons and non-qqq baryons, and combinations of light and
heavy quarks.

QCD in one space and one time dimension, QCD2, is an interesting lab-
oratory for studying many of these issues. There is no spontaneous χSB in
two dimensions, but a trace of the phenomenon does exist, in the sense that
mPS ∝ √ec mq, where mPS is the mass of the lightest pseudoscalar meson,
ec is the gauge coupling and mq is the quark mass. This formula for mPS is
analogous to the case in four dimensions, with ec replacing ΛQCD.

Motivated by this similarity and the tractability of QCD2, we investigated
in [10] the problem of resonances in the meson-baryon channel in this model.
This question is still relevant both as a crude model for the real world in four
dimensions and also as a testing ground for non-perturbative methods that
might have relevance there and elsewhere.

In [10] we worked in the strong-coupling limit, ec/mq � 1, namely in the
limit where the QCD2 coupling is much larger than the quark mass. This
would correspond in QCD4 to quark masses being small compared to the
QCD scale, mq/ΛQCD � 1, the limit where explicit χSB is small. Moreover,
we worked in the approximation that the baryons are heavy compared to the
mesons, which is justified by the large-Nc limit in QCD. In this double limit,
we found no resonances in meson-baryon scattering, only elastic scattering.
This result suggest that quark masses are essential complications in QCD,
at least in two dimensions.

In the present work we relax one of our two previous assumptions, that
of strong coupling, while retaining the assumption that baryons are heavy.
This discussion of general coupling may equivalently be regarded as introduc-
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ing finite quark masses. We show that this generalization necessitates the
re-introduction of colour degrees of freedom, which were decoupled in the
previous strong-coupling limit. The scattering problem may be formulated
as a relativistic potential problem that differs essentially from the previous
strong-coupling, low-mass case. We derive the corresponding new equations
for meson-baryon scattering amplitudes, valid for any value of the QCD2

coupling.

In Section 2 we discuss the general formulation for QCD2, in bosonized
form, which is necessary for obtaining the meson-baryon scattering amplitude
for an arbitrary value of the coupling. We use this formulation in Section
3 to derive the effective meson-baryon action, for arbitrary coupling in the
heavy-baryon limit. We show that in Section 4 that, for light mesons and
heavy baryons, the scattering problem can be transformed to problem with
relativistic potentials, and we evaluate that potential in two cases that are
non-trivial for unequal quark masses. Section 5 contains our derivation of the
equations for scattering amplitudes, and Section 6 discusses the prospects for
future work.

2 General Formulation

We start from the discussion of [11], which presented an effective action for
bosonized QCD2 with Nf flavours and Nc colours:

Seff [u] = S0[u]+
e2

cNf

8π2

∫
d 2x Tr

[
∂−1
−
(
u ∂−u†

)
c

]2
+m′2Nm̃

∫
d 2x Tr

(
u + u†

)
,

(1)
where the traces are over both colour and flavour. The second term is the
result of integrating out the gauge fields, which was made possible by the
quadratic dependence on the gauge fields in two dimensions in the light-cone
gauge, which we chose. Finally, S0[u] is the Wess-Zumino-Witten (WZW)
action, representing free fermions.

The above action is exact for any value of the gauge coupling ec. The
matrices u represent the bosonic version of the quark bilinears, symbolically
Ψ ⊗ Ψ̄, with both colour and flavour indices. The symmetry groups are
SU(Nc) and U(Nf ), for colour and flavour, respectively, including the U(1)
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of baryon number, and
m′2 = mqCm̃, (2)

where mq is the quark mass, m̃ the normal-ordering scale, and C ≡ 1
2
eγ ≈

0.891. For a detailed discussion, see [12]. For the time being, we take all
quarks to have the same mass.

When using the product scheme for bosonization

u = h× g ≡ [ SU(Nc)︸ ︷︷ ︸ ]
NF

h

× [ U(NF )︸ ︷︷ ︸ ]
Nc

g
(3)

and taking the strong-coupling limit ec/mq → ∞, one can eliminate the
second term in (1), after first choosing an appropriate normal-ordering scale
m̃, as described in [12]. The colour degrees of freedom h are completely
eliminated in this limit, and one gets an effective action in terms of flavour
degrees of freedom only:

S̃eff [g] = NcS0[g] + m2Nm

∫
d2x

(
Trf g + Trf g†

)
, (4)

where m =


NcCmq

(
ec

√
Nf√

2π

)∆c



1
1+∆c

, (5)

∆c =
N2

c − 1

Nc(Nc + NF )
. (6)

Note that here the traces are over flavour only.

As shown in [10], this action results in elastic scattering only, and is
therefore unsuitable for modelling QCD4 realistically. Scattering is a soluble
problem in this approximation, with the transmission and reflection coeffi-
cients T and R given in [10] for all meson energies.

When dealing with finite coupling, we should not use the product scheme,
but rather the ‘u-scheme’, where the original matrices u ∈ U(NF ×Nc). The
two schemes are equivalent only when the quark masses are zero, or equiva-
lently in the strong-coupling limit. One important aspect of the difference,
at finite mass, is that the ‘u-scheme’ admits multi-soliton solutions [11] that
do not exist in the product scheme. Each of the solitons in these solu-
tions carries both colour and flavour, yet the total multi-soliton solutions are
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colour-neutral. These individual coloured solitons were interpreted in [11] as
constituent quarks. When the quark masses are equal, the solutions can be
obtained analytically, and are given by the sine-Gordon profile. For unequal
quark masses, the solutions were obtained numerically.

3 Extension to Arbitrary Coupling

We first consider the second term of (1), for arbitrary coupling:

e2
cNf

8π2

∫
d 2x Tr

[
∂−1
−
(
u ∂−u†

)
c

]2
(7)

where
(
u ∂−u†

)
c

is the colour part of M ≡ u∂−u†, to be computed as

Mc = TrfM − 1/NcTrf&cM, (8)

with details to be found in [12]. As already mentioned, this term represents
the interactions, as it arises from integrating out the gauge potentials. How-
ever, we will see that, for the physical situation we discuss, this term does
not contribute to meson-baryon scattering for any coupling. As a result,
the latter is described by the effective action S̃eff [u], whereas in the strong

coupling limit it is described by S̃eff [g].

In order to describe meson-baryon scattering, we follow the four-dimensional
example [13], and take u to be of the form

u = exp(−iΦc) exp(−iδΦ), (9)

corresponding to a classical soliton Φc representing one of the baryons de-
scribed in [11], and a small fluctuation δΦ around it, representing the meson.
The resulting action is then expanded to second order in δΦ, yielding a linear
equation of motion for δΦ in the soliton background. The latter serves as an
external potential in which the meson is propagating.

We start by evaluating

M ≡ u∂−u† = (10)

= exp(−iΦc) ∂−(exp iΦc) + exp(−iΦc) exp(−iδΦ) [∂− exp(iδΦ)] exp(iΦc),
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and obtain the equations of motion for the meson field by varying with respect
to δΦ. The variation of (7) with respect to δΦ is proportional to

δMc

δ(δΦ)
∂−2Mc. (11)

To compute its variation with respect to δΦ, we need only the second term
M2 of M , as the first term M1 is independent of δΦ.

We take for the soliton a diagonal ansatz, following [11]:

[exp(−iΦc)]αα′jj′ = δαα′ δjj′ exp (−i
√

4πχαj) :

α = 1, . . . , Nc, (12)

j = 1, . . . , Nf ,

so that

{exp(−iΦc)[exp(−iδΦ) ∂− exp(iδΦ)] exp(iΦc)}αj,α′j′ =

exp(−i
√

4πχαj) [exp(−iδΦ) ∂− exp(iδΦ)]αj,α′j′ exp(i
√

4πχα′j′). (13)

The part of M that contributes to the effective action is its colour projection
(8). We note that Trf&cM2 = 0, and thus

[(M2)c]α,α′ =
∑

j

exp(−i
√

4πχαj)[exp(−iδΦ) ∂− exp(iδΦ)]αj,α′j exp(i
√

4πχα′j).

(14)
The mesons δΦ have to be diagonal in colour, so

[(M2)c]α,α′ =
∑

j

[ exp(−iδΦ) ∂− exp(iδΦ) ]αj,αjδα,α′ . (15)

We recall that the flavour structure of the mesons is independent of their
colour indices, and restrict our attention to mesons that have no U(1) flavour
part. In this way, we may be sure that classical solutions lead to stable
particles, since their non-vanishing flavour quantum numbers put them in a
different sector from the vacuum. We then have∑

j

[ exp(−iδΦ) ∂− exp(iδΦ) ]αj,αj = 0, (16)

as advertized earlier, and the effective meson-baryon action is

S̃m-b[δΦ] = S0[u] + m2Nm

∫
d2x

(
Tr u + Tr u†

)
, (17)

with u depending on δΦ for fixed Φc as in (9).
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4 Evaluation of the Potential

The equation of motion for δΦ is obtained from (17), by first varying with
respect to u and then varying u with respect to δΦ. To first order in δΦ, we
find

δu = −i[exp(−iΦc)]δΦ. (18)

The resulting equation of motion is then

1

4π
∂+

[
(∂−u)u†

]
+
(
um2 −m2u†

)
= 0, (19)

where m is the diagonal mass matrix: m = δijmj with (possibly different)
entries mj corresponding to flavours j. We note that there is the possibility of
an overall scale ambiguity in m, since, when the masses are different, there is
a question which normal-ordering scale to use, as discussed in the Appendix
of [11]. The resulting equation of motion for δΦ is

δΦ− i (∂+Φc) (∂−δΦ) + i (∂−δΦ) (∂+Φc) +
1

2

[
δΦµ2 exp(−iΦc) + exp(iΦc)µ

2δΦ
]

= 0, (20)

where µ ≡ m
√

8π.

As discussed before, both Φc and δΦ are diagonal in colour. Moreover,
Φc is diagonal in flavour too. So, taking the ααjj′ matrix element of the
equation of motion (20), we find

δΦαjj′ − i(∂+Φc)αj(∂−δΦ)αjj′+i (∂−δΦ)αjj′(∂+Φc)αj′ +

1

2
{δΦαjj′µ2

j′[exp(−iΦc)]αj′ + [exp(iΦc)]αjµ
2
jδΦαjj′} = 0. (21)

Examining the classical solutions for the quark solitons inside the baryons as
in [11], we see that, for a given colour index α, there is only one flavour for
which Φc is non-zero. We can now distinguish three cases.

• The first is when an index α and indices j and j′ are chosen in such a
way that both (Φc)αj and (Φc)αj′ are zero. In such a case,

δΦαjj′ +
1

2
[µ2

j + µ2
j′]δΦαjj′ = 0, (22)

where(Φc)αj = 0 and (Φc)αj′ = 0.
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Thus δΦαjj′ is a free field with squared mass given by the average of m2
j and

m2
j′ in this case, which we do not discuss further.

• The second case is that of j = j′, with α such that (Φc)αj is a quark
soliton inside the baryon. In this case,

δΦαjj + µ2
j cos[(Φc)αj ]δΦαjj = 0. (23)

This case is analogous to the case in Section 2 of [10], with the difference
that here the potential is determined by Φc which, for the case of unequal
masses, is not necessarily of the sine-Gordon type.

• The third case is when j is different from j′, now with one of the Φc

being a soliton and the other vanishing. Taking (Φc)αj to be the soliton, we
obtain

δΦαjj′ − i(∂+Φc)αj(∂−δΦ)αjj′ +
1

2
{µ2

j′ + µ2
j [exp(iΦc)]αj}δΦαjj′ = 0, (24)

where j′ 6= j and (Φc)αj′ = 0 .
This case is analogous to Section 4 of [10], but with the same difference as in
(23), i.e., that for unequal masses the soliton is not of the sine-Gordon type.

5 Evaluation of Meson-Baryon Scattering

The equations which determine the static solution (Φc)αj were derived in [11].
For completeness, we include them here too. First one defines

(Φc)αj =
√

4π(χc)αj, (25)

where the (χc)αj are canonical fields, whose equations of motion are

χ′′αj − 4αc

(∑
l

χαl −
1

Nc

∑
βl

χβl

)
− 2
√

4πm2
j sin

√
4πχαj = 0.

Note the extra factor 2 in front of the mass term, as compared with Eq. (22)
of [11], due to an error in this reference.

Choosing the boundary conditions χαj(−∞) = 0, we get as constraints
for χαj(+∞), denoted hereafter simply by χαj ,

1√
π

χαj = nαj integers, (26)
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and ∑
l

nαl = n independent of α. (27)

The baryon number § associated with any given flavour l is given by

Bl =
∑

α

nαl.

Combining the last two equations, we find

B =
∑

l

Bl = nNc

for the total baryon number.

We now continue in a similar manner to [10], starting with the first non-
trivial case (23) identified above. As the soliton solutions are such that there
is a unique correspondence between the colour index α and the flavour index
j, we suppress α in what follows. Putting

δΦjj = e−iωjtuj(x) (28)

with
uj(x) −→

x→∞
eikx, (29)

we find
ω2

j = k2 + µ2
j , (30)

and the equation for uj(x) is

u′′j (x) + ωj
2uj − µ2

j [cos (Φc)j ]uj = 0. (31)

We define the potential Vj for this scattering process via

u′′j (x) + ωj
2uj − Vjuj = 0, (32)

and find
Vj = µ2

j[cos (Φc)j]. (33)

§In our normalization, a single quark carries one unit of baryon number.
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In our normalization the outgoing wave has coefficient 1, which is more con-
venient for numerical calculations, and the wave for x → −∞ is now

uj(x) =
1

Tj
eikx +

Rj

Tj
e−ikx, x → −∞ (34)

in this case.

In the second non-trivial case (24), we put

δΦjj′ = e−iωjj′ tujj′(x), (35)

so that
u′′jj′(x)− i(Φc)

′
j(x)u′jj′(x)+

+{ω2
jj′ + ωjj′(Φc)

′
j(x)− 1

2
{µ2

j′ + µ2
j[exp(iΦc)]j}}ujj′ = 0. (36)

To eliminate the first derivative term in u, we substitute

ujj′ = [exp(
i

2
Φc)]j vjj′. (37)

This results in

v′′jj′(x) + {ω2
jj′ + ωjj′(Φc)

′
j(x)− µ2

j[cos(Φc)]j}vjj′+

+
1

2
(µ2

j − µ2
j′)vjj′+

+{1

4
[(Φc)

′
j(x)]2 − 1

2
µ2

j(1− [cos(Φc)]j)}vjj′+

+
i

2
{(Φc)j

′′(x)− µ2
j[sin(Φc)j ]}vjj′ = 0. (38)

We note that the last three lines vanish when all the quark masses are equal,
as then the soliton is a sine-Gordon one. Thus, the scattering would then be
only elastic, as found in [10].

The potential of the scattering is defined here via

v′′jj′(x) + ω2
jj′vjj′ − Vjj′vjj′ = 0, (39)

so that
Vjj′ = −ωjj′(Φc)

′
j(x) + µ2

j [cos(Φc)]j
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−1

2
(µ2

j − µ2
j′)

−{1

4
[(Φc)

′
j(x)]2 − 1

2
µ2

j(1− [cos(Φc)]j)}

− i

2
{(Φc)j

′′(x)− µ2
j [sin(Φc)j]} (40)

Taking again
vjj′(x) −→

x→∞
eikx, (41)

we get

ωjj′ =
1

2
(µ2

j + µ2
j′), (42)

and the wave for x → −∞ is

vjj′(x) =
1

Tjj′
eikx +

Rjj′

Tjj′
e−ikx, x → −∞ (43)

in this case.

6 Discussion

We have shown that meson-baryon scattering in QCD2 in the large-Nc limit is
non-trivial for non-zero quark masses, and is described by two distinct effec-
tive potentials when the quark masses are unequal. These effective potentials
are not of the sine-Gordon type found in previous cases, and we expect the
scattering amplitudes also to be non-trivial. Their calculation will require
numerical analysis, that we postpone for a future occasion.

Clearly QCD2 is not a complete laboratory for studying non-perturbative
physics in QCD4. However, it is already quite a rich system, and full QCD can
only be richer still. We have already pointed out the existence of constituent
quark solitons in QCD2 [11], and this numerical analysis may cast light on
their importance in scattering, where the additive quark model has long been
an intriguing approximation.

It is intriguing that the introduction of unequal quark masses is an essen-
tial complication. We recall that the light-cone wave functions for mesons
containing unequal quark masses are expected not to be symmetric, result-
ing in a net colour field that underlies this effect. One task of numerical
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analysis will be to see what new physics this produces in meson-baryon
scattering and possibly in resonant states. We note that two of the recent
new puzzles in non-perturbative QCD concern systems with unequal quark
masses [4, 5, 7, 8]. It would be hubristic to suggest that the continuation of
our QCD2 studies will cast light on these puzzles, but they will provide some
extra motivation for our future work in this direction.
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