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1 Introduction

Recent measurements of the Cosmic Microwave Background (CMB) temperature fluctu-

ations [1] give strong support for the picture that inflation gave rise to a flat spatial ge-

ometry and the scale invariant energy density fluctuations on superhorizon scales needed

for large scale structure formation. As a generic prediction of inflation, the primordial

scale invariant energy density fluctuations on superhorizon scales can be calculated per-

turbatively once the model of inflation is specified, including the prescription for the

vacuum (i.e. Fock basis) of the inflaton field.

To see what one means by specifying a vacuum in the canonical formalism, consider

the simple case of a quantized scalar field φ in an FRW-type universe with the metric of

the form

ds2 = a2(τ)(dτ 2 − d~x2) (1)

(conformal time coordinates) where we will restrict ourselves to flat spatial sections

for simplicity. Without any nongravitational interactions, the field in the Heisenberg

representation has an expansion

φ(x, τ) =
∫ d3k

(2π)3/2a(τ)

[
akhk(τ)eik·x + a†kh

∗
k(τ)e−ik·x] (2)

where the ak is the annihilation operator which annihilates the vacuum and defines

the Fock space. Because the creation and annihilation operators obey the commutator

[ak1 , a
†
k2

] = δ(3)(k1 − k2), the hk’s obey a normalization condition hkh
′∗
k − h′kh

∗
k = i to

satisfy the canonical field commutators (henceforth, all primes or dots on functions of

τ refer to derivatives with respect to τ as usual). Because the Heisenberg equation of

motion for φ will force hk(τ) to obey a second order ordinary differential equation, it

has two independent solutions, and hence there needs to be a boundary condition or

prescription to specify hk thereby defining the vacuum state.
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Following the procedure in Minkowski space is one way of defining the vacuum (i.e.

specifying hk): define hk to be the positive frequency eigenvector of the time translational

Killing vector. Because cosmologically interesting spacetimes do not have timelike Killing

vectors, there is no a priori unique definition in specifying the vacuum even without any

non-gravitational interactions. Indeed, even with a timelike Killing vector, as in de Sitter

space, there can be some ambiguity [2, 3, 4, 5]. More generally, the simple reason for a

lack of a good definition of vacuum state is just a problem of lacking asymptotically free

states. The classic studies of quantum fields in curved spacetime (for good reviews, see

for example [6, 7, 8, 9] and references therein) had focused primarily on systematically

identifying the ambiguities and exploring various prescriptions that can remove them

whenever possible.

Two widely used prescriptions for defining vacuum are what is usually called the

Bunch-Davies prescription [10] and the adiabatic vacuum prescription of Parker and

Fulling [11, 12, 8]. The main point of this paper is to show that both prescriptions, even

when the adiabatic order of the vacuum construction is infinity (i.e. the best one can

do), do not specify the vacuum uniquely in most situations. This is true as well in one of

the most important case of generic inflationary spacetimes4 in which the total duration

of inflation is finite, despite the absence of any trans-Planckian effects or effective field

theory cutoff related effects [13, 14]. (For arguments against the trans-Planckian and

cutoff effects, see [15, 16, 17, 18].) The simple reason is that both methods rely on

an asymptotic definition of vacuum, leaving an ambiguity inherent in any asymptotic

expansion. Note that the ambiguity that we are focusing on is also independent of

the effects due to transition into inflation explored by Ref. [19, 20, 21]. In addition to

showing the existence of an ambiguity, we estimate the uncertainty and its implication

4Here, the “vacuum” of the inflationary era is referring to a no particle state of curvature
perturbations.
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for inflationary prediction of density perturbations.

This work should complement the recent efforts [13, 14, 21, 22, 23] to uncover small

quantum effects for the CMB measurements. After all, to see whether small effects can be

measured, one must understand the inherent theoretical uncertainty in the calculations.

Our uncertainty should be viewed as a minimal uncertainty that underlies all of these

calculations, if one accepts either the adiabatic vacuum formalism or the Bunch-Davies

vacuum formalism.

In most generic situations, the uncertainty is extremely small. Indeed, in view of our

work, it should be clear that the vacuum used in the work of Ref. [14] does not consti-

tute the best adiabatic vacuum possible in a realistic inflationary scenario without dS

invariance. From the adiabatic vacuum formalism, it should be considered an “excited”

state. Even from a Hamiltonian minimization point of view of Ref. [16], one reaches

a similar conclusion. To keep our presentation short as possible and to emphasize its

independence from trans-Planckian issues, we will not discuss this point further in this

paper. However, the reader should note that the existence of a cutoff does not change

any of the results in this paper for the adiabatic vacuum.

The order of presentation is as follows. We start off by reviewing the physical reasons

for the ambiguities of a quantum vacuum in a cosmological spacetime. We then define

and estimate the generic uncertainties of the “Bunch-Davies” and the adiabatic vacuum.

The following section gives an example of how nonperturbative quantities can be calcu-

lated (despite the usual inherent uncertainties) in an adiabatic vacuum in a very special

limiting situation. In Sec. 5, we compute what can be seen as a slightly more precise

uncertainty in the adiabatic vacuum during slow roll inflationary spacetimes. Finally,

we summarize and conclude.
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2 Ambiguities of vacua

From a traditional particle physicist’s point of view, vacuum can be defined as the state

of no real particles. As has been well studied since 1960’s (see for example [6, 7, 8, 9] and

references therein), this notion of vacuum is well known to be ambiguous: particles cannot

always be unambiguously defined in the presence of a background field. For example,

suppose one defines particles as the eigenstates of the momentum operator. These states

as wavefunctions must then necessarily be spacetime translation eigenstates. However, if

there is no spacetime translational symmetry of the background spacetime, there cannot

be such an eigenstate.

Even if the spacetime were flat Minkowski space, if one were to define particles

empirically with an idealized detector, whether or not the detector registers particles

depends in general on the motion of the detector. If the detectors were restricted to

geodesics of the background spacetime, only in Minkowski spacetime, would all the

geodesic detectors agree to no particle detection [8].

Because of this property of the Minkowski space, one may then try to argue that it is

best to abandon the notion of a vacuous curved spacetime and treat it as a collection of

gravitons in a Minkowski background. In this case, by definition the curved spacetime

is not vacuous, although the state with background gravitons may be considered to be

vacuous of some other field, say the inflaton field φ. Unfortunately, partly due to φ in-

teractions with the background graviton fields, one is again forced back to having some

ambiguities in defining the vacuum for φ. Hence, seen this way, we see the problem of

the ambiguity of the vacuum, say with respect to the field φ, is not special to curved

spacetime geometry, but to any situation in which there is a background field that in-

teracts with the field φ. Just as in any other interacting quantum field theory, one may

try to define free asymptotic states for φ and the graviton, and treat the interactions
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perturbatively. This would work if there is an asymptotically flat region of spacetime.

Unfortunately, the key difference in the curved background situations of interest to in-

flationary cosmology is that there are no such asymptotically flat regions.5 Hence, the

problem of vacuum prescription can be rephrased as trying to define a vacuum state in

the absence of free asymptotic states.

Note that instead of relying on a particle definition of vacuum which is inherently

nonlocal and observer dependent (the number of particles detected by any physical de-

tector can be zero in one frame but not in another, even in Minkowski space), one can

characterize the vacuum in terms of vacuum expectation value of the stress tensor, which

has the advantage of being covariant (if it is zero in one frame, it is zero in all frames of

reference). However, even here, the stress tensor vacuum expectation value is sensitive

to the ambiguities in the boundary conditions and renormalization prescriptions of the

correlation functions. These boundary condition sensitivities then reflect the ambiguities

of the vacuum.

3 The “Bunch-Davies” Vacuum and the Adiabatic

Vacuum

In this section, we would like to explain the two commonly used prescriptions that will

be the focus of this paper.

3.1 “Bunch-Davies” vacuum

In the FRW cosmological context, the most well known and appealing prescription for

identifying the vacuum is what is commonly called the Bunch-Davies prescription, which

states that the positive frequency mode function hk (see Eq. (2)) should match asymp-

5There may be a way of obtaining a physically sensible answer by artificially turning on and off the
gravitation, but we will not pursue this line of reasoning in this work.
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totically to the Minkowski space prescription in the limit that the physical momentum

k/a is much larger than the background geometry curvature scale (H = ȧ(τ)/a2 ):

lim
k/(aH)→∞

hk ∼ 1√
2k

e−ikτ . (3)

In some cases, this uniquely specifies the vacuum.

However,when this prescription is carried out at a fixed cosmological time (i.e. k →∞
with a(t) fixed), then the vacuum is not unique even in the simplest situations. Since

inflation generally did not last an infinitely long time, the Bunch-Davies prescription

cannot be applied in the asymptotic past limit, and the ambiguities associated with

k → ∞ are nonvanishing. This is independent of the existence of cutoffs or any trans-

Planckian physics.

For example, consider a massless scalar field minimally coupled to Einstein gravity

in a patch of de Sitter space

S =
∫

d4x
a2

2

(
φ̇2 − (∇φ)2

)
. (4)

where a(τ) = −1/(τH) > 0 with 1/H > 0 being the dS radius. The resulting mode

equation is

ḧk(τ) + w2
k(τ)hk(τ) = 0, (5)

where dots stand for derivatives with respect to the conformal time τ and

w2
k = k2 − ä

a
= k2 − 2

τ 2
. (6)

The general positive frequency mode solution is

hk = Ak
e−ikτ

√
2k

(
1 +

iH

(k/a)

)
+ Bk

eikτ

√
2k

(
1− iH

(k/a)

)
(7)

where Ak and Bk satisfies

|Ak|2 − |Bk|2 = 1 (8)
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due to the normalization conditions given below Eq. (2). At any given time τ , one

can impose that the modes become Minkowskian as |(k/a)/H| → ∞. Explicitly, this

amounts to a functional matching of the form

hk

√
2keikτ → 1 (9)

for as |kτ | → ∞ for all τ < 0. Now, note that since τ → −∞ in Eq. (7) gives

hk → Ak
e−ikτ

√
2k

+ Bk
eikτ

√
2k

(10)

for all k > 0, this uniquely specifies Ak = 1 and Bk = 0 for all k > 0.

However, consider the situation in which we make the restriction |τ | < |τ0| where τ0

is the time at the “beginning” of inflation. Now, the limit |(k/a)/H| → ∞ can be taken

only by taking k →∞ with a > a(τ0). This means that we only know, for example, that

Bk → O(1/kn) (11)

with n > 0 as k → ∞.6 Therefore, if we just impose k → ∞ with a bounded a(τ), the

Bunch-Davies prescription does not uniquely specify a vacuum. Applied to the case of

Eq. (7), one must allow the ambiguity

Bk <∼ O
(

H

k/a(τ0)

)
. (12)

A useful quantity to characterize the properties of the quantum perturbations of a mass-

less scalar field during inflation is the power spectrum. For a generic quantity g(x, τ),

which can expanded in Fourier space as

g(x, τ) =
∫

d3k

(2π)3/2
eikx gk(τ), (13)

the power spectrum can be defined as

〈0|g∗k1
gk2|0〉 ≡ δ(3) (k1 − k2)

2π2

k3
Pg(k), (14)

6Note that exp (−ikτ) does not have an asymptotic expansion in real k as k → ∞ because of an
essential singularity.
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where |0〉 is the vacuum quantum state of the system. This definition leads to the usual

relation

〈0|g2(x, t)|0〉 =
∫ dk

k
Pg(k) . (15)

If we compute the variance of the perturbations of the φ field

〈0| (φ(x, τ))2 |0〉 =
∫

d3k

(2π)3
|φk|2

=
∫

dk

k

k3

2π2a2
|hk|2

=
∫

dk

k
Pφ(k) , (16)

we may infer the power spectrum of the fluctuations of the scalar field φ to be

Pφ(k) ≡ k3

2π2
|φk|2 . (17)

Therefore, for a massless scalar field in de Sitter space, we obtain on superhorizon scales

the power spectrum

Pφ(k) =
(

H

2π

)2

|Ak − Bk|2
(

k

aH

)nφ−1

, (18)

with nφ = 1. From Eq. (18) we infer then that any ambiguity in the parameter Bk

implies an ambiguity in the power spectrum Pφ of the form∣∣∣∣∣δPφ(k)

Pφ(k)

∣∣∣∣∣ ' 2 |Re Bk| ' O(e−(N0−Nk)) , (19)

where Nk denotes the number of e-foldings before the end of inflation when a given

wavelength λ = a/k leaves the horizon during the de Sitter stage and N0 denotes the

number of e-foldings before the end of inflation when the spacetime can be considered

a vacuum (which has an upper bound of total number of e-foldings for inflation). This

power spectrum can be seen as an approximation to the curvature perturbation power

spectrum, and the vacuum here can be seen as the vacuum with respect to curvature
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perturbations. Length scales of interest for the the CMB anisotropies give Nk of order

of 60, and therefore one expects the theoretical ambiguity on the power spectrum to be

sizeable if the total duration of the de Sitter stage corresponds to a number of e-foldings

not far from 60. Of course, in this case it would be difficult to assume that the spacetime

is in a vacuum state (see for example [19, 20, 21]).

3.2 Adiabatic vacuum

In situations in which the vacuum is defined through the notion of particles, the natural

fundamental operator is the number operator which counts the number of particles with

momentum k. Parker in Ref. [11] postulated certain reasonable conditions that the

number operator for a scalar field must satisfy in a FRW universe. The conditions were

as follows:

1. Nk be Hermitian due to the counting interpretation.

2. When the expansion is stopped at any time (i.e. ȧ/a = 0), the operator becomes

the usual Minkowski number operator.

3. The vacuum expectation value of the number operator varies slowly as possible

with time as the expansion rate ȧ/a becomes arbitrarily slow.

The first two conditions are obviously reasonable, and give rise to the definition of the

number operator as

Nk(τ1) ≡ a
(τ1)†
k a

(τ1)
k (20)

where the superscripted τ1 refers to the time at which the boundary condition for vacuum

is set (or equivalently, the boundary conditions for hk(τ)).

The third condition is the statement that the vacuum should be defined as to keep

the number of particles as unchanging as possible. This third condition is what Parker
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has called the minimization postulate [11] and was later developed further by Parker and

Fulling [12]. The formalism developed based on satisfying these conditions is called the

adiabatic vacuum formalism [12, 8].

It is important to note that to define the number operator Nk, one must define what

one means by a particle at any given time, τ1. On the other hand, to have defined a

vacuum at an earlier time τ0 < τ1 (recall that Heisenberg representation states such

as the vacuum are time independent), one needed a definition of a particle at time τ0.

Hence, the present formulation requires that one define particles at two different times.

This should be contrasted with the formalism of computing the vacuum expectation

value of the stress tensor, where the definition of particles (or equivalently the vacuum)

needs to be defined only once, since the stress energy tensor is a local quantity which

does not rely on the basis of Fourier expansion. However, since we will be taking the

same prescription for particles at time τ0 and time τ1 in such a way that the total number

of conditions that has to be specified is the same as in the case of computing the vacuum

expectation value of the stress tensor, this inherently nonlocal definition of vacuum will

probably also minimize the growth of the stress tensor to a large extent. Nonetheless, it

is not obvious how the conclusions of our analyses would differ if stress tensor vacuum

expectation values are used instead of Nk in carrying out the minimization postulate.

We will defer this question to a future work and focus on the particle based formalisms

in this paper.

The adiabatic formalism specifies the value and the first time derivative of the mode

function hk at a fixed time for any fixed momentum. The boundary condition data is

specified by matching to an asymptotic expansion (adiabatic expansion) of the mode

equation to all orders in the asymptotic parameter (even though the expansion does not

converge in general, by the very nature of an asymptotic expansion). In de Sitter space,

for example, the infinite adiabatic order vacuum is identical (up to the uncertainties
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inherent to the adiabatic vacuum) to the Bunch-Davies vacuum. In inflationary space-

times in which the scale factor cannot be made arbitrarily small due to the finite duration

of the inflationary phase or in which the momentum cannot be made arbitrarily large

due to a cutoff, the adiabatic formalism naively has a chance to still specify a unique

vacuum, unlike the Bunch Davies prescription. However, we will find that the adiabatic

prescription suffers from an ambiguity problem as well.

The construction of the adiabatic vacuum is as follows. First, define the concept

of an adiabatic order as the power of 1/T that results for any term in an 1/T → 0

asymptotic expansion after one makes the transformation τ → τ and d/dτ → T−1d/dτ

in the differential equation for the modes hk.
7. Then, any prototypical mode equation of

the form

ḧk(τ) + w2
k(τ)hk(τ) = 0 (21)

with w2
k = k2 + m2a2(τ) + (6ξ − 1)ä/a (where ξ is a constant and m is the mass of φ)

turns into

1

T 2

¨̃
hk(τ) + w̃2

kh̃k(τ) = 0 (22)

where w̃2
k ≡ k2 + m2a2(τ) + (6ξ − 1)ä/(T 2a) and a tilde has been added to hk to be a

reminder that this function carries a fictitious parameter T (later this will be set to 1 at

which time the function will be denoted as hk). Now, make a change in variables from

h̃k to Wk by writing

h̃k =
1√
2Wk

e(−i
∫ τ

Wk(τ ′)dτ ′T) (23)

(where the T in the exponent should be noted) and from Eq. (22), we obtain a new

differential equation

W 2
k = w̃2

k −
1

2T 2

Ẅk

Wk
− 3

2

(
Ẇk

Wk

)2
 . (24)

7Note that the point about only the derivative being transformed has been missed by a recent paper
[23].
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We can then define a map

A
[
W

[n]
k

]
=

√√√√√√w̃2
k −

1

2T 2

Ẅ
[n]
k

W
[n]
k

− 3

2

Ẇ
[n]
k

W
[n]
k

2
 (25)

which is a map that raises the adiabatic order by two and also define

W
[n+2]
k = A

[
W

[n]
k

]
, (26)

where the superscript denotes the adiabatic order and W
[0]
k ≡ √

k2 + m2a2. All of this

construction lead to an approximate mode equation solution good to Ath adiabatic order

in asymptotic expansion in 1/T → 0 of

h
[A]
k =

1√
2W

[A]
k

e

(
−i
∫ τ

W
(A)
k

(τ ′)dτ ′T
)

. (27)

This asymptotic expansion solution will serve as a template, just to set the boundary

conditions for the mode function h̃k which can in general be written as

h̃k(τ) = Akfk(τ) + Bkf
∗
k (τ) (28)

where fk are exact basis functions satisfying Eq. (22). Specifically, we define the Ath

adiabatic (order) vacuum at time τ0 by using the boundary condition

h̃τ0
k (τ0) = h

[A]
k (τ0) +O(1/T (A+1)) ,

˙̃
hk

τ0
(τ0) = ḣ

[A]
k (τ0) +O(1/T (A+1)) , (29)

where the left-hand side is the exact mode solution to the prototypical differential

equation Eq. (22) and the boundary conditions are enforced to only order 1/T (A+1)

as T →∞.8 After the boundary conditions are set, one sets the vacuum mode of Eq. (2)

as

hτ0
k (τ) ≡ h̃τ0

k (τ)|T=1 (30)

8The correction is order 1/T (A+1) and not of order 1/T (A+2) because there is an integration in the
exponent.
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which removes the fictitious parameter T .

To see that this construction satisfies the minimization postulate if we take the vac-

uum adiabatic order A to ∞, let us compute the vacuum expectation value of the num-

ber operator corresponding to the number density per mode. This requires a Bogoliubov

transformation from the vacuum mode solution with the boundary condition at τ = τ0

into the one with the boundary condition at τ = τ1 (any later time at which the particles

are no longer being created). Defining the Bogoliubov transformation as

hτ1
k (τ) = αkh

τ0
k (τ) + βkh

∗τ0
k (τ) (31)

the number density of particles per momentum k is given by nk = |βk|2. If the vacuum

in the past is defined at τ = τ0 with infinite adiabatic order boundary condition and the

vacuum today is defined at τ = τ1 with infinite adiabatic order boundary condition, car-

rying out the Bogoliubov transformation with the solution written in the form Eq. (23),

one finds

τ0〈0|Nk(τ1)|0〉τ0 ∝ |βk(τ1, τ0)|2 =
1

4W τ0
k W τ1

k

1

4

(
Ẇ τ0

k

W τ0
k

− Ẇ τ1
k

W τ1
k

)2

+ (W τ0
k −W τ1

k )2

(32)

where the right hand side (composed of exact solutions to Eq. (24)) can be evaluated

at any τ and the superscripts indicate the time at which the boundary conditions were

placed.

Now, the minimization postulate is satisfied if dn

dtn
(τ0〈0|Nk(τ1)|0〉τ0) is minimized for

all non-negative integers n if the expansion rate can be turned off arbitrarily slowly. For

any a(τ), we can affect the slowly turning off of the expansion rate by reintroducing the

adiabatic order parameter 1/T → 0 as before. Since by construction, the W τi
k functions

in Eq. (32) when expanded in 1/T match the asymptotic expansions in 1/T of W
[∞]
k

of Eq. (26), as long as the asymptotic expansion is uniform in τ between τ0 and τ1 (no

singularities in the asymptotic expansion occur between τ0 and τ1), the right hand side

13



of Eq. (32) vanishes identically when expanded in 1/T . Hence dn

dtn
(τ0〈0|Nk(τ1)|0〉τ0) will

fall off faster than any finite power of 1/T as T → ∞, thus satisfying the minimization

condition.

In general, one must remember that W [∞] does not exist because the W [A] construc-

tion procedure generates an asymptotic expansion about a nonanalytic point rather than

a convergent series. In other words, for a fixed order A (and with T = 1), there exists

only an A-dependent region in time for which W [A] approximates well the exact solution

to Eq. (5), with the leading error on the approximation growing with A for any fixed

time τ . Hence, when the limit A → ∞ is taken first, the time region in which the

approximation is valid can shrink to 0 for a fixed T = 1.

As an example of an adiabatic vacuum, let us apply this formalism to the case of

massless scalar field in dS space (considered in Eq. (4)). The iteration map Eq. (25)

produces up to sixth order

W
[0] 2
k = k2

W
[2] 2
k = k2

[
1− 2

(Tkτ)2

]

W
[4] 2
k = k2

[
1− 2

(Tkτ)2
+

3

(Tkτ)4
+O

(
1

(Tkτ)6

)]

W
[6] 2
k = k2

[
1− 2

(Tkτ)2
+

3

(Tkτ)4
− 4

(Tkτ)6
+O

(
1

(Tkτ)8

)]
. (33)

The template asymptotic expansion h̃
[A]
k obtained from W [A] approximates the exact

solution with an error of order 1/TA+1. For example, one can write down explicitly

using W
[4]
k (dropping the higher order corrections to it)

h̃
[4]
k =

e−ikτT

√
2k

[
1− i

kτT
+

2i

5k5τ 5T 5
+O(1/T 6)

]
(34)
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where the 1/T 5 term is the leading uncertain term (displayed just for clarity), and up to

1/T 4, the template function matches the first term of the exact solution

h̃k = Ak
e−ikτT

√
2k

(
1− i

(kτT )

)
+ Bk

eikτT

√
2k

(
1 +

i

(kτT )

)
. (35)

Carrying out the matching procedure of Eq. (29) except up to 5th adiabatic order instead

of the just the required 4th, one finds

Ak = 1 +
3i

2k5τ 5
0 T 5

+ ... (36)

Bk = 0 +O(1/T 6) (37)

where we have displayed one of the uncertain terms explicitly for clarity. Note that the

coefficients in general depend on τ0 (when the boundary condition was placed), but the

sensitivity to it is to higher adiabatic order. In general, the coefficients Ak and Bk will

be of the form

Ak = 1 +O(1/TA+1) ,

Bk = 0 +O(1/TA+1) (38)

for an Ath order adiabatic vacuum. In the limit that A →∞, the uncertainty drops off

faster than any finite power of 1/T .

Recall that in the Bunch-Davies prescription, one could not remove the uncertainty

in the choice of {Ak, Bk} if we did not have information to let a(τ) → 0, say because of

the finite period of inflation. Since in the adiabatic prescription, the boundary conditions

may be set to infinite adiabatic order at a finite time, let us see whether at finite initial

time τ0 it is possible to define an infinite adiabatic vacuum without any ambiguity. By

inspection, we can cast W [A] 2 in the form

W [A] 2 = k2
A/2∑
n=0

(−1)n (n + 1)

(
1

(Tkτ)2

)n

+O
(

1

TA+2

)
. (39)
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This means that in the limit A →∞, W [∞] 2 is expressed as

W [∞] 2 = k2
∞∑

n=0

(−1)n (n + 1)
(

1

kτT

)2n

(40)

which converges to a simple function9

W [∞] 2 = k2 (kτT )4

(1 + (kτT )2)2
. (41)

Miraculously, the series converges in this simple situation!10 Indeed, inserting W [∞] into

(27), we obtain at any time τ

h
[∞]
k =

e−ikτT

√
2k

(
1− i

kτT

)
, (42)

which in view of Eq. (29) will set Ak = 1 and Bk = 0 in Eq. (35) (note that we have

normalized the function properly with the arbitrary integration constant freedom).

This seems to indicate that the vacuum has been uniquely specified. Unfortunately,

this is not true since if an infinite adiabatic order vacuum with T → ∞ is chosen to be

h̃k(τ), we can always choose another vacuum

h̃k =
√

1 + |Bk|2h̃k(τ) + Bkh̃
∗
k(τ) (43)

if Bkh̃
∗
k(τ) falls off faster than any finite power of 1/T . The infinite order adiabatic

vacuum boundary conditions do not distinguish h̃k and h̃k. Indeed, this can be seen

directly in Eq. (29) because the “equation” is asymptotic, up to terms that vanish faster

than Ath power of 1/T , where in the infinite adiabatic order case A = ∞: i.e. we should

have written instead of Eq. (42), the equation

h
[∞]
k =

e−ikτT

√
2k

(
1− i

kτT

)
+O(1/T∞) (44)

9Notice that in the limit τ = τ0 → −∞ one recovers W [∞] 2 = k2, i.e. the infinite adiabatic order
vacuum reduces to the BD vacuum.

10We will later give an example where there is no convergence.
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where O(1/T∞) indicates the nonperturbative term possibly dropped in the matching

to the template function. Since T follows every factor of k, we can guess the uncertainty

by assuming an exponential function for Bk as

Bk ≈ exp(−kT/(a(τ0)H(τ0))) (45)

which should be compared to Eq. (12). (Note that this would also serve as a good

estimate of uncertainties even outside of inflationary phase.) This leads to∣∣∣∣∣δPφ(k)

Pφ(k)

∣∣∣∣∣ ' O(exp(−eN0−Nk)) , (46)

where we have used the same notation as Eq. (19). Because of the double exponential,

the uncertainty is very quickly negligible as N0 becomes larger than Nk.

In the case in which the expansion in 1/T stops converging, as in the quasi-dS case,

we may be able to estimate the uncertainty in the adiabatic vacuum formalism a little

less arbitrarily (compared to Eq. (45)) as follows. Indeed, if at some adiabatic order

n∗ the expansion in 1/T stops converging (with T = 1, the higher order terms give a

larger correction to the mode solution than the n∗th order term), this signifies that the

nonadiabaticity in the system enters at the n∗th derivative. Therefore, as far as assigning

an uncertainty to the adiabatic vacuum is concerned, instead of using Eq. (45), we may

estimate the uncertainty in fixing the vacuum to simply be the n∗ term in the asymptotic

expansion. Although the uncertainty obtained this way is not “nonperturbative”, it is not

clear what the physical advantage is in artificially “turning off” the expansion (using 1/T )

beyond the n∗ derivative which is in some sense the limit of adiabaticity characteristic

of the physical system. We will later use this approach to compute the uncertainty for

the slow roll inflationary case.

There is an exception to the existence of an uncertainty in the adiabatic vacuum

formalism, which is already suggested by the estimate in Eq. (45) in the case that a(τ0) =
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0.11 Namely, if the boundary conditions are set at a time in which the nonadiabaticity

is identically 0, then there is no expansion in 1/T , and hence there is no ambiguity

in the adiabatic vacuum. Indeed, the loss of time translational invariance which is

operationally at the heart of the uncertainty of the vacuum disappears at the time when

the nonadiabaticity is identically 0. The test of the disappearance of the nonadiabaticity

is that W [A] for any A becomes identical, or more explicitly

W [A](τ0) = W [0](τ0) (47)

for all A where τ0 is the time at which the vacuum is defined. This time τ0 typically is±∞,

which means that an asymptotic expansion in τ must be taken to match the boundary

conditions. Hence, the reason why the ambiguity disappears in this exceptional case can

also be seen as due to the asymptotic expansion being in time τ instead of 1/T , since

the coefficients in Eq. (28) are time independent although they can be be T dependent.

This exceptional case can be viewed as a meeting point of the adiabatic vacuum

formalism and the Bunch-Davies formalism. Its spirit is similar to the Bunch-Davies

formalism in that the asymptotic expansion can be in time τ instead of a fictitious

adiabatic parameter T . However instead of matching on to a Minkowski prescription, it

matches on to a zeroth adiabatic order WKB prescription as in the adiabatic vacuum

formalism. Essentially, the adiabatic formalism states that although not in general,

sometimes a unique vacuum can be defined in regions of spacetime where the frequency

is adiabatically a constant to an arbitrarily good degree just as in the Bunch-Davies

prescription, except with the frequency given by the leading order WKB ansatz instead

of a Minkowski prescription (Minkowski prescription means that with the scale factor

frozen at a fixed value).

11Here, we are not claiming a(τ0) = 0 generically defines an adiabatic point, but merely that Eq. (45)
suggests there are special points in spacetime where the uncertainty vanishes.
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The reader should be aware that the adiabatic formalism is compatible with the

Bunch-Davies formalism. For example, this formalism always gives the same vacuum as

the Bunch-Davies formalism whenever the Bunch-Davies formalism can define a unique

vacuum. Also, we would like to comment that although we would like to extend the

“uniqueness” to the case in which WKB iteration Eq. (25) converges for n = ∞ (i.e.

W [∞](τ) is well defined with T fixed at a finite value), it is not obvious to us whether there

is any reason to consider such situations in any special manner since the convergence of

WKB iteration is not identical to the absence of nonadiabaticity. It merely means that

the asymptotic expansion in 1/T is being taken about an analytic point in the function

generating the asymptotic expansion.

4 An Example of Calculable Nonperturbative Par-

ticle Production

In this section, we will discuss a model from Ref. [24] which illustrates the adiabatic

formalism in situations where nonperturbative particle production can be unambiguously

calculated. Owing to the supposed background metric, the vacuum construction will be

unique, and hence exponentially suppressed particle production will be calculable.

Before moving on to the discussion, we would like to alert the reader here that this

model is also reviewed on pg. 70 of Ref. [8]. However, their usage of adiabatic prescription

can be misleading (it was to us, at least). As a consequence of their loose usage, they

give the wrong impression that they can calculate reliably an exponentially suppressed

particle production even without taking to ±∞ the time at which the vacuum is specified.

For example, one sees that the matching in their equation (3.117) involves taking λ →∞,

which by itself results in a possibly exponentially suppressed ambiguity in the vacuum

that we discussed in Eq. (45). However, as long as the vacuum is specified at τ0 = −∞,
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we agree with their results modulo their inconsequential phase error in their equation

(3.124). We present our reanalysis here such that the reader would not be confused

about the discrepancy of how Ref. [8] seems to claim that nonperturbative calculations

can be unambiguously done in the context of the adiabatic vacuum formalism even

without taking τ0 → −∞ while we claim that such calculations cannot be done, strictly

speaking, without being able to take such a limit for the time at which the vacuum is

specified.

To see how the nonperturbative Bogoliubov coefficient arises in an exactly solvable

model of Ref. [24], consider the conformally coupled mode equation (i.e. Eq. (21) with

ξ = 1/6) where the scale factor is given by

a2(τ) = α2 + β2τ 2 (48)

leading to the effective frequency

w2
k = mβλ + m2β2τ 2 (49)

where

λ ≡ mα2

β
+

k2

mβ
. (50)

Since we would like to carry out the adiabatic procedure, we scale the derivatives w.r.t.

τ by 1/T :(
1

T 2
∂2

τ + w2
k

)
h̃k = 0 . (51)

For differential equations of the form

d2u

dx2
+ (x2 + λ̃)u = 0 , (52)

the general solution is the parabolic cylinder function

u = D−(1+iλ̃)/2
[±(1 + i)x] (53)
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and its complex conjugate where for our case, one should identify

x =
√

mβTτ , (54)

λ̃ = Tλ , (55)

where one notes that as T → ∞, the solution is effectively doubly scaled as
√

Tτ and

Tλ. Note also that the parabolic cylinder function Dp(z) is defined by its boundary

condition

Dp(z) ∼ zpe−z2/4 (56)

as z →∞. However, this asymptotic expansion is not the same expansion as the T →∞
expansion since there is an effective double scaling of τ and λ.

Let us first see what the adiabatic vacuum procedure gives for the particle production.

We begin by writing explicitly the exact mode function (solution to Eq. (51)) as

h̃k = Akf + Bkf
∗ (57)

where

f(τ) =
T 1/4

(2mβ)1/4
e−πλT/8D−(1−iλT )/2[(i− 1)

√
mβTτ ] (58)

which as one sees has the curious double scaling of τ and λ mentioned before. We

need to obtain an asymptotic expansion of the parabolic cylinder function Dp(z) as

T → ∞, which corresponds to an asymptotic expansion as the complex order p goes

to i∞. Unfortunately, we do not know of any systematic way of doing this because

asymptotic expansion for Dp known in the literature corresponds to either the limit

√
mβT |τ | � λT/2 (59)

or

λT/2 � mβTτ 2 , (60)
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both of which are not satisfactory for generic τ . However, for τ → ±∞ we can satisfy

Eq. (59), and for τ → 0 we can satisfy Eq. (60). In reproducing the result of Audretsch

and Schaeffer, we will focus on the limit τ → ±∞ satisfying Eq. (59).

In the limit of τ → −∞, the parabolic cylinder function has the asymptotic formula

Dp(z) ∼ zpe−z2/4

[
1−∑

n=1

O(p2n/z2n) + ...

]
(61)

= 2−1/4+iλT/4eπλT/8+iπ/8(mβT )
−1
4

(1−iλT )

× |τ |−(1−iλT )/2e
imβTτ2

2

[
1−∑

n=1

O
(

(λT )2n

(mβT )nτ 2n

)
+ ...

]
(62)

where

z = (i− 1)
√

mβTτ , (63)

p = −(1− iλT )/2 , (64)

giving

f ∼ e
imβTτ2

2√
2mβ|τ |

2iλT/4eiπ/8(mβT )iλT/4|τ |iλT/2 (65)

where one has to be careful to write

(i− 1)
√

mβTτ = −(i− 1)
√

mβT |τ | (66)

for τ < 0.12

Now, we construct the template function. Let us start with the zeroth order expansion

W
[0]
k (τ) =

√
mβλ + m2β2τ 2 (67)

which gives

h
[0]
k =

[2(
√

βmτ +
√

λ + βmτ 2)]−iλT/2√
2
√

mβλ + m2β2τ 2
exp

[−iT

2

√
βm(λ + βmτ 2)τ

]
. (68)

12We see that in Eq. (62), we cannot take T →∞ after taking τ → −∞ as the T expansion is out of
control in that limit (i.e. T limit and τ limit do not commute unless the T expansion can be summed
up).
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In the limit τ → −∞, we therefore have

h
[0]
k ∼ 1√

2mβ|τ |
exp

[
−i

mβτ |τ |T
2

]
(
√

mβ|τ |)iλT/2(λ)−iλT/2 . (69)

We can consider higher orders:

W
[2]
k =

√
βm(λ + βmτ 2) +

(3βmτ 2 − 2λ)
√

βm(λ + βmτ 2)

8T 2(λ + βmτ 2)3
, (70)

W
[4]
k =

√
βm(λ + βmτ 2) +

(3βmτ 2 − 2λ)
√

βm(λ + βmτ 2)

8T 2(λ + βmτ 2)3
(71)

−(76λ2 − 732βλmτ 2 + 297β2m2τ 4)
√

βm(λ + βmτ 2)

128T 4(λ + βmτ 2)6
. (72)

In the limit that τ → −∞, these have the expansions

W
[2]
k ∼

(
βm|τ |+ λ|τ |

2τ 2
− λ2|τ |

8βmτ 4
+ ...

)
+

1

T 2

(
3|τ |

8βmτ 4
+

19λ|τ |
16β2m2τ 6

+ ...

)
, (73)

W
[4]
k ∼ W

[2]
k +

1

T 4

( −297|τ |
128β3m3τ 8

+
4731λ|τ |

256β4m4τ 10
+ ...

)
(74)

where we note that each power of 1/T n has an expansion in λ
βmτ2 while the leading

correction coming from 1/T n terms is |τ |/([βm]n−1τ 2n). This means that even for a

fixed finite T , we can write

lim
τ0→−∞W [A](τ0)/W

[0](τ0) = 1 (75)

and hence we can conclude that this corresponds to an exceptional situation in which

infinite adiabaticity occurs at the time τ0 = −∞ when the vacuum is set. At any finite

time τ0, we would have to use the matching in expansion of 1/T , which can lead to

nonperturbative ambiguity, but here, all the terms in 1/T are effectively identically 0.

For completeness, we integrate to display the template function exponent. We find

T
∫ τ

dxW
[4]
k (x) =

[
1

2
βTm|τ |τ +

λT |τ |
2τ

ln |τ |+ ...

]

+
1

T

[−|τ |
τ

3

16βmτ 2
+ ...

]
+O

(
T−3

)
(76)
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which means that when exponentiated, both the 1/T and 1/τ expansions are both well

in control.

Because of Eq. (75), not only do Eqs. (69) and (65) match up to τ independent phases

(which can always be chosen appropriately in the indefinite integral Eq. (27)), but the

specification is unique without any nonperturbative ambiguity. Furthermore, we have

from Eq. (75) that h
[0]
k (τ ∼ −∞) = h

[∞]
k (τ ∼ −∞), implying that the matched vacuum

hk is an infinite adiabatic order vacuum. We shall denote this vacuum as

hτ0=−∞
k (τ) =

1

(2mβ)1/4
e−πλ/8D−(1−iλ)/2[(i− 1)

√
mβτ ] (77)

where we have denoted the placement of the boundary condition at τ0 = −∞.

Since we can read off the template function at τ = ∞ from Eqs. (68) and (69), we

can write

hτ1=∞
k (τ) = hτ0=−∞

k (−τ)∗ (78)

specifying the vacuum at a future time. By examining the asymptotic expansions 9.246

of [25], we can then write

hτ0=−∞
k (τ > 0) =

−√2πeiπ/4e−πλ/4

Γ
[

1
2
(1− iλ)

]
hτ1=∞

k (τ) +
[
−ie−πλ/2

]
hτ1=∞∗

k (τ) , (79)

giving13 a particle production coefficient of

βk = −ie−πλ/2. (80)

More explicitly, if we had not set T = 1 through Eq. (30) we could write βk = −ie−πTλ/2,

which shows explicitly that this coefficient is 0 to all orders in 1/T . Therefore, this

nonperturbatively suppressed particle production could not have been reliably calculated

if we had to make an expansion in 1/T at any point in the calculation (we have made

an expansion in 1/T in this section just to show that it was not necessary as can be seen

13There is an error in the book by Birrell and Davies [8] for the first coefficient.
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for example in Eq. (75)). Such an expansion in 1/T would have been necessary if the

time τ0 at which vacuum is specified were finite.

5 The adiabatic vacuum in the slow roll spacetime

For any realistic scenario of inflation, the background spacetime is quasi-dS, unlike the

exact dS that we treated explicitly before. By quasi-dS, we mean the Hubble rate

(H = ȧ(τ)/a2(τ) ) is not exactly constant, but changes with time as Ḣ/a = −εH2, where

ε is one of the so-called slow-roll parameters.14 The other useful slow-roll parameter is

η = (V ′′/3H2) where V (φ) is the inflaton potential and primes denote derivatives with

respect to the inflaton field φ. We wish to estimate the uncertainty in the vacuum in

such a spacetime, and thereby estimate the uncertainty in the inflationary prediction of

density perturbations.

In the gauge invariant treatment of cosmological perturbations generated during in-

flation, it is useful to define the gauge invariant Mukhanov variable u = aδφ(GI) + zΨ

[26] where z = φ̇/H and δφ(GI) Ψ are the gauge invariant inflaton fluctuation and the

Bardeen gravitational potential respectively [27]. Performing for the variable u a field

expansion similar to Eq. (1), one finds the mode equation (after inserting the adiabatic

parameter 1/T )

1

T 2

¨̃
hk(τ) +

[
k2 − (2 + p)

T 2τ 2

]
h̃k(τ) = 0, (81)

where p ≡ 3(3ε−η). The exact mode equation solution can be written in terms of Hankel

functions as

h̃k =

√
π

2

√−τT
[
AkH

(1)
ν (−kTτ)ei π

2
( 1
2
+ν) + BkH

(2)
ν (−kTτ)e−i π

2
( 1
2
+ν)
]

(82)

where one must be careful to note that −τ > 0 (we have also taken out Tkτ independent

14Recall we are using conformal time coordinates.
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phases from Ak and Bk for convenience and normalized conveniently). Here, the order

is defined as ν ≡ √9 + 4p/2. 15

Let us now construct the adiabatic vacuum following the recipe of subsection 3.2.

After rescaling d/dτ → (1/T )d/dτ in the mode equation, the template frequencies can

be constructed as

W
[0] 2
k (τ) = k2 , (83)

W
[2] 2
k (τ) = k2

[
1− (2 + p)

(kτT )2

]
, (84)

W
[4] 2
k (τ) = k2

[
1− (2 + p)

1

(kτT )2
+
(
3 +

3

2
p
)

1

(kτT )4
+O

(
1

(kτT )6

)]
, (85)

W
[6] 2
k (τ) = k2

[
1− (2 + p)

1

(kτT )2
+
(
3 +

3

2
p
)

1

(kτT )4
+
(
−4 +

7

2
p
)

1

(kτT )6

+ O
(

1

(kτT )8

)]
. (86)

However, unlike in the dS case, the series is generally non-convergent for any finite τ = τ0.

As we discussed before, this type of nonconvergence is more generic than the convergent

case.

To fourth order in adiabatic expansion, we find the following WKB template function

h
[4]
k =

e−ikτT

√
2k

(
1 +

−i(1 + p/2)

kTτ
− p

4k2T 2τ 2
− ip

6k3T 3τ 3
+

5p

24k4T 4τ 4

)
. (87)

For the asymptotic expansion of the Hankel functions H (1,2)
ν , we have from Ref. [25]

H(1)
ν (z) =

√
2

πz
ei(z−π

2
ν−π

4 )

n−1∑
k=0

(−1)k

(2iz)k

Γ(ν + k + 1
2
)

k!Γ(ν − k + 1
2
)

+ θ1
(−1)n

(2iz)n

Γ
(
ν + n + 1

2

)
Γ
(
ν − n + 1

2

)
 ,(88)

H(2)
ν (z) =

√
2

πz
e−i(z−π

2
ν−π

4 )

n−1∑
k=0

1

(2iz)k

Γ(ν + k + 1
2
)

k!Γ(ν − k + 1
2
)

+ θ2
1

(2iz)n

Γ
(
ν + n + 1

2

)
Γ
(
ν − n + 1

2

)
 ,(89)

15The Hankel’s functions are defined as H
(1)
ν = Jν + iYν and H

(2)
ν = H

(1) ∗
ν , where Jν and Yν are,

respectively, the Bessel functions of the first and the second kind.
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where Re(ν) > −1/2, |arg(z)| < π and θ1,2 are coefficients smaller than unity in front of

the remainders. A useful formula is

Γ(ν + k + 1
2
)

Γ(ν − k + 1
2
)

=
(4ν2 − 12)(4ν2 − 32)...(4ν2 − (2k − 1)2)

22k
. (90)

Expanding to first order in p and fourth order in T , one can then compute

h̃k(τ) ≈ 1√
2k

[
(Akf + Bkf

∗) +
i

kτT
{−Ak

(
1 +

p

2

)
f + Bk

(
1 +

p

2

)
f ∗}

− p

4(kτT )2
{Akf + Bkf

∗}+
ip

6(kτT )3
{−Akf + Bkf

∗}

+
5p

24(kτT )4
{Akf + Bkf

∗}
]

, (91)

where f ≡ e−ikτT . Matching h̃k and h
[4]
k just by inspection (comparing Eqs. (87) and

(91) ), one sees that Ak = 1 and Bk = 0 as expected.

Just to check further, suppose we took the 4th order template h
[4]
k and expanded to

6th order in T−1 and matched it to h̃k to 6th order (instead of just to 4th order). To

accomplish this, note that since W [4] only needs to be expanded to T−6 accuracy even

though it is being multiplied by T since the next order term in W [4] expansion is T−8 ,

resulting in a correction of T−7 which we are ignoring anyway. We find

h
[4]
k(6th) = h

[4]
k +

e−ikτT

√
2k

[ −3i

8k5τ 5T 5
(4 + 3p) +

9 + 5p

4k6τ 6T 6

]
. (92)

This results in

Ak = 1 +
3(2 + p)i

4k5T 5τ 5
0

+O(T−6) , (93)

Bk =
−15(2 + p)

8k6T 6τ 6
0

e−2ikTτ0 , (94)

where τ0 is the time at which the boundary conditions are placed. We see explicitly

the order of the residual corrections to the 4th order asymptotic expansion, and it is as

expected. One can easily check similarly that the 6th adiabatic order WKB template
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function also results in Ak = 1 and Bk = 0 to 6th order in 1/T . More explicitly, we have

the template function

h
[6]
k = h

[4]
k +

e−ikτ

√
2k

[
3ip

8k5τ 5T 5
− 7p

8k6τ 6T 6

]
(95)

that fixes the vacuum. Indeed, the fact Ak = 1 and Bk = 0 is no surprise since the for-

mulae Eqs. (88) and (89) and the template functions are the same asymptotic expansions

to any given order.

The matching at time τ0 and at any given adiabatic order A of the template function

h
[A]
k with the mode function (82) suffers of an ambiguity introduced by the nonvanishing

remainders (proportional to θi) displayed in expansions (88) and (89). As discussed ear-

lier, the order at which the remainder stops converging (with T = 1) can be attributed

to be the extent to which the vacuum is nonadiabatic. Hence, instead of a guessed non-

perturbative uncertainty of Eq. (45), we can set T = 1 and compute the uncertainty that

is due to the intrinsic nonadiabaticity of the background spacetime. (This is something

we discussed at the end of Sec. 3.2.)

More explicitly, we can look for the adiabatic order n∗ at which the (absolute values

of the) remainders are minimized, and then say that we cannot define the vacuum more

certainly than this order due to the nonadiabaticity. Expanding the remainders to first-

order in the slow-roll parameters, we can express the absolute value of the remainder

as

R(n) ≡
∣∣∣∣∣ (−1)nΓ(ν + n + 1/2)

(2ik|τ |)nΓ(ν − n + 1/2)

∣∣∣∣∣ ≈ pΓ(2 + n)Γ(n− 1)

3 · 2n(k|τ0|)n
+O(p2) . (96)

We see clearly that the remainder vanishes in the dS limit of p = 0, which corresponds

to ε = η = 0. This is another way of understanding why in the pure de Sitter case we

have been able to construct a convergent W [∞]. At a formal level, it merely means that

the asymptotic expansion point 1/T → 0 is an analytic point, allowing a convergent

asymptotic expansion.
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We can find the minimum of R at the location by taking a discrete derivative R(n∗+

1)−R(n∗) = 0. Although n∗ will not lie at an integer value in general, the actual solution

will be at the nearest integer.16 We thus find

n∗ = integer
(−1

2
+

1

2

√
1 + 8(1 + k|τ0|)

)
≈ integer

(√
2k|τ0|

)
(97)

to be the order at which the uncertainty is minimized where the integer function finds

the nearest integer value of the argument. Note that the value is independent of p to

leading order because in the limit that p vanishes, the corrections identically vanish,

giving an “arbitrary” n∗. In terms of e-folds, we can write

n∗ '
√

2 exp((N0 −Nk)/2) (98)

where Nk denotes the number of e-foldings from the time when a given wavelength

λ = a/k leaves the horizon (λ = 1/H) till the end of inflation and N0 denotes the

number of e-foldings from the time the vacuum was set to the end of inflation. As we

already mentioned, length scales of interest for the the CMB anisotropies give Nk of

order of 60.

The corresponding ambiguity in the value of the parameter Bk can be calculated from

R(n) as follows. We can consider the template function to be

h
[n∗−1]
k ≡

√
π|τ |
2

H(1)
ν (−kτ)ei( 1

2
+ν)π

2 + rn∗ , (99)

where rn is related to the remainder as

rn = h
[0]
k R̃1(n) , (100)

h
[0]
k =

e−ikτ

√
2k

, (101)

R̃1(n) =

√
2(−1)nΓ(ν + n + 1

2
)e−i(π

2
ν+ π

4
)

(2i|τ |k)nΓ(ν − n + 1
2
)

, (102)

16When solving, however, one will find it convenient to assume self-consistently that n∗ will in the
end be at an integer value.
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where |R̃1(n)| = √
2R(n). Now, solving for the coefficients Ak and Bk using the system

h
[n∗−1]
k (τ0) = h̃k(τ0)|T=1 , (103)

h
[n∗−1]′
k (τ0) = h̃′k(τ0)|T=1 (104)

gives

Bk ≈ −ih[0]2 dR̃1(n∗)
dτ

. (105)

The ambiguity in the power spectrum PR of the comoving curvature perturbation R =

u/z is given by∣∣∣∣∣δPR(k)

PR(k)

∣∣∣∣∣ ' 2 |Re Bk| ' O
[
p exp(−2

√
2e(N0−Nk)/2 − (N0 −Nk)/2)

]
, (106)

where we are using the notation and approximation explained below Eq. (19). Note that

this is generically slightly larger than Eq. (46) and that it artificially vanishes in the limit

that p → 0. In the case that p → 0, the best estimate that we can give for the uncertainty

is Eq. (46), which is a merely a guessed function that drops off nonperturbatively fast.

The theoretical ambiguity on the power spectrum of the comoving curvature perturbation

is sizeable if the total duration of the de Sitter stage corresponds to a number of e-foldings

not far from 60. Of course, in this regime, it may not be a good approximation to treat

the spacetime to be void of fluctuations.

6 Conclusions

Within the context of Bunch-Davies vacuum formalism and the adiabatic vacuum for-

malism we have answered the following question: “What is the minimal theoretical

uncertainty in the inflationary curvature perturbation calculation if we assume that the

curvature perturbation state at sometime τ0 near the beginning of inflation was a slow

roll vacuum?” Even without any trans-Planckian effects, effective field theory cutoff
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related effects, or nongravitational field interaction effects, there is a minimal uncer-

tainty in the curvature perturbation predictions of inflation coming from the inability

to uniquely specify a vacuum (due to gravitational interactions). Within the adiabatic

vacuum formalism, the power spectrum uncertainty is given by Eq. (106), and in more

general situations (applicable to outside of the inflationary regime) by Eq. (45). The

Bunch-Davies formalism gives a larger uncertainty of Eq. (19).

The minimum uncertainty presented here applies to all of the efforts [13, 14, 21, 22]

to obtain measurable small effects on the CMB. In practice of comparing with data,

there will certainly be other theoretical uncertainties, not only from other interaction

effects of the inflaton, but reheating historical uncertainties [28] as well as astrophysical

uncertainties which will most likely overwhelm the minimal uncertainty presented here,

unless the number of e-foldings is very close to the minimum required for inflation (e.g.

around 60). Even in that case, however, most likely, it will be difficult to assume that the

curvature perturbation quantum state is that of a vacuum due to other energy density

fluctuations present which depend on the history leading to the initiation of inflation.

Nonetheless, it is important and reassuring to know that the inflationary vacuum in the

conservative sense has very little ambiguity contrary to the impressions given particularly

by Ref. [14]. Indeed, the main qualitative conclusion one can draw from our work is

that even with a finite period of inflation, we can in most cases neglect the uncertainty

associated with the vacuum when defined according to the most reasonable particle based

definitions.

Finally, we would like to comment that the general idea that the vacuum is uncertain

with a finite period of inflation is not entirely new (see for example [7, 29]). Here, we

merely tried to quantify this in the context of slow roll inflationary models and show

explicitly that the best estimates for the uncertainty lead us not to worry about this

effect unless the total duration of inflation is close to 60 e-folds or so.
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