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Abstract

The HERA-B Outer Tracker consists of drift tubes folded from polycarbonate foil and is operated with Ar/CF4/CO2 as drift
gas. The detector has to stand radiation levels which are similar to LHC conditions. The first prototypes exposed to radiation
in HERA-B suffered severe radiation damage due to the development of self-sustaining currents (Malter effect). In a
subsequent extended R&D program major changes to the original concept for the drift tubes (surface conductivity, drift gas,
production materials) have been developed and validated for use in harsh radiation environments. In the test program various
aging effects (like Malter currents, gain loss due to anode aging and etching of the anode gold surface) have been observed
and cures by tuning of operation parameters have been developed.
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1. Introduction

HERA-B [1] is an experiment designed to measure CP violation in the B system using the so-called gold-
plated decay channel, B0→ J/ψK0

S → l+l−π+π− (l=e,µ). Events are produced by colliding 920 GeV energy protons
accelerated in the HERA proton ring with movable target wires installed in the proton beam halo. In order to
accumulate enough statistics within reasonable time, the experiment needs a very high proton-nucleus (pN)
interaction rate, and very sophisticated trigger and DAQ systems [2], able to select and fully reconstruct the B0→
J/ψK0

Sevents in a background twelve orders of magnitude larger than the signal.
The First Level Trigger [3] is designed to select events containing two lepton tracks forming an invariant mass

compatible to the one of the J/ψ. The two leptons must be identified among an average of 200 charged tracks
produced per bunch crossing in the detector when running at 40 MHz interaction rate. The particle density
follows an 1/R2 dependence, with R being the radial distance to the proton beam. All this requires tracking
detectors with very high efficiency, good hit resolution and covering a large area, which is accomplished by using
different granularities and technologies: a Silicon Vertex detector near the interaction point [4], Micro Strip Gas
Chambers (Inner Tracker) [5] in the forward region closest to the beam pipe, and single-wire drift tubes (Outer
Tracker, OTR) to cover the largest area starting at a radius of 19 cm from the beam and extending to an
acceptance of 250 mrad. Leptons are identified in the sampling Electromagnetic Calorimeter with shashlik
geometry [6] or in the Muon System [7], that uses drift tubes and pad chambers for the outermost region and
pixel chambers in the region closest to the beam. Additionally, a RICH detector [8] is used for theπ/K separation.

The high event rate needed for the challenging CP violation measurement results in a high radiation level that
the experiment has to withstand. This led to several aging problems with the gaseous detectors, which are
described in [9,10,11] for components other than the Outer Tracker. In the following, the design constraints and
technological choices made after extensive R&D of aging phenomena for the Outer Tracker (OTR) are described
in detail. Earlier reports can be found in [12,13,14]. In spite of the conventional technology, the OTR can be
considered as a new generation detector that will suffer experimental conditions very similar to those expected at
the LHC detectors.

2. The HERA-B Outer Tracker

The acceptance coverage, the First Level Trigger requirements, and particle recognition needs of HERA-B are
met by a tracker system composed of thirteen measurement Super Layers (SL) of different sizes. SL are split into
two halves. Every half SL consists of plane detector layers that are embedded in a common gas box. The largest
station has an area of 6.5 x 4.6 m2. Every detector layer consists of detector modules made with honeycomb drift
cell technology. The OTR consists of a total of 978 modules and 115000 readout channels. The total cathode
surface is 8000 m2 and the total gas volume is 22 m3. In the innermost part, closer to the beam pipe, modules are
made with cells of 5 mm diameter. In the outer part, where the track density is lower, 10 mm cells provide the
needed coverage minimizing the channel count. Seven stations are installed inside a magnetic field of up to 0.8
Tesla, providing a field integral of 2.1 Tm. The design goals of the system were to provide a hit resolution of
about 200µm, a hit efficiency of 98% and a momentum resolution of ∆p/p2 ~10-4/GeV/c.

The construction scheme of every detector module is shown in fig. 1. A pre-folded, soot-loaded polycarbonate
foil of 75 µm thickness (trademark Pokalon-C) is fixed in an aluminium template (not shown in the figure) that
defines the hexagonal cell geometry. The foil has the needed bulk conductivity to transport the ion current. One
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meter long foils are placed along the template to produce modules of up to 4.6 m length. Foils in subsequent
layers are staggered by 50 cm. Supporting strips made of FR4 material, 100µm thick, with metal soldering pads
are glued to the foil. These supporting strips are placed every 50-60 cm to reduce the free wire length. At both
ends of the module, hexagonal pieces made of NORYL are also glued to the foil to connect the thin cell body
with the fixation plate. Gold-plated tungsten wires (6% gold in weight) of 25µm diameter are strung, tensioned
at 50 grams, and soldered to the metal pads on the supporting strips while the cell is still open. To limit the wire
occupancy, the cells of modules close to the beam are longitudinally segmented, the shortest segment being 20
cm long. The signals from the inner sectors are transported by 75µm Cu/Be wires (strung with the same tension
and soldered to the support strips) to the module ends. These thicker wires do not give rise to electrostatic fields
large enough for significant gas gain. Soldering points are not cleaned up of colophony. Another set of foils is
prepared on another template, where glue is applied to the foils. Along the cell, also a dot of conductive glue is
applied every 20 cm. The template is then installed on top of the wired half-cells thus forming the hexagonal tube
cells. The templates are covered with anticontact paste QZ5111 (from Ciba Spezialitäten GmbH) to avoid that
foils stick to them. Complete modules are constructed by repeating the procedure [15]. Since the foil material is
not strong enough mechanically to form a self-supporting structure, stabilization carbon rods of 2 mm diameter
need to be glued to the external module foils in order to guarantee straightness when modules are assembled in
the final vertical position. Electronic boards to provide positive high voltage to the module wires and
manufactured with SMD components are installed at the module ends. These boards are inside the gas volume
after detector installation.

Signals are read out by front-end amplifier-shaper-discriminator boards (ASD-8) [16] placed at the module
end outside the gas box away from the beam pipe where the radiation is below 50 Gy/year. LVDS signals from
the preamplifier outputs are digitized in a TDC [17] board, whose information is then sent to the HERA-B
readout system.

3. Implications of the design for aging studies

The size, running environments and building technology pose some constraints that can affect the aging
behaviour of the detector:
• The choice of honeycomb geometry and the construction technique forces the use of a foldable foil (Pokalon-

C) and supporting strips (FR4) to fix the wires. Soldering points and glues are inside the amplification region.
• The maximum drift distance in the detector is 5 mm and some of the chambers are inside a magnetic field of

up to 0.8 Tesla. In addition, some of the signals have to be transmitted up to 2.2 m. However, in order to
trigger signals within one bunch crossing to limit occupancy, the maximum allowed drift time is 75 ns, which
is given by the time between proton bunches in HERA plus signal propagation times, TDC delays, etc.. This
requires a gas with very high electron drift velocities in the order of 100µm/ns, which forces operation with a
CF4-based gas. Mixtures of CF4/CH4 (80:20), Ar/CF4/CH4 (74:20:6) and Ar/CF4/CO2 (65:30:5) have been
tested.

• By design, the drift tubes are not separately gas tight. Gas is distributed to the cells by installing the modules
inside a large gas box that is flushed with a gas inlet at the bottom and outlet at the top. Thus, gas is in contact,
not only with all the materials of the module detector itself, but also with the gas box and the electronics
boards that serve the high voltage. The large gas volume of 22 m3 and the expensive CF4-based gas require the
use of a recirculating gas system [18]. Purifiers and outgassing effects of all materials inside the gas box have
to be carefully tested.

• The HERA proton beam has an inter-bunch time of 96 ns. To record the needed number of gold-plated J/ψK0
S

events, the HERA-B target is positioned into the proton beam to produce an average of four interactions per
bunch crossing. As shown in fig. 2, under these circumstances, the primary charged particle flux received at
HERA-B is equivalent to those that will be seen in detectors at LHC. The observed particle flux, which
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includes also particles from secondary interactions and gamma conversions, was found to reach (at a distance
of 20 cm to the beam) 2⋅105 cm-2s-1.

• Due to electronics noise in the front-end electronics, the threshold cannot be lower than about 2.5 fC. On the
other hand, the attachment in the CF4-based gas mixtures used is in the order of 3-4, so that the detector has to
operate at a gain of about 3⋅104. Consequently, the expected accumulated charge in the hottest areas of the
detectors was estimated to reach 0.4-0.5 C/cm per year1.

Since HERA-B was designed for several years operation, detector and materials had to be tested up to a
minimum irradiation of 2-3 C/cm. Outgassing and aging effects of all the materials in the gas box and gas system
purifiers had to be carefully tested for such conditions.

4. Observation of Malter effect in early prototypes

In first aging studies, small test chambers of honeycomb drift tubes operated with a drift gas mixture of
CF4/CH4 (80:20) were irradiated with X-rays from a tube with a Molybdenum anode (35 kV) up to an
accumulated charge of 4.5 C/cm. No aging effects were observed in these tests.

Table 1. Materials used in the first prototype modules tested in HERA-B

Component Material

Cathode Soot-loaded Pokalon foil (Pokalon-C)

Anode wire 25µm Au/W from California Fine Wires

Signal transport wire 75µm Cu/Be from Little Falls Alloy

Supporting wtrips FR4 with Cu metal pads

Supporting glue Araldite AW 106 and hardener HV953U from Ciba-
Geigy AG

Conductive glue Silber Leitkleber 3025 from Epoxy Produkte GmbH

Solder tin Fluitin SN 60% Pb 38% Cu 2% DIN 1707 F-SW26
DIN8516 2.2% flux from Küppers Metallwerk
GmbH

End-pieces NORYL

Gas box Aluminium frames and windows

Gas system Cu piping, open loop, water bubbler on exit.

In 1997, 1-meter long module prototypes produced with the same techniques as described above and the
materials listed in Table 1 and operated with CF4/CH4 (80:20) gas mixture were installed in HERA-B. The
chambers were operated with target rates up to 20 MHz. After 3-4 hours of operation, with an accumulated
charge of 5-10 mC/cm per wire, the measured chamber currents started to raise reaching values five times larger
than at irradiation startup. After removing the target, ie. stopping the irradiation, a rest current remained and only
disappeared after switching off the HV. However, once observed, the behavior was triggered again almost

———
1 1 year = 107 s is assumed. This estimate was done for the gas mixture CF4/CH4 (80:20), where a total ionization of the order of 160 e/cm was

assumed. The corresponding value is about a factor 1.6 lower for the finally chosen gas Ar/CF4/CH4 (65:30:5). However, some safety
factor to account for the presence of heavily ionising particles is included.
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immediately under radiation. The same effect was reproduced operating the detector with an Ar/CF4/CH4

(74:20:6) gas mixture. Figure 3 shows an example of this observation in 1997 chamber prototypes.
Such a behavior of the currents can be explained by the Malter effect [19]. An insulating layer on the cathode

surface inhibits the neutralization of positive ions arriving from the avalanche at the anode. This generates an ion
layer which accumulates and generates a strong electric field across the insulating layer. At some point the field
becomes strong enough to extract electrons out of the cathode with enough energy to pass the ion layer,
generating an avalanche and thus creating a self-sustaining current.

Several ad-hoc remedies were tested, such as adding about 1 percent water or alcohol to the gas. The water
addition did not have any effect. Alcohol had prevented the self-sustaining currents to appear. However, the foils
suffered mechanical deformations, and therefore this method was not a viable solution.

5. Reproduction of Malter currents

The restricted access to the HERA-B experiment made it difficult to perform a systematic R&D study of this
effect in HERA. Since the Malter currents could never be observed under X-ray irradiation, it was necessary to
find a radiation source that resembled the HERA-B conditions and was able to reproduce the Malter currents in
chambers built as those installed in HERA-B.

Several parameters, like irradiation area, irradiation density and particle type were varied. Table 2 shows a
summary of these tests. All chambers tested were built using the materials specified in Table 1. Chambers were
typically 16 cells wide and 10-100 cm long. Several conclusions can be extracted from these tests:
• Electromagnetic radiation is not able to produce Malter currents. However, if the chamber has previously been

irradiated in a hadronic beam (even if did not show Malter currents because of the low irradiation received),
Malter currents could be observed. Once triggered, chambers are permanently damaged.

• Only irradiation induced by hadronic particles above certain energy clearly reproduce the Malter effect after a
few mC/cm of accumulated irradiation dose, as it was observed in test modules installed in HERA-B.

• Slight indications that the irradiation area could also play a role were observed in the test using 70 MeV/c
protons in PSI.

Table 2. Characteristics of the aging tests performed with irradiation sources aiming to reproduce the Malter currents in chambers built in the
same way as the prototypes tested in HERA-B in 1997.

Radiation Type (Facility) Accum. Charge
(mC/cm)

Radiation Density
(µA/cm)

Irradiation Area
(cm x cm)

Gas Mixturea Malter
Currents Seen?

X-rays Mo 35 kV (DESY Zeuthen) 5000 1.5 1 x 3 CF4/CH4 NOb

X rays Cu 8 keV (Dubna) 6000 5 0.5 x 1 Ar/CF4/CO2 NOb

Electrons 2.5 MeV (Hahn-Meitner Institut) 10 0.1-3 100 x 30 Ar/CF4/CH4 NOb

X-rays Cu 8 keV (Univ. Heidelberg) ~5-10 0.1 46 x 30 Ar/CF4/CH4 NOb,c

Protons 13 MeV/c (FZ-Rossendorf) 5 0.3 9 x 9 Ar/CF4/CH4 NO

α-particles 28 MeV/c (FZ-Rossendorf) 3 0.6 1 x 3 Ar/CF4/CH4 NO

Protons 70 MeV/c (Paul Scherrer Inst.) ~5-10 0.2 0.5 x 0.5 Ar/CF4/CH4 NOd

π/protons 350 MeV/c (Paul Scherrer Inst.) ~5-10 0.02 12 x 22 CF4/CH4 YES

α-particles 100 MeV/c (FZ-Karlsruhe) ~5-10 0.4 7 x 7 Ar/CF4/CH4 YESe

pN Collisions (HERA-B) ~5-10 0.02-0.04 100 x 30 All gas mixt. YES

a Exact compositions as follows: CF4/CH4 (80:20), Ar/CF4/CH4 (74:20:6), Ar/CF4/CO2 (65:30:5)
b Malter effect currents could be triggered with this source in chambers that had been previously irradiated in hadronic beams able to trigger

the Malter effect.
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c A very strong anode aging and persistent dark currents were observed.
d Malter effect could be ignited by increasing the irradiation area to approximately 5 x 5 cm2.
eAlso seen with CF4/CH4 gas mixture.

The results in Table 2 suggest that a hadronic beam above a certain energy (about 100 MeV/c) is able to
reproduce the aging effects seen in the HERA-B environment.

During these tests, it was also found that, in the 350 MeV/cπ beam at the Paul Scherrer Institute, a chamber
where the Pokalon-C was coated with carbon spray (Graphit 33 Leitlack from Kontakt Chemie, CRC Industries
Deutschland, Iffezheim) did not show Malter currents, thus supporting the hypothesis that the effect previously
seen in HERA-B was caused by Malter currents produced by an insulating layer on the cathode foil surface.

In addition, at the large-area irradiation X-ray source in Heidelberg, a chamber operated with Ar/CF4/CH4

(74:20:6), showed a very fast anode aging phenomenon. The monitoring anode currents dropped by 50% after 8
hours of irradiation, corresponding to about 5 mC/cm. This effect was very difficult to observe in HERA-B
because of the high target rate fluctuations. Another chamber with a very large Kapton window (of 100x50 cm2)
showed persistent dark currents after an accumulated charge of the order of 8 mC/cm.

In order to study systematically all these effects and to decide on the materials and production techniques of
the detector, it was decided to do systematic tests at the 100 MeVα-beam at the FZ-Karlsruhe.

6. Systematic aging investigations and validation of chamber construction parameters in a 100 MeVαααα-
beam.

The validation of parameters for the construction of the HERA-B Outer Tracker and gas system was made at
DESY-Zeuthen (X-rays, Mo 35 kV), Hamburg (X-rays, Cu 8 keV) and in the 100 MeV/cα-beam in the
Forschungszentrum Karlsruhe. Details of the two first setups are given in [20,21,22]. Here, the investigations
made with the 100 MeV/cα-beam are described, where most of the basic chamber parameters were fixed.

For these investigations, 16-cell chambers with one layer of 30 cm length and 5mm cell diameter were built.
The cathode material used was Pokalon-C coated with different metals: Cr, Au, Cu/Au with thickness varying
between 50 to 100 nm. The materials and design for the chambers were carefully selected such that only one
parameter at a time (e.g.: the Cu/Be wire, irradiation of FR4 strips, solder tin, different glues, etc…) was tested.
The default materials are listed in Table 3. Chambers with materials as specified in Table 1 were also tested as a
cross check. All chambers were installed in identical gas boxes made of clean aluminium frames and Kapton
windows. All gas seals were done using the glues specified in Table 3. Several chambers, where gas was
introduced directly into the cells by using a modified end-piece and steel capillary construction, were also built.
In those cases, the sealing of the end-piece and capillary construction was done with Torrseal 8030 from Varian.

The open-loop gas system used only electro-polished stainless steel tubing. The default gas flow was one gas
box volume exchange per hour. By default, the gas inlet was on the bottom of the gas box and the gas outlet on
the top. The chambers were not separately flushed. In order to test the possible influence of the gas flow the
chambers having gas input capillaries were also operated with 10 and 0.1 volume exchange per hour. For the test
of outgassing of contact materials used during mass-production (eg: the anticontact paste used in the templates),
gas was flushed through a box containing large samples of the material under study before entering the irradiated
detector.



8

Table 3. Materials used in the modules tested in Karlsruhe.

Component Material

Cathode Pokalon-C coated with Cu(50 nm)/Au(40 nm)a in
APVV GmbH, Essen, Germany

Anode wire 25µm Au/W from California Fine Wires

Signal transport wire 75µm Cu/Be from Little Falls Alloy

Supporting strips FR4 with Sn coated solder pads

Supporting glue STYCAST 1266 / Catalyst 9 from Emmerson &
Cummings

Conductive glue Silber Leitkleber 2025 from Epoxy Produkte GmbH
or Traduct 2922 from Tracon

Solder tin FLUITIN 1603 Sn60Pb DIN 1707 F-SW32 DIN
8516, 3.5 % flux from Küppers Metallwerk GmbH

End-pieces NORYL

Gas box Aluminium frames and Kapton windowsb

Gas system Electro polished Stainless Steel tubes

a Coatings of Cr, Au and Cr between 50 nm and 100 nm were also tested.
b In some chambers, aluminized Mylar foil was glued on top of the Kapton foil to disentangle the effect that Kapton is transparent to water.

Anode currents were continuously monitored with a precision of 1µA. An 55Fe spectrum of the irradiated
wires was recorded periodically. The gas system monitored main (Ar, CF4, CH4 and CO2) and trace gas
components (O2, H2O) mainly by use of a chromatograph.

The tests served to solve the aging phenomena observed and to validate the final selection of chamber
materials and production techniques.

6.1. Fast Anode Aging

The fast anode aging observed when chambers were operated with the Ar/CF4/CH4 (74:20:6) gas mixture was
confirmed in these tests. This aging effect was independent of the materials used and of the type of cathode foil.
The 55Fe spectra in the irradiation areas showed a decrease in gain compatible with the anode current drop
observed. The curve in fig. 4 shows the55Fe spectrum along one wire after an accumulated charge of 5 mC/cm.
The region where the55Fe peak position is lower corresponds to the irradiation area. The inspection of damaged
chambers showed deposits in the form of fragile whiskers on the anode wires. By means of Energy Dispersive X-
ray Spectroscopy (EDS) in combination with Scanning Electron Microscopy (SEM), it was shown that the main
constituents were C and F in varying proportions, sometimes accompanied by Si.

None of the chambers operated with Ar/CF4/CO2 (65:30:5) gas mixture showed any sign of anode aging. Tests
done with Ar/CO2 (80:20), a gas too slow for use in HERA-B, did not show any anode aging either.

Moreover, a chamber previously aged using the CH4-based mixture, was irradiated for some hours after
changing the gas to Ar/CF4/CO2 (65:30:5). The points on fig. 4 show the peak position of the55Fe spectrum along
one wire after irradiation with the CO2-based gas mixture. One can clearly see how the chamber is completely
recovered after exchanging the gas. Consequently, for the operation of the OTR in HERA-B, the Ar/CF4/CO2

(65:30:5) gas mixture was chosen.
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6.2. Malter effect

Malter currents were observed for all chambers made with uncoated Pokalon-C and operated with Ar/CF4/CH4

(74:20:6). All these chambers previously showed massive anode aging as explained in section 6.1. Inspection of
the cathode foil by electron microscopy showed the following [23]:
• Using SEM, it was found that for low electron energies, the surface of non-aged Pokalon-C foil behaved like

an insulating layer. At a transition energy of about 0.9 keV, which probes deeper into the material, the foil
surface looked conductive. This observation could be interpreted as the foil having an insulating layer of about
100 nm, which may be a result of the production procedure.

• The inspection of cathode foil from aged chambers with electron-emission spectroscopy for chemical analysis
showed CF, CO and CN components in a polymerized form attached to the foil. The nitrogen content in the
spectra could be an indication for outgassing of the epoxy used for gluing some of the test chambers that were
built like the first prototype (Araldite AW 106, hardener contains CN components).

Chambers built with uncoated Pokalon-C operated with Ar/CF4/CO2 (65:30:5) did not show clear Malter
currents. However, in some cases, spurious rest currents and instabilities were observed both in the 100 MeV/cα-
beam and in HERA-B. None of the chambers built with Pokalon-C with coating of any kind showed Malter
effect, independently of the gas mixture used and of whether they showed anode aging or not. Clearly, any metal
coating provides sufficient surface conductivity for the cathode to avoid completely the Malter effect. For the
construction of the OTR it was consequently decided to use Pokalon-C coated with 40 nm Au on top of 50 nm
Cu. This specific choice was driven by the fact that Cu attaches better to plastics than Au. Additionally, non-
outgassing glues were exclusively used and the material cleaning procedures were made stricter for mass
production [24].

6.3. Persistent dark currents

After an irradiation dose of 300 mC/cm, the chamber produced with Pokalon-C coated with Cu(50 nm)/Au(40
nm) and operated with Ar/CF4/CO2 (65:30:5) gas mixture at 1/10 of the nominal volume exchange in the drift
tubes (using the special capillari construction) started to draw currents with ohmic behaviour, similar to those
observed in the Heidelberg X-ray tests. It was found that these currents were caused by the supporting FR4 strips,
which became conductive during irradiation. Inspection of the strips showed strong corrosion both of the epoxy
of the strips (the glass fiber texture became quite pronounced) and of the solder points. It was further found out
that the water content of the gas had exceeded 3000 ppm during the irradiation period, due to the Kapton
windows used in the gas boxes and the low operation gas flow.

A systematic test varying the water concentration of the gas was performed. To avoid uncontrolled sources of
water due to the transparency of the Kapton windows, an additional aluminized Mylar foil was glued to the gas
windows. The chamber was operated at the nominal gas flow and water was added to the gas by flushing it
through water vapor in a temperature-controlled water bath. Figure 6 shows the measurement of dark currents
versus the water concentration. An almost linear dependency of the ohmic dark current with the water
concentration is observed. However, ohmic currents do not appear if water concentrations are below about 500
ppm.

This fact clearly has implications for the gas system and the gas box construction of the final HERA-B Outer
Tracker detector that have to ensure enough gas-tightness to meet this requirement [18].



10

6.4. Anode swelling and anode etching

Figure 6 shows the peak positions of the55Fe spectrum along the wire for several wires irradiated in the 100
MeV α-beam at FZ Karlsruhe after an accumulated charge of 600 mC/cm for chambers operated with
Ar/CF4/CO2 (65:30:5). A slight 6-10 % gain drop is observed for wires in the center of the irradiation zone.
Inspection of the anode wires showed that they had become slightly thicker (consistent with the gain drop) and
that the gold partly had peeled off in some areas. Further laboratory tests [20] with irradiation levels between 0.4
and 0.7µA/cm reproduced the effect if the water concentration was below about 100 ppm. However, another test
[22] in which the irradiation level was 0.2µA/cm and the water concentration was below 50 ppm did not confirm
this result. Difficulties in measuring such low water concentrations as the reason for this discrepancy cannot be
exluded.

7. Summary

The Outer Tracker of HERA-B has been constructed with honeycomb drift tubes. The harsh operating
environment in terms of radiation dose and particle flux, which is very close to those expected at the LHC,
required production methods of a new generation of gaseous detectors.

Aging studies are usually performed with small prototypes of the final detector. Special care has to be taken to
the scalability, the influence of outgassing materials (which might be more abundant in the final system), the
radiation density (that has to be balanced with the duration of the test) and the particle type. In particular, some of
the aging effects produced in the final detector conditions for the HERA-B Outer Tracker could only be
reproduced with a hadronic beam above a certain energy and, possibly, above certain irradiation area. The choice
of the irradiation source for aging tests must also be a part of the detector R&D.

In the detector construction, several lessons have been learned from the extensive R&D done for the HERA-B
Outer Tracker:
• Some aging effects might be particle type or energy dependent. Beam tests for aging studies must resemble

running conditions of the final detector.
• Special care has to be taken of the surface conductivity of the plastic cathode foil. Microscopic non-

conductive layers can be crucial for the safe operation of the detector. The aging effects caused by these areas
might not appear in common X-ray laboratory tests and, as in the case of the HERA-B Outer Tracker, can
appear after a very low irradiation dose.

• Methane can cause severe anode aging also in CF4-based gases. The use of CO2 as quencher was proven to be
safe for the Outer Tracker, although at the price of reduced drift velocity.

• Special care has to be taken of the selection and cleaning procedures of all the materials that might be in
contact with the gas. Non-outgassing components and careful control of material handling during production
are mandatory.

• CF4 is an expensive gas that forces large detectors to use a re-circulating gas system. The operation parameters
of these systems have to be thoroughly tested in the detector aging studies. In particular, the water content and
the gas flow can play a decisive role in the operability of the final detector.
The main lesson to successfully build and operate the new generation of gaseous detectors that can stand

radiation doses on the order of 500 mC/cm per year is to make very systematic aging tests with prototypes
containing all materials and building techniques in an environment resembling the final running conditions as
closely as possible before starting production.
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Fig. 1. Illustration of the honeycomb technology. See explanations of the building technique in the text. In the lower part of the figures, the
cross section of single and double layers modules are shown.

Fig. 2. Comparison of the primary charged particle density as function of the radial distance from the beam for detectors at HERA-B and
LHC. It can be seen that, at HERA-B, detectors are closer to the beam, thus receiving the same charged particle flux, as LHC detectors will
detect.
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Fig 3. Example of the development of Malter currents in 1997 test chambers installed in HERA-B. The chambers were built with uncoated
Pokalon-C foil. The drift gas was CF4/CH4 (80:20). The figure shows the time behavior of the high-voltage applied to the anode wire, the
anode current measured and the target rate (which is proportional to the radiation load in the chambers).

Fig. 4. Position of the55Fe peak as function of the source position along the wire after severe anode aging produced by irradiation under
Ar/CF4/CH4 (74:20:6) (full circles and curve) and after recovering from irradiation by operating with Ar/CF4/CO2 (65:30:5) (squares).
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Fig. 5. Measurement of dark currents versus the water concentration. An almost linear dependency of the ohmic dark current with the water
concentration is observed. The gas used is Ar/CF4/CO2 (65:30:5).

Fig. 6. Peak position of the55Fe spectrum along the wire for several irradiated wires after an accumulated charge of 600 mC/cm in chambers
operated with Ar/CF4/CO2 (65:30:5) (full symbols), compared with the situation before irradiation (open symbols). The gain drop is between
6-10 % in the center of the irradiation zone due to the swelling of the anode wires.


